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Abstract

Gait benchmarks empower the research community to
train and evaluate high-performance gait recognition sys-
tems. Even though growing efforts have been devoted to
cross-view recognition, academia is restricted by current
existing databases captured in the controlled environmen-
t. In this paper, we contribute a new benchmark for Gait
REcognition in the Wild (GREW). The GREW dataset is
constructed from natural videos, which contains hundreds
of cameras and thousands of hours streams in open sys-
tems. With tremendous manual annotations, the GREW
consists of 26K identities and 128K sequences with rich
attributes for unconstrained gait recognition. Moreover,
we add a distractor set of over 233K sequences, making
it more suitable for real-world applications. Compared
with prevailing predefined cross-view datasets, the GREW
has diverse and practical view variations, as well as more
natural challenging factors. To the best of our knowl-
edge, this is the first large-scale dataset for gait recogni-
tion in the wild. Equipped with this benchmark, we dissect
the unconstrained gait recognition problem. Representa-
tive appearance-based and model-based methods are ex-
plored, and comprehensive baselines are established. Ex-
perimental results show (1) The proposed GREW bench-
mark is necessary for training and evaluating gait recog-
nizer in the wild. (2) For state-of-the-art gait recogni-
tion approaches, there is a lot of room for improvement.
(3) The GREW benchmark can be used as effective pre-
training for controlled gait recognition. Benchmark website
is https://www.grew-benchmark.org/.

1. Introduction
Gait recognition aims to identify a person according to

his/her walking style in a video. Compared with face, fin-
gerprint, iris and palmprint, gait is hard to disguise and can
work at a long distance, giving it unique potential for crime
prevention, forensic identification, and social security.

∗These authors contributed equally to this work.
†Corresponding author.

(a) CASIA-B (b) OU-MVLP

(c) A subject with clothes changing in the GREW (Cropped)

Figure 1: Examples comparison for CASIA-B [74], OU-MVLP [51] and
the proposed GREW. The first two are captured under constrained environ-
ments, while the GREW is constructed in the wild. Since OU-MVLP [51]
does not release RGB data, visualization results from its original paper are
adopted. Faces are masked in the GREW for privacy concern.

Recognizing gait under a controlled environment has
achieved significant progress due to the boom of deep learn-
ing. The essential engines of recent gait recognition consist
of network architecture evolution [20, 9, 62, 65, 16, 72, 71,
31, 44, 50, 4, 63, 67, 39], loss function design [78, 17, 75,
79], and growing gait benchmarks [42, 7, 74, 37, 51, 23].
Even though gait recognition has achieved impressive ad-
vance in past years and it possesses the unique advantage of
long-distance recognition, this technique has not yet been
widely deployed in real-world applications. A notable ob-
stacle is that there is almost no public benchmark to train
and evaluate gait recognizer in the wild.

To our knowledge, most gait datasets are captured in rel-
atively fixed and constrained environments such as labo-
ratory or static outdoors. CASIA-B [74] and OU-MVLP
[51] are most popularly used datasets in recent gait recog-
nition research as shown in Figure 1. CASIA-B contains
124 subjects and 13,640 sequences, which is constructed in
2006. OU-MVLP consists of 10,307 identities and 288,596
walking videos, making it a big gait dataset with respec-
t to #subjects. The statistics of more datasets are shown
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Table 1: Comparison of the GREW with existing gait recognition datasets regarding statistics, data type, captured environment, view variations and chal-
lenging factors. Datasets are sorted in publication time. #Id., #Seq. and #Cam. refer to numbers of identities, sequences and cameras. Sil., Inf., D. and A.
mean silhouette, infrared, depth and audio. VI, DIS, BA, CA, DR, OCC, ILL, SU, SP, SH, and WD are abbreviations of view, distractor, background, carrying,
dressing, occlusion, illumination, surface, speed, shoes, and walking directions.

