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Introduction
In this supplementary material, we provide additional

algorithmic details for our shape flow estimation, as well
as additional visualisations and evaluations for the dense
and patch-based AAMs that were constructed using the pro-
posed framework.

A. Implementation of Shape Flow Estimation
As mentioned in the main paper (Section 3, Step 3), we

propose to estimate the shape flow by minimising the fol-
lowing energy:

Esf = α

∫
Ω

Nt∑
n=1

‖d(x+ un(x);n)− d(x; 0)‖dx (1)

+ β

∫
Ω

Nt∑
n=1

‖un(x)−
R∑
i=1

qi(n)vi(x)‖2dx (2)

+

∫
Ω

R∑
i=1

‖∇vi(x)‖ dx (3)

We minimise this energy jointly with respect to un(x) and
vi(x), which correspond to the two sets of unknown shape
flows. We implement this minimisation based on the op-
timisation algorithm described in [5] and the relevant pub-
licly available code 1. However, we modify this algorithm
so that, instead of initialising the coarse-to-fine and warp-
ing iterations with a zero flow, we use Thin Plate Splines
(TPS) [2] interpolation of the initial correspondence vec-
tors described in Section 3, Step 2 of the main paper. This
yields a significantly better initial location of the highly-
nonconvex objective function and improves the computa-
tional efficiency, since much less coarse-to-fine pyramids
are needed.

Note that in every coarse-to-fine and warping iteration,
we use an initialisation that comes from the previous it-

1https://bitbucket.org/troussos/mfsf/downloads

eration. We approximate the data term (1) by linearising
the SVS images d(x;n) around the initialisation. After
that, the energy becomes convex and we optimise it by em-
ploying alternating optimisation with respect to vi(x) and
un(x). The minimisation with respect to vi(x) is decou-
pled for every coefficient i and corresponds to Rudin-Osher-
Fatemi Total Variation denoising [7], which we solve ef-
ficiently by applying the first order primal-dual algorithm
of [3]. The minimisation with respect to un(x) is decoupled
for every pixel x and every shape index i. This minimisa-
tion is also implemented by applying the efficient primal-
dual algorithm of [3].

B. Dense Active Appearance Models

In this section, we report additional qualitative and quan-
titative evaluations for the Dense Active Appearance Mod-
els (dAAMs) of faces and ears that were constructed using
the proposed framework.

B.1. Principal Components and Compactness

Figure 1 visualises the first five shape and appearance
principal components of ear and face dAAMs. We observe
that in both ear and face cases, the variation of both shape
and appearance captured by the model seem plausible.

Figure 2 plots the variance ration of the face dAAM,
which provides an indication of the compactness of the
model. The compactness is compared with the one of a
standard sparse AAM built on the same data. Note that
these are the two shape models that are compared in Fig-
ure 9-left of the main paper. We observe that our dAAM
is significantly more compact than the sparse AAM, since
for any given number of components, it manages to explain
a larger portion of the corresponding total variance of the
training set.
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Figure 2: Compactness plots of dAAM (blue) and sparse
AAM (red) models for faces. Portion of the correspond-
ing total variance explained as a function of the number of
retained principal components.

B.2. Dense Shape Reconstruction Ability

Figure 3 evaluates the dense shape reconstruction abil-
ity of the proposed dAAMs and compares it with that of
standard sparse AAMs. Specifically, we use shapes with
dense ground-truth annotations and reconstruct them with
both AAMs and dAAMs, by projecting on the correspond-
ing model subspace. In the case of AAMs, which only con-
tain a sparse shape model, we densify it using a piecewise
affine transformation, which is typically for texture warp-
ing of these models. We observe that dAAMs significantly
outperform classic AAMs, in terms of dense shape recon-
struction accuracy.
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Figure 3: Dense shape reconstruction errors for ears (top)
and faces (bottom), using AAMs (red) and dAAMs (blue).
The average normalized dense point-to-point distance error
is plotted as a function of the number of principal compo-
nents of the model.

