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1. METHOD

In this section we provide a more detailed explanation of the
proposed method presented in Section 2 of the main paper.
Specifically, we first define our basic notations (Sec. 1.1) and
then present details of the discriminative (Sec. 1.2) and gener-
ative (Sec. 1.3) models in order to formulate our unified model
(Sec. 1.4).

1.1. Shape and Appearance Models

1.1.1. Shape representation and model

In the problem of generic deformable object alignment, the
sparse shape of an object consists of n landmark points that
are located on semantic parts of the object. By denoting the
coordinates of a landmark point within the Cartesian space of
an image I as xi = [xi, yi]

T , then the shape instance of the
object is given by the 2n× 1 vector

s =
[
xT

1 , . . . ,x
T
n

]T
= [x1, y1, . . . , xn, yn]

T (1)

Given a set of N such shape samples {s1, . . . , sN}, a para-
metric statistical subspace of the object’s shape variance can
be retrieved by first applying Generalised Procrustes Analy-
sis on the shapes to normalise them with respect to the global
similarity transform (i.e., scale, in-plane rotation and trans-
lation) and then using Principal Component Analysis (PCA).
The returned shape subspace is further augmented with four
eigenvectors that control the global similarity transform of the
object’s shape. Please refer to [1] for further details about or-
thonormalising the similarity eigenvectors with the PCA ba-
sis. The resulting shape model {Us, s̄} consists of the or-
thonormal basis Us ∈ R2n×ns with ns eigenvectors (includ-
ing the four similarity components concatenated before the
eigenvectors) and the mean shape vector s̄ ∈ R2n. This para-
metric model can be used to generate new shape instances as

s(p) = s̄ + Usp (2)
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where p = [p1, . . . , pns
]T is the ns × 1 vector of shape pa-

rameters that control the linear combination of the eigenvec-
tors.

1.1.2. Appearance representation and model

Until recently, the appearance of an object was mainly repre-
sented in a holistic way, i.e., the whole appearance informa-
tion was employed and the texture extraction was performed
through a piecewise warp function that maps the pixel coordi-
nates for a shape instance to a common reference space. The
scientific community has lately turned towards part-based ap-
pearance representation, i.e., extracting appearance patches
centred around the landmark coordinates. Although this de-
pends on the object class and application, in general, the part-
based representation has proved to be more effective than the
holistic as the warp function is replaced by a simple sampling
function and thus is more natural for articulated rigid objects.
Let us denote the vectorised form of an h × w image patch
that corresponds to the image location xi as

txi = [I(z1), I(z2), . . . , I(zhw)]
T
, {zj}hwj=1 ∈ Ωxi (3)

where Ωxi is a set of discrete neighbouring pixel locations
zj = [xj , yj ]

T within a rectangular region centred at loca-
tion xi and hw is the image patch vector’s length. Moreover,
let us define a feature extraction function H : Rhw → Rm,
which extracts a descriptor vector of length m (e.g. SIFT [2],
HOG [3]) given an appearance vector. We denote the proce-
dure of extracting a feature-based vector from a patch centred
at a given image location by the function

F(xi) = H(txi
)

= H
(

[I(z1), . . . , I(zk)]
T
)
, {zj}kj=1 ∈ Ωxi

(4)

Consequently, the appearance vector of length mn × 1 that
corresponds to a shape instance is expressed as

φ(s) =
[
F(x1)T , . . . ,F(xn)T

]T
(5)

and involves the concatenation of the vectorised feature-based
image patches that correspond to the n landmarks of the shape
instance. Similar to the shape case, given a set of N such ap-
pearance samples {φ1, . . . ,φN} and applying PCA, we ob-
tain a parametric statistical appearance model {Ua, ā} that



consists of the orthonormal basis Ua ∈ Rmn×na with na
eigenvectors and the mean appearance vector ā ∈ Rmn. An
appearance instance can be generated as

a(c) = ā + Uac (6)

where c = [c1, . . . , cna
]T is the na × 1 vector of appearance

parameters. Finally, let us define

P = E−UaU
T
a (7)

which is the orthogonal complement of the appearance sub-
space Ua, where E denotes the mn × mn identity matrix.
This projection operator is used in order to project-out the ap-
pearance variance in the following methods.

1.2. Cascaded Regression Discriminative Model

Herein, we present a fully parametric cascaded regression
model. We employ an appearance model and learn a regres-
sion function that regresses from the object’s projected-out
appearance to the parameters of a linear shape model. Let us
assume that we have a set of N training images {I1, . . . , IN}
and their corresponding annotated shapes {s1, . . . , sN}.
By projecting each ground-truth shape to the shape ba-
sis Us, we get the set of ground-truth shape parameters
{p∗

1, . . . ,p
∗
N}. Moreover, we aim to learn a cascade of

K levels, i.e. k = 1, . . . ,K. During the training pro-
cess of each level, we generate a set of P perturbed shape
parameters pk

i,j , j = 1, . . . , P, i = 1, . . . , N , which
are sampled from a distribution that models the statistics
of the detector employed for initialisation. By defining
∆pk

i,j = p∗
i − pk

i,j , j = 1, . . . , P, i = 1, . . . , N to be a
set of shape parameters increments, the least-squares prob-
lem that we aim to solve during training at each cascade level
k is

arg min
Wk

N∑
i=1

P∑
j=1

∥∥∆pk
i,j −WkP

(
φi(s(pk

i,j))− ā
)∥∥2

2
(8)

where P is the projection operator defined in Eq. 7 and φi(·)
denotes the vector of concatenated feature-based patches ex-
tracted from the training image Ii, as defined in Eq. 5. Note
that the bias term of the above objective function is substituted
by the mean appearance vector ā. By denoting

φ̂i,j,k = P
(
φi(s(pk

i,j))− ā
)

(9)

to be the projected-out residual, then the closed-form solution
to the above least-squares problem is given by

Wk =

 N∑
i=1

P∑
j=1

∆pk
i,jφ̂

T

i,j,k

 N∑
i=1

P∑
j=1

φ̂i,j,kφ̂
T

i,j,k

−1

(10)
for each level of the cascade k = 1, . . . ,K.

During testing, given the current estimate of the shape pa-
rameters pk) that was computed at cascade level k, we create
the feature-based image vector φ(s(pk)), subtract the mean
appearance vector ā, project-out the appearance variation and
estimate the shape parameters increment as

∆pk = WkP (φ(s(pk))− ā) (11)

Then, the shape parameters vector is updated as

pk = pk−1 + ∆pk−1 (12)

where we set p0 = 0 at the first iteration. The computational
complexity of Eq. 11 per cascade level is O(nsmn), thus the
complexity per test image is O(Knsmn).

1.3. Gauss-Newton Generative Model

The optimisation of an AAM aims to minimise the recon-
struction error of the input image with respect to the shape
and appearance parameters, i.e.,

arg min
p,c

‖φ(s(p))− ā−Uac‖22 (13)

where we employ the appearance model of Eq. 6 and φ(·)
denotes the vectorised form of the input image as defined in
Eq. 5. This cost function is commonly optimised in an iter-
ative manner using the Gauss-Newton algorithm. This algo-
rithm introduces an incremental update for the shape and ap-
pearance parameters, i.e. ∆p and ∆c respectively, and solves
the problem with respect to ∆p by first linearising using first-
order Taylor expansion around ∆p = 0. The Gauss-Newton
optimisation can be performed either in a forward or in an in-
verse manner, depending on whether the incremental update
of the shape parameters is applied on the image or the model,
respectively. In this paper, we focus on the inverse algorithm,
however the forward case can be derived in a similar way.

We follow the derivation that was first presented in [4]
and later was readily employed in [5, 6]. By applying the
incremental shape parameters on the part of the model, the
cost function of Eq. 13 becomes

arg min
∆p,∆c

‖φ(s(p))− ā(∆p)−Ua(∆p)(c + ∆c)‖22 (14)

where ā(∆p) = ā(s(∆p)) and Ua(∆p) = Ua(s(∆p)).
Given the part-based nature of our model, the compositional
update of the parameters at each iteration is reduced to a sim-
ple subtraction [6], as

p← p−∆p (15)

By taking the first order Taylor expansion around ∆p = 0,
we arrive at

arg min
∆p,∆c

‖φ(s(p))− ā−Ua(c + ∆c)− Ja∆p‖22 (16)



where

Ja = Jā +

m∑
i=1

ciJi (17)

is the model Jacobian. This Jacobian consists of the mean
appearance Jacobian Jā = ∂ā

∂p and the Jacobian of each ap-
pearance eigenvector denoted as Ji, i = 1, . . . ,m.