Dataset Publication #Id. #Seq. #Cam. Data types # Distractor Environment View var. Challenges
CMU MoBo [12] TR2001 25 600 6 RGB, Sil. None Controlled Predefined VI, CA, SP, SU
CASIA-A [57] TPAMI2003 20 240 3 RGB None Controlled Predefined VI
SOTON [45] ASSC2004 115 2,128 2 RGB, Sil. None Controlled Predefined VI
USF [42] TPAMI2005 122 1,870 2 RGB None Controlled Predefined VI, CA, SU, SH
CASIA-B [74] ICPR2006 124 13,640 11 RGB, Sil. None Controlled Predefined VI, CA, DR
CASIA-C [52] ICPR2006 153 1,530 1 Inf., Sil. None Controlled None CA, SP
OU-ISIR Speed [54] CVPR2010 34 612 1 Sil. None Controlled None SP
OU-ISIR Cloth [19] PR2010 68 2,764 1 Sil. None Controlled None DR
OU-ISIR MV [38] ACCV2010 168 4,200 25 Sil. None Controlled Predefined VI
OU-LP [23] TIFS2012 4,007 7,842 2 Sil. None Controlled Predefined VI
ADSC-AWD [35] TIFS2014 20 80 1 Sil. None Controlled None WD
TUM GAID [18] JVCIR2014 305 3,370 1 RGB, D., A. None Controlled None CA, SH
OU-LP Age [68] CVA2017 63,846 63,846 1 Sil. None Controlled None Age
OU-MVLP [51] CVA2018 10,307 288,596 14 Sil. None Controlled Predefined VI
OU-LP Bag [55] CVA2018 62,528 187,584 1 Sil. None Controlled None CA
OU-MVLP Pose [2] TBIOM2020 10,307 288,596 14 2D Pose None Controlled Predefined VI

GREW - 26,345 128,671 882 Sil. Flow
2/3D Pose 233,857 Wild Diverse VI, DIS, BA, CA,

DR, OCC, ILL, SU

in Table 1, which are mainly constructed under controlled
settings and designed for predefined cross-view gait recog-
nition. However, in real scenarios, gait recognition would
encounter fully-unconstrained challenges, such as diverse
view, occlusion, various carrying and dressing, complex and
dynamic background clutters, illumination, walking style,
surface influence et al. Existing benchmarks are far behind
the requirements of practical gait recognition. Considering
the remarkable success of face recognition [49, 43, 56, 8,
21, 70, 3, 13, 24, 84] and person re-identification (ReID)
[77, 48, 36, 66, 17, 10, 82, 80, 81, 83, 27, 61], it is time to
move to benchmark gait recognition in the wild.

In this paper, we present the Gait REcognition in the
Wild (GREW) benchmark, which is the first work delv-
ing into this open problem to the best of our knowledge.
The GREW dataset is constructed from natural streams with
multiple cameras as shown in Figure 1. Identity informa-
tion from raw videos is manually annotated, resulting in
26K subjects, 128K sequences and 14M boxes for uncon-
strained gait recognition. Besides, rich human attributes in-
cluding gender, age group, carrying and dressing styles are
labelled for fine-grained performance analysis. In practice,
the gallery scale is a vital problem for recognition accura-
cy. To this end, we add a distractor set of over 233K se-
quences, making it more suitable for real-world application-
s. Since there are a series of gait recognition frameworks
using different input data types, the GREW provides sil-
houettes, Gait Energy Images (GEIs) [14], optical flow, 2D
and 3D poses by automatical processing. Compared with
controlled gait dataset such as CASIA-B and OU-MVLP,
our GREW is fully-unconstrained and has more diverse and
practical view variations instead of predefined ones. Mean-
while, there are various challenging factors in the GREW

such as distractor set, complex background, occlusion, car-
rying, dressing et al. as shown in Table 1 and Figure 2.