Figure 1: Principal components of dAAMs built on ears (top) and faces (bottom). The mean (middle columns) as well as
the first five principal components are visualised for both shape (left) and appearance (right). ±3 times the variance of the
corresponding component is used in each case.



Figure 4: Demonstration of outline fitting of patch-based AAM on arms. Images are cropped to arms only for better visual-
ization.

B.3. Dense Fitting Visualizations

In this section, we visualize some characteristic exam-
ples of fitting dAAMs that were built using the proposed
framework. These results are characteristic examples that
come from the quantitative evaluations reported in Section
4.1 (“Non-rigid object alignment in-the-wild”) of the main
paper. Figure 5 shows dAAM fitting results using a grid
visualisation, for both faces and ears. We observe that the
proposed method successfully captures the shape deforma-
tions of these object classes and provides a detailed shape
estimation for a variety of input images.

C. Patch-based Active Appearance Models
In this section, we present additional visualisations and

evaluations for the patch-based Active Appearance Model
(PAAM) of arms that was constructed using the proposed
framework.

C.1. Subsampling of the Outline from Dense Cor-
respondences

As mentioned in the main paper (Section 3 - Step 4), in
order to train a PAAM, we subsample the densified train-
ing shapes to only consider points on the object’s outline.
Some examples of this procedure are depicted in Figure 6.
We manually annotate sparse outline points only on the ref-

Figure 5: Examples of fitting dAAMs that are constructed
with the proposed pipeline. Results of dense fitting on im-
ages of ears (first two rows) and faces (last two rows). A
grid visualisation is used.



Wrist Elbow
Method mean std ≤ 6pt mean std ≤ 6pt

Buehler 12.08 19.94 44.5% 12.94 14.65 34.4%
Charles14 11.81 20.89 54.2% 8.30 11.00 55.2%
Charles13 13.78 22.39 43.3% 13.17 18.74 46.3%
Pfister14 14.69 17.89 29.7% 14.60 10.59 14.0%
Ramanan 15.59 19.04 22.6% 15.53 10.82 15.8%
Pfister15 7.62 11.04 54.1% 8.84 11.44 54.9%
Ours 6.71 10.90 63.1% 8.20 10.54 52.1%

Table 1: Fitting statistics on BBC Pose database for experiment 4.2 in main paper.

Figure 6: Examples of sparse subsampling from dense
shapes of arms. The dense correspondences (visualized via
a deforming grid) are established using our shape flow esti-
mation. The sparse landmarks (red dots) on the object out-
line are manually annotated only on the reference shape (left
most image). In all other 5 example shapes, these landmarks
have been automatically “propagated” using the established
dense correspondences.

erence shape. Then all other training shapes are subsampled
automatically exploiting the dense correspondences that are
established with our shape flow estimation. We observe
that the automatic subsampling seems plausible, which is
attributed to the accurate estimations of dense correspon-
dences.

C.2. Principal Components

Figure 7 shows the mean shape and the first four princi-
pal shape components of our PAAM for arms2. We observe
that the shape variations captured by the model are plausible
and seem to produce valid shapes of human arms.

C.3. Fitting Results

Figure 4 demonstrates more fitting results produced by
fitting patch-base AAM on arms using MPII [1], Fashion
Pose [4], FLIC [8] and BBC Pose [6] databases. All fit-
tings are initialised using the same method as mentioned in
section 4.2 of the main paper.

In addition table 1 reports statistical measures that pro-
vide additional information to section 4.2 of the main pa-
per. Column ≤ 6pt reports the percentage of fittings that
achieved a point-to-point normalised error less than 6 pix-
els (same measure used in [6]). This shows that we have

2Note that we do not visualise the appearance variation, since this is
built using SIFT features and the corresponding 36-channel feature space
cannot be visualized in an intuitive way.

Figure 7: Principal components of our patch-based AAM
for human arms. The mean (left most column) as well as
the first four principal components are visualised. ±3 times
the variance of the corresponding component is used in each
case.

notable improvement on estimating wrists and comparable
results on estimating the elbow.
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