By employing the projection operator of Eq. 7 in order to
work on the orthogonal complement of the appearance sub-
space Ua and using the fact that PUa = PTUa = 0, the
above cost function can be expressed as

arg min
∆p

‖φ(s(p))− ā− Ja∆p‖2P (18)

The solution to this least-squares problem is

∆p = Ĥ−1
a ĴT

a (φ(s(p))− ā) (19)

where
Ĵa = PJa and Ĥa = ĴT

a Ĵa (20)

are the projected-out Jacobian and Hessian matrices respec-
tively. Note that even though Jā and Ji can be precomputed,
the complete model Jacobian Ja depends on the appearance
parameters c and has to be recomputed at each iteration.
Given the current estimate of ∆p, the solution of c with
respect to the current estimate cc can be retrieved as

c = cc + UT
a (φ(s(p))− ā−Uacc − Ja∆p) (21)

Thus, the computational complexity of computing Eq. 19 per
iteration is O(nsnamn+ n2

smn).
The inverse approach that we followed, which was first

proposed in [4], is different from the well-known project-
out inverse compositional method of [7]. Specifically, in our
case, the linearisation of the cost function is performed before
projecting-out. On the contrary, the authors in [7] followed
the approximation of projecting-out first and then linearising,
which eleminates the need to recompute the appearance sub-
space Jacobian. However, the project-out method proposed
by [7] does not generalise well and is not suitable for generic
facial alignment.

Given the fact that PT = P and PTP = P, then the
solution of Eq. 19 can be expanded as

∆p = (JT
a PJa)−1JT

a P(φ(s(p))− ā) (22)

Thus, it is worth mentioning that the solution of the regression-
based model in Eq. 11 is equivalent to the Gauss-Newton
solution of Eq. 19 if the regression matrix has the form

Wk = (JT
a PJa)−1JT

a (23)

which further reveals the equivalency of the two cost func-
tions of Eqs. 8 and 18.

1.4. Adaptive Cascaded Regression

As previously explained, both the AAMs of Section 1.2 and
traditional SDMs as in 1.3 suffer from a number of disad-
vantages. To address these disadvantages, we propose ACR
which combines the two previously described discriminative
and generative optimisation problems into a single unified
cost function. Specifically, by employing the regression-
based objective function of Eq. 8 along with the Gauss-
Newton analytical solution of Eq. 19, the training procedure
of ACR aims to minimise

N∑
i=1

P∑
j=1

∥∥∥∆pk
i,j −

(
λkWk − (1− λk)H−1

i,j JT
i,j

)
φ̂i,j,k

∥∥∥2

2

(24)
with respect to Wk, where

φ̂i(s(pk
i,j)) = P

(
φi(s(pk

i,j))− ā
)

(25)

is the projected-out residual and Hi,j and Ji,j denote the
Hessian and Jacobian matrices, respectively, of the Gauss-
Newton optimisation algorithm per image i = 1, . . . , N and
per perturbation j = 1, . . . , P . λk is a hyperparameter that
controls the weighting between the regression-based descent
directions and the Gauss-Newton gradient descent directions
at each level of the cascade k = 1, . . . ,K. The negative sign
in front of the gradient descent directions is due to the fact
that the shape parameters update within the inverse Gauss-
Newton optimisation is performed with subtraction, as shown
in Eq. 15.

1.4.1. Training

During training, ACR aims to learn a cascade of K optimal
linear regressors given the gradient descent directions of each
training image at each level. Let us assume that we have a
set of N training images {I1, . . . , IN} along with the corre-
sponding ground truth shapes {s1, . . . , sN}. We also assume
that we have recovered the ground truth shape parameters for
each training image {p∗

1, . . . ,p
∗
N} by projecting the ground

truth shapes against the shape model.

Perturbations Before performing the training procedure,
we generate a set of initialisations per training image, so
that the regression function of each cascade level learns how
to estimate the descent directions that optimise from these
initialisations to the ground truth shape parameters. Con-
sequently, for each training image, we first align the mean
shape s̄ with the ground truth shape si, project it against
the shape basis Us and then generate a set of P random
perturbations for the first four shape parameters that corre-
spond to the global similarity transform. Thus, we have a
set of shape parameter vectors pk

i,j , ∀i = 1, . . . , N, ∀j =
1, . . . , P . Since the random perturbations are applied on
the first four parameters, the rest of them remain zero, i.e.,
pk
i,j = [p1

k
i,j , p2

k
i,j , p3

k
i,j , p4

k
i,j ,0

T
ns−4×1]T . Moreover, the



perturbations are sampled from a distribution that models
the statistics of the detector that will be used for automatic
initialisation at testing time. This procedure is necessary only
because we have a limited number of training images and
can be perceived as training data augmentation. It could be
avoided if we had more annotated images and a single ini-
tialisation per image using the detector would be adequate.
The perturbations are performed once at the beginning of the
training procedure of ACR. The steps that are applied at each
cascade level k = 1, . . . ,K, in order to estimate Wk, are the
following:

Step 1: Shape Parameters Increments Given the set of vec-
tors pk

i,j , we formulate the set of shape parameters increments
vectors ∆pk

i,j = p∗
i − pk

i,j , ∀i = 1, . . . , N, ∀j = 1, . . . , P
and concatenate them in a ns ×NP matrix

∆Pk =
[
∆pk

1,1 · · · ∆pk
N,P

]
(26)

Step 2: Projected-Out Residuals The next step is to com-
pute the part-based appearance vectors from the perturbed
shape locations φi(s(pk

i,j)) and then the projected-out resid-
uals of Eq. 25 ∀i = 1, . . . , N, ∀j = 1, . . . , P . These vectors
are then concatenated in a single mn×NP matrix as

Φ̂k =
[
φ̂1(s(pk

1,1)) · · · φ̂N (s(pk
N,P ))

]
(27)

Step 3: Gradient Descent Directions Compute the Gauss-
Newton solutions for all the images and their perturbed shapes
and concatenate them in a ns ×NP matrix as

Gk = (1− λk)



[H−1
1,1J

T
1,1φ̂1(s(pk

1,1))]T

...
[H−1

i,j JT
i,jφ̂i(s(pk

i,j))]
T

...
[H−1

N,PJT
N,P φ̂N (s(pk

N,P ))]T



T

(28)

Based on the expanded solution of Eq. 22, the calculation of
the Jacobian and Hessian per image involves the estimation
of the appearance parameters using Eq. 21 and then

Ji,j = Ja

Hi,j = JT
i,jPJi,j

(29)

where Ja is computed based on Eq. 17 for each image.

Step 4: Regression Descent Directions By using the matri-
ces definitions of Eqs. 26, 27 and 28, the cost function of ACR
in Eq. 24 takes the form

arg min
Wk

∥∥∥∆Pk − λkWkΦ̂k + Gk

∥∥∥2

2
(30)

The closed-form solution of the above least-squares problem
is

Wk =
1

λk
(∆Pk + Gk)

(
Φ̂

T

k Φ̂k

)−1

Φ̂
T

k (31)

0.03 0.04 0.05 0.06

0.03 0.04 0.05 0.06

Fig. 1: Representative examples of increasing normalised er-
rors. (top) 68-points. (bottom) 49-points.

Note that the regression matrix of this step is estimated only in
case λk ≥ 0. If λk = 0, then we directly set Wk = 0ns×mn

Step 5: Shape Parameters Update The final step is to gen-
erate the new estimates of the shape parameters per training
image. By employing Eqs. 31 and 29, this is achieved as

pk+1
i,j = pk

i,j +
(
λkWk − (1− λk)H−1

i,j JT
i,j

)
φi(s(pk

i,j))
(32)

∀i = 1, . . . , N and ∀j = 1, . . . , P . After obtaining pk+1
i,j ,

steps 1-5 are repeated for the next cascade level.

1.4.2. Fitting

In the fitting phase, given an unseen testing image I and
its initial shape parameters p0 = [p0

1, p
0
2, p

0
3, p

0
4,0]T , we

compute the parameters update at each cascade level k =
1, . . . ,K as

pk = pk−1 +
(
λkWk − (1− λk)H−1JT

)
φ(s(pk−1))

(33)
where the Jacobian and Hessian are computed as described in
Step 3 of the training procedure (Eq. 29). The computational
complexity per iteration is O(nsmn(na + ns + 1)).