Equipped with the proposed GREW, the unconstrained
gait recognition problem is deeply investigated. Firstly,
representative appearance-based and model-based baselines
are performed on the GREW, which indicates a lot of room
for improvement. For example, top-performed GaitSet [4]
obtains 46.28% Rank-1 accuracy on the GREW test set,
while it scores more than 80% on the CASIA-B and OU-
MVLP. With the distractor set, gait recognition in the wild
would become more challenging, while the best model s-
cores only 41.97% Rank-1. Secondly, the influence of the
data scale is explored, including the number of training i-
dentities and gallery size. Increasing training subjects con-
sistently boosts the performance, while large-scale test set
with distractor is still very difficult for CNN-based recog-
nizer. Thirdly, performance on different attributes (gender,
age group, carrying, and dressing) is reported, which gives
in-depth analysis results. Lastly, we validate the effective-
ness of the GREW for pre-training. Fine-tuning models
pre-trained on the GREW shows superior performance for
cross-dataset gait recognition.

The main contributions can be summarized as follows:
• A large-scale benchmark is constructed for the re-

search community towards gait recognition in the wild.
The proposed GREW consists of 26K subjects and
128K sequences with rich attributes from flexible da-
ta streams, which makes it the first dataset for uncon-
strained gait recognition to the best of our knowledge.

• To constitute the GREW benchmark, we collect t-
housands of hours of streams from multiple cameras
in open systems. With automatical pre-processing
and tremendous manual identity annotations, there are
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(a) A subject with occlusion, clothes changing, view variation, and carrying 

(b) A subject with crowd

(c) A subject in distractor set

Figure 2: Identities examples of the GREW dataset. The first two rows
show 2 subjects with various challenges. The last row shows a subject in
distractor set. Faces are masked to protect privacy.

more than 14M boxes that simultaneously provide sil-
houettes and human poses. Besides, we enrich the
GREW by a distractor set with 233K sequences, mak-
ing it more suitable for real-world applications.

• Enabled by the new benchmark, we perform extensive
gait recognition experiments and establish comprehen-
sive baselines, including representative methods, scale
influence, attributes analysis and pre-training. Results
indicate that the GREW is necessary and effective for
gait recognition in the wild. Besides, recognizing un-
constrained gait is a very challenging task for current
SOTA approaches. Lastly, the proposed dataset can be
employed as effective pre-training data for controlled
gait recognition to achieve higher performance.

2. The GREW Dataset

2.1. Overview of GREW

Qualitative and quantitative comparisons between the
GREW and representative gait recognition datasets are il-
lustrated in Figure 1 and Table 1, respectively. The GREW
consists of 26,345 subjects and 128,671 sequences, which
come from 882 cameras in open environments. Further-
more, we propose the first distractor set in the gait research
community, which contains 233,857 sequences. Silhou-
ettes, GEIs and 2D/3D human poses data types are provided
for both appearance-based and model-based algorithms as
shown in Figure 3. Since the raw data is captured in natural
environments, recognizing identities by gait in the GREW
is more challenging compared with popular CASIA-B and
OU-MVLP. For example, detecting and segmenting the hu-
man body from the complex and dynamic background is a
difficult task, considering occlusion, truncation, illumina-
tion et al. As shown in Figure 2, unconstrained setting also

brings new challenging factors for gait patterns, such as di-
verse view, dressing, carrying, crowd and distractor.

2.2. Data Collection and Annotation

The raw videos are collected from 882 cameras in large
public areas, during one day of July, 2020. About 70%
cameras have non-overlapping views, and all cameras cover
more than 600 positions. We are authorized by administra-
tions, and all of involved subjects are told to collect data
for research purposes. 7,533 video clips are used, contain-
ing near 3,500 hours 1080×1920 streams.

Before annotation, HTC detector [6] is performed to pro-
vide initial human boxes. Then annotators select the box-
es from the same subject as a trajectory (sequence). S-
ince there are multiple cameras and a certain person may
enter/leave the same camera view, one identity always has
multiple sequences. We ensure that each subject in GREW
train, val and test set appears at more than 1 cam-
era, which guarantees view diversity. Other sequences are
utilized as distractor set as shown in Section 2.5.

