iBug Tutorial: Multiple Kernel Learning for Regression and Classification

Sebastian Kaltwang

Kernel Methods: Overview

Kernel Methods Example: SVM and RVM

Kernel Types

Function

$$-\mathbf{y}(\mathbf{x};\mathbf{w}) \rightarrow = \sum_{m} w_m \kappa(\mathbf{x}, \mathbf{x}_m) + b$$

 $\kappa(\mathbf{x},\mathbf{x}')$ defines a dot product in the corresponding RKHS $\mathcal H$

Туре	$\kappa({f x},{f x}')$	
Linear	$\mathbf{x}^{ op}\mathbf{x}'$	
Polynomial	$\left(a\mathbf{x}^{ op}\mathbf{x}' ight)^{b}$	
Gaussian	$\exp\left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}'\right)^{\top}\mathbf{\Sigma}^{-1}\left(\mathbf{x}-\mathbf{x}'\right) ight)$	special $\Sigma^{-1} = \sigma^{-2} \mathbf{I}$ cases: $\Sigma^{-1} = diag(\boldsymbol{\sigma})^{-2}$
Intersection	$\sum_d \min\left(\mathbf{x}(d), \mathbf{x}'(d)\right)$	

Combining Kernels

Techniques for Constructing New Kernels.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \tag{6.13}$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

Kernel that combines different features x_a

and x_b

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}'$$
(6.19)
(6.20)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

(from C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.)

Examples for Structuring Data using Kernels

Structure according spatial regions

Structure according feature types

Combining Kernels

Weighted sums and products of kernels are kernels: For K kernels κ_k and weights $v_k \ge 0$

$$\kappa(\mathbf{x}, \mathbf{x}') = \sum_{k} v_k \kappa_k(\mathbf{x}, \mathbf{x}')$$
$$\kappa(\mathbf{x}, \mathbf{x}') = \prod_{k} (\kappa_k(\mathbf{x}, \mathbf{x}'))^{v_k}$$

The MKL Problem: Learn the combination weights v_k (additional to the base learner, e.g. SVM or RVM)

Short Overview of selected MKL Methods

MKL History: Minimize Validation Error

[1] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1–3, pp. 131–159, 2002

Repeat until local minimum is reached:

(1) Solve w given fixed v by original SVM

(2) Minimize the estimated validation error w.r.t. v with a gradient step

Function

$$--\mathbf{y}(\mathbf{x};\mathbf{w},\mathbf{v}) \rightarrow = \sum_{m} w_m \kappa(\mathbf{x},\mathbf{x}_m;\mathbf{v}) + b$$

MKL History: Boosting

[2] K. P. Bennett, M. Momma, and M. J. Embrechts, "MARK: A boosting algorithm for heterogeneous kernel models," in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 24–31.

- **Boosting** of the kernel-columns by using **ridge regression** as base
- Each of the kernel-columns $\kappa_{\mathbf{k}}(\mathbf{x}, \mathbf{x}_m)$ is taken as hypothesis
- Optimizing of $w_{m,k}$ by **coordinate descent**

Function

$$--\mathbf{y}(\mathbf{x};\mathbf{w}) \rightarrow = \sum_{k} \sum_{m} w_{m,k} \kappa_{k}(\mathbf{x},\mathbf{x}_{m}) + b$$

MKL History: Convex Formulation

- First formulation of linear MKL as convex problem with convergence guarantees
- Many following papers solve the same objective with different methods

[3] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan, "Learning the kernel matrix with semidefinite programming," J. Mach. Learn. Res., vol. 5, pp. 27–72, 2004.

[4] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, "Large Scale Multiple Kernel Learning," J. Mach. Learn. Res., vol. 7, pp. 1531–1565, 2006.

[5] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," J. Mach. Learn. Res., vol. 9, pp. 2491–2521, 2008.

Function

$$-\mathbf{y}(\mathbf{x};\mathbf{w},\mathbf{v}) \rightarrow = \sum_{m} \sum_{k} w_{m} v_{k} \kappa_{k}(\mathbf{x},\mathbf{x}_{m}) + b$$

MKL Example: SimpleMKL and DSRVM

Practical differences between SVM/RVM and MKL

	SVM / RVM	MKL
Application domain	Same applic	ation domain
#Kernels	single	К
Training input	$N \times 1$ target vector t $N \times N$ kernel gram matrix G	$N \times 1$ target vector t $N \times N \times K$ kernel gram tensor G
Testing input	$N_{\rm test} \times N_{\rm SV}$ gram matrix $(N_{\rm SV} \le N)$	$N_{ ext{test}} imes N_{ ext{SV}} imes K_{ ext{active}}$ gram tensor $(N_{ ext{SV}} \le N, K_{ ext{active}} \le K)$
Kernel parameters	Commonly set by cross- validation	Cross-validation usually not possible → resort to heuristic or optimizing kernels separately

N: # of training samples K: # of kernels

MKL Example: AU Recognition

Input:

- Divide face into 6x6 patches
- LBP features and Gaussian kernel applied to each patch

Target:

AU intensities from the DISFA database

MKL Example: AU Recognition

DSRVM

SimpleMKL

MKL comes at a cost: training time

			#Active	Train	Test	
		#SV	Kernels	Time	Time	CORR
RVM	RVM all	111.5	32	1.2	6.6	0.38
	RVM best	71.4	1	1.3	0.7	0.31
MKL	SimpleMKL	1913.9	33	149.9	38.8	0.39
	DSRVM	43.5	17	21.3	1.8	0.43
	mRVM	47.0	36	78.0	6.0	0.32

- MKL can be seen as a weighted ensemble of kernel methods that is jointly trained
- The training time increases with the number of kernels