2. EXPERIMENTAL RESULTS

This section complements Section 3 of the main paper by pre-
senting additional experimental results.
Datasets We use the 68-point annotations provided by [8, 9,
10] for a number of existing databases including LFPW [11],
HELEN [12] and AFW [13]. The 300-W competition [8, 10]
also introduced a new challenging dataset called IBUG, anno-
tated with the same 68-points. For all experiments, we used
the bounding boxes provided by the 300-W competition [8]
for initialisation in both training and testing.
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Fig. 2: ACR, AAM (Gauss-Newton) and SDM (Discriminative), trained identically, tested on the images of AFW. (left)
68-point error. (right) 49-point error. Initialisation given by the bounding boxes of [8].

Evaluation To maintain consistency with the results of
the original 300-W competition, we report cumulative er-
ror distribution (CED) graphs using the point-to-point er-
ror normalised by the interocular distance defined by the
outer eye corners. The mean error often reported in recent
works [14, 15] is highly biased by alignments that completely
fail. Therefore, we believe that the failure rate as shown
in [16] is a much more informative error metric. To com-
plement the failure rate, we propose the area under the curve
(AUC), which enables simpler comparison of CED curves
that are otherwise difficult to compare. We fix a maximum
error that we believe represents a failed fitting, and thus the
higher the AUC, the more fittings are concentrated within this
acceptable fitting area. In all experiments, CED curves and
AUC errors are reported up to 0.06. Examples of different
errors are given in Figure 1, which shows that 0.06 represents
an alignment failure.
Implementation Details The following settings were used
for training ACR. 20 components were kept for the shape
model and 300 for the appearance model. After running ex-
tended cross-validation experiments, we found that the best
performance is obtained by using a cascade of 14 levels and
setting λ = [1, 0.75, 0.5, 0.25] for the first four and λ = 0
for the rest. Intuitively, this means that the regression-based
descent directions need to dominate the optimisation on the
first few iterations, as they are able to move towards the cor-
rect direction with steps of large magnitude. After that, the
gradient descent steps are sufficient in order to converge to
an accurate local minimum. The first two were performed on
the image at half scale, the rest at full scale. The patch sizes
were [(32× 32), (24× 24), (24× 24), (16× 16)] for the first
four cascades and (24 × 24) for the rest. Dense SIFT [17, 2]
features were used for all methods. When performing a re-
gression, a ridge parameter of 100 was used. In order to in-
crease the size of the training data, we augment it by perturb-
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Fig. 3: Sorted initial errors of 10 random initialisations of
each image in the AFW dataset. As the initial error increases,
the AAM is unable to converge, whereas ACR is both robust
to initialisations and consistently accurate.

ing the provided bounding boxes of the 300-W competition
with uniform noise of 0.005 for scaling and 0.07 for trans-
lation (scaled by the bounding box size). The same options
were used for training the generative model (AAM) and the
discriminative cascaded-regression (SDM) using the imple-
mentations in the Menpo Project [18].

2.1. Self Evaluation

In the following experiments we performed self evaluations,
comparing ACR to both the generative AAM and the discrim-
inative SDM. In each case, we trained the SDM or AAM
in the same manner as the corresponding part of ACR. We
trained all 3 of the methods on LFPW (training, 811 images),
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Fig. 4: Normalized error for the testing dataset of 300-W challenge [8, 10]. This database was unseen by all participants and
thus represents a fair benchmark for state-of-the-art face alignment methods. (left) 68-point error. (right) 49-point error.

Method AUC Failure rate (%)
ACR 0.43 11.0

300W 1 [19] 0.42 9.3
CFSS [15] 0.40 13.5

300W 2 [20] 0.38 14.2
PO-CR [21] 0.37 17.7

ERT [22] 0.28 23.7
Intraface [23, 24] 0.27 23.8

Chehra [25] 0.24 46.8
Initialisation 0.01 96.8

Table 1: The area under the curve (AUC) and percentage fail-
ure rate for the 49-point CED curve given in Figure 4. Failure
rate is the % of images with error > 0.06.