In Table 1, we compare GREW with previous gait
datasets regarding #identities, #sequences, #cameras, pro-
vided data types, #distractor set, environment, view varia-
tions and challenging factors. Finally, a total of 128,671 se-
quences are manually annotated to obtain 26,345 identities,
which contains 14,185,478 human boxes. Current #identi-
ties in the GREW is lower than OU-LP Bag/Age [55, 68].
Besides, the distractor set consists of 233,857 sequences
and 9,676,016 human boxes. It takes 20 annotators work-
ing for 3 months for this tremendous labelling, and we hope
the proposed GREW benchmark would facilitate future re-
search of unconstrained gait recognition. It is worth not-
ing that only silhouettes, optical flow and poses (shown in
Figure 3 and 4) will be utilized and released, which do not
contain any personal visual information.

Comparison with Video-based and Long-term Person
ReID. Most related computer vision tasks are person ReI-
D in the videos and long-term (cloth changing) ReID. Gait
recognition approaches aim to identify a certain subject by
silhouettes (GEIs) or poses information, instead of RGB
input in ReID. This feature makes gait recognizer more
friendly for preserving privacy, which may be more easi-
ly accepted by the public. Meanwhile, gait pattern is harder
to disguise. Moreover, compared with popular video ReID
[60, 80, 64, 26, 46, 25] and long-term ReID [76, 73, 69]
datasets, our GREW has more #identities and #cameras as
shown in Table 2 and 3.

2.3. Automatical Pre-processing

Representative gait recognition approaches can be
roughly divided into appearance-based [44, 65, 4, 9, 29, 20]
and model-based [53, 32, 30, 2, 28, 34] categories, which
take silhouettes (GEIs) and human poses as input, respec-
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Table 2: Comparison with video-based person ReID datasets.

Dataset #Identities #Cameras #Boxes
iLIDS-VID [60] 300 2 44K

MARS [80] 1,261 6 1M
Duke-Video [64] 1,812 8 -

Duke-Tracklet [26] 1,788 8 -
LPW [46] 2,731 4 590K

LS-VID [25] 3,772 15 3M
GREW 26,345 882 14M

Table 3: Comparison with long-term person ReID datasets.

Dataset #Identities #Cameras #Boxes
CVID-reID [76] 90 - 77K

COCAS [73] 5,266 30 62K
PRCC [69] 221 3 33K

GREW 26,345 882 14M

tively. In the GREW benchmark, we provide both two data
types by automatical pre-processing. Specifically, silhou-
ettes are produced by segmenting the foreground human
body utilizing HTC [6] algorithm. We also try the Mask
R-CNN [15], which results in inferior gait recognition ac-
curacy. It is worth noting that human detection and segmen-
tation may be less accurate as shown in Figure 3. Compared
with near-perfect results of CASIA-B and OU-MVLP in the
static background, the GREW enables assessing the influ-
ence of less heuristic pre-processing for gait recognition.
This is a topic of great interest for practical applications but
rarely considered in previous datasets. For GEIs, we do not
adopt the gait cycle due to imperfect detection and segmen-
tation in the wild. For human pose estimation, we provide
2D and 3D keypoints by [47] and [5] as illustrated in Figure
3. Furthermore, optical flow [22, 1] is extracted for poten-
tial usage as shown in Figure 4.

(a) Silhouette (b) GEI

(c) 2D Pose (d) 3D Pose

Figure 3: Examples of silhouette, GEI, 2D and 3D human pose from the
GREW dataset.

Figure 4: Examples of optical flow from the GREW dataset

2.4. Human Attributes

For fine-grained recognition analysis, we annotate each
sequence with rich attributes. Soft biometric features in-
cluding gender and age are labelled for all subjects. Ages
are categorized into 5 groups, which adopt 14-year inter-
vals for adults (i.e. 16 to 30, 31 to 45, 46 to 60). Chil-
dren (under 16) and elders (over 60) are treated as sepa-
rate groups. The statistics of gender and age group are
given in Figure 5. For each age group, there is an al-
most balanced male and female distribution. Since carrying
and dressing are influential for gait pattern extraction, the
GREW benchmark further provides 5 carrying conditions
(i.e. none, backpack, shoulder bag, handbag, and lift-stuff)
and 6 dressing styles (i.e. upper-long-sleeve, upper-short-
sleeve, upper-sleeveless, lower-long-trousers, lower-shorts,
and lower-skirt). Detailed statistics of these attributes is il-
lustrated in Figure 5. Subjects in more than 70% sequences
carry something, while upper-short-sleeve and lower-long-
trousers form the majority of cloth styles.