HELEN (training, 2000 images) and IBUG (135 images). The
testing database was chosen as AFW (337 images) as recent
works (e.g. [21]) have shown that AFW is still a challenging
dataset. Figure 2 shows the CED curves for the SDM, AAM
and ACR for both the 68-point and 49-point errors. Figure 2
clearly shows the improved performance of ACR over both
SDM and AAM. To demonstrate the sensitivity of gener-
ative methods to initialisations, we repeated the experiment
on AFW by generating 10 initialisations per image and then
sorted the initialisation errors (low-to-high). We then binned
the initialisation errors and plotted the final error of the SDM,
AAM and ACR with respect to increasing initial errors. Fig-
ure 3 shows the results of this initialisation experiment. Here
we can clearly see that, as the initialisation error increases,
the AAM is incapable of converging towards an acceptable
local-minima. It also shows that, although the SDM performs
well, ACR outperforms it across all initialisation errors.

2.2. Comparison with state-of-the-art

Herein, we compare the proposed method with the cur-
rent state-of-the-art techniques on various testing databases.
Specifically, we test on the testsets of Labelled Faces In-th-
Wild (LFPW) [11] and HELEN [12] databases, as well as the
testing dataset of the 300-W challenge [8, 10]. The following
subsections are separated with respect to the employed testing
database.

For all the experiments, we used the same implementation
details as the ones mentioned in the main paper and we also
employed the annotations provided by [8, 9, 10]. Addition-
ally, all methods are once again initialised with the bounding
boxes that are provided by the 300-W competition [8, 10].
The methods that we compare with are the same as the ones
of the main paper, i.e., Zhou et al. (300W 1) [19], Yan et al.
(300W 2) [20], Coarse-to-fine Shape Searching (CFSS) [15],
Project-Out Cascaded Regression (PO-CR) [21], Ensem-
ble of Regression Trees (ERT) [22], Intraface [23, 24] and
Chehra [25]. All the results are reported using the error
metric of the 300-W competition [8, 10] based on 68 and
49 points. However, note that the public implementations
of PO-CR, Intraface and Chehra only return 49-points, and
thus they are not included in the 68-point error results. In all
the experiemnts, ACR was trained using LFPW (training),
HELEN (training), AFW and IBUG.
300-W challenge The 300-W face alignment challenge [8,
10] utilises a private dataset of testing images to perform eval-
uations. The dataset includes 600 “in-the-wild” testing im-
ages and is described as being drawn from the same distribu-
tion as the IBUG dataset. The results are reported in Figure 4.
We believe this shows that face alignment is still very chal-
lenging when the images in the testing set are totally unseen
by all participants. In Figure 4, we see that the recently pro-



Method mean ± std median mad max AUC Failure rate (%)
ACR 0.0267± 0.0092 0.0248 0.0045 0.0841 0.60 1.3

CFSS [15] 0.0283± 0.0079 0.0270 0.0046 0.0688 0.58 0.4
PO-CR [21] 0.0386± 0.0790 0.0279 0.0046 0.8041 0.56 2.2

ERT [22] 0.0353± 0.0147 0.0318 0.0060 0.1238 0.48 4.0
Intraface [23, 24] 0.0666± 0.1071 0.0314 0.0050 0.6062 0.46 13.4

Chehra [25] 0.0761± 0.1185 0.0284 0.0080 0.7344 0.44 23.7
Initialisation 0.1749± 0.1098 0.1449 0.0593 0.7273 0.01 94.2

Table 2: Various statistical measures, area under the curve (AUC) and percentage failure rate for the 49-point CED curve given
in Figure 6 for LFPW testset. Failure rate is the % of images with error > 0.06.

0.0154 0.0154 0.0156 0.0157 0.0157 0.0159 0.0160 0.0163 0.0163 0.0166

0.0418 0.0434 0.0458 0.0495 0.0554 0.0571 0.0576 0.0655 0.0698 0.0840

Fig. 5: 10 best (top), and 10 worst (bottom) fitting results of ACR on LFPW testset.
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Fig. 6: Normalised error for the testing LFPW dataset based
on 49 points.

posed CFSS method is currently the best performing method
for 68-points. However, for the 49-points, ACR is the most
accurate technique and slightly outperforms (300W 1), which
is a much more complex deep learning method provided by
industry. Table 1 reinforces the results of Figure 4 by show-
ing that ACR is highly accurate for the 49-points and slightly

less robust than the method of [19] over all images.
LFPW Testset The LFPW testset [11] consists of 224 in-the-
wild images captured from the web. Figure 6 shows the accu-
racy of each method in the form of a Cumulative Error Dis-
tribution (CED) curve. Table 2 reports some statistical mea-
sures (mean, standard deviation, median, median absolute de-
viation, max), the area under the curve (AUC) and the failure
rate of all methods based on Fig. 6. As explained in the main
paper, we found, by visual inspection, that 0.06 is the maxi-
mum error that corresponds to adequate fitting results. Thus
we plot the CED curves and compute the failure rate up to this
error limit. Note that ACR is more accurate than all the other
methods by a large margin. Especially in the band of low er-
rors, it achieves an improvement of even about 10%. ACR is
also slightly less robust than CFSS. Another interesting obser-
vation is the very high maximum errors for all the cascaded
regression methods (PO-CR, Chehra, Intraface) that indicate
that in case of a fitting failure, the final shape is completely
scrambled.

Figure 10 reports the mean and standard deviation of the
error per landmark point for all the methods. The numbering
and colouring of each landmark point is linked with the mean
shape of Figure 9. Once again, note that we only take into
consideration the fittings with final error smaller than 0.06.
ACR is very accurate on all facial parts. On the contrary, all
the cascaded-regression based techniques (PO-CR, Intraface,



Method mean ± std median mad max AUC Failure rate (%)
ACR 0.0262± 0.0104 0.0240 0.0050 0.0968 0.61 1.2

CFSS [15] 0.0288± 0.0318 0.0244 0.0048 0.5644 0.60 1.5
PO-CR [21] 0.0299± 0.0287 0.0260 0.0051 0.5199 0.58 0.6

ERT [22] 0.0323± 0.0236 0.0280 0.0055 0.3732 0.54 1.8
Intraface [23, 24] 0.0666± 0.1094 0.0336 0.0060 0.7718 0.45 11.5

Chehra [25] 0.0391± 0.0507 0.0251 0.0054 0.4853 0.55 9.4
Initialisation 0.1757± 0.1050 0.1475 0.0603 0.5656 0.02 90.9

Table 3: Various statistical measures, area under the curve (AUC) and percentage failure rate for the 49-point CED curve given
in Figure 8 for HELEN testset. Failure rate is the % of images with error > 0.06.

0.0119 0.0122 0.0124 0.0129 0.0133 0.0136 0.0144 0.0144 0.0145 0.0147

0.0493 0.0504 0.0518 0.0528 0.0592 0.0619 0.0666 0.0791 0.0878 0.0968

Fig. 7: 10 best (top), and 10 worst (bottom) fitting results of ACR on HELEN testset.
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Fig. 8: Normalised error for the testing HELEN dataset based
on 49 points.

Chehra) heavily fail on the internal mouth points and are not
equally accurate on the eyebrows and eyes. Finally, Fig. 5
shows the 10 best and 10 worst fitting results achieved by
ACR. As it can be observed, even the worst results have not
heavily failed.

HELEN Testset The HELEN testset [12] consists of 330 in-

the-wild images which exhibit larger difficulty than the LFPW
ones. Figure 8 shows the accuracy of each method in the
form of a Cumulative Error Distribution (CED) curve. Ta-
ble 3 reports some statistical measures (mean, standard devia-
tion, median, median absolute deviation, max), the area under
the curve (AUC) and the failure rate of all methods based on
Fig. 6. In this case, ACR is more accurate and more robust
than all the other methods, since it achieves the best AUC as
well as the lowest failure rate.

Figure 11 reports the mean and standard deviation of the
error per landmark point for all the methods. Similar to the
LFPW case, the numbering and colouring of each landmark
point is linked with the mean shape of Figure 9. The results
are again similar and indicate that ACR is more accurate on
all facial parts, especially on the mouth region. Finally, Fig. 7
shows the 10 best and 10 worst fitting results achieved by
ACR.
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Fig. 10: Mean and standard deviation of the normalised error per landmark point for all the methods on HELEN testset. The
colouring and numbering of the landmarks is linked with the mean shape of Figure 9.
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Fig. 11: Mean and standard deviation of the normalised error per landmark point for all the methods on HELEN testset. The
colouring and numbering of the landmarks is linked with the mean shape of Figure 9.