None Hand 
bag

Lift-stuff

Back
-pack

Shoulder
-bag

0%

10%

20%

30%

40%

None Hand bag Lift-stuff Back-pack Shoulder-bag

(b) Carrying

Long-
sleeve

Short-sleeve

Sleeve-
less

Long-trousers

Shorts Skirt

0%

20%

40%

60%

80%

100%

Long -sleeve Short-sl eeve Sleev e-less Long -tr ou sers Shorts Skirt

(c) Dressing

<16
16-30

31-45

46-60

>60

0%

20%

40%

60%

<16 16-30 31-45 46-60 >60

Female
Male

(a) Age group and gender
Upper body Lower body

Figure 5: Age group, gender, carrying and dressing attributes in the
GREW. In (c), upper body dressing styles contain long-sleeve, short-
sleeve, and sleeveless, while lower body includes long-trousers, shorts,
and skirt.

2.5. Distractor Set

In real-world applications of gait recognition, the gallery
scale is a vital factor. Therefore, we further augment the
GREW benchmark with an additional distractor set. This
dataset contains 233,857 sequences and 9,676,016 boxes,
consisting of extra walking trajectories not belonging to
the GREW train, val and test. Specifically, identi-
ties that are labelled but only appear at 1 camera would be
categorized into distractor set. In Section 4.2, apart from
the GREW test set, we also report baseline results on the
GREW test + distractor set.

2.6. Evaluation Protocol

The GREW dataset is divided into 3 parts: a train set
with 20,000 identities and 102,887 sequences, a val set
with 345 identities and 1,784 sequences, a test set with
6,000 identities and 24,000 sequences. Identities in 3 sets
are captured in different cameras. Each subject in test set
has 4 sequences, 2 for probe while 2 for gallery. Besides,
there is a distractor set with 233,857 sequences. Detailed
statistics of the splits are presented in Table 4.

As shown in Figure 6, in the inference stage, recognizing
gait in the wild firstly detects the subject from raw videos.
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Then the segmentation or pose estimation module is per-
formed to obtain gait input. Gait recognition is always a
1:N searching process, which aims to retrieve the same per-
son from the gallery given a probe subject. When evaluated
on test set, gait probe and gallery are all paired. When e-
valuated on a certain attribute, a subset of probe (sequences
with the corresponding attribute) is chosen to perform gait
recognition. We adopt prevailing Rank-k as the evaluation
metric, which denotes the possibility to locate at least one
true positive in the top-k ranks.

Pre-processing

Raw Sequences Detection

GREW Distractor

Silhouette

Human Pose

Gallery

Probe 1

Result 1

Recognition

Probe 2

Result 2

Figure 6: The pipeline of gait recognition in the wild, consisting of pre-
processing and recognition steps. Pre-processing part detects human from
raw sequences, and provides silhouettes (GEIs) or poses information. Giv-
en a certain probe, the recognition part performs 1:N searching from the
gallery.

Table 4: Statistics of different splits.

Split #Identities Sequences Frames
Train 20,000 102,887 10,166,842
Val 345 1,784 238,532
Test 6,000 24,000 3,780,104

Distractor - 233,857 9,676,016

3. Baselines on GREW
To establish baselines, representative appearance-based

methods [44, 65, 4, 9] and model-based methods [32, 53]
are explored. Overview of input type, network and loss
is shown in Table 5, and details are described as follows.
All models are re-implemented in one codebase using Py-
Torch [40] and trained on cluster (each with 8 × 2080TI G-
PUs, Intel E5-2630-v4@2.20GHz CPU, 256G RAM). For
GREW training, we train both models for 250K iterations
with batch size of (p = 32, k = 8) and Adam. The learning
rate starts at 10−4 and decreases to 10−5 after 150K itera-
tions. For CASIA-B fine-tuning, the models are trained for
extra 50K iterations with a constant learning rate of 10−5.
None of layer weight is frozen.

3.1. Appearance-based

GEINet [44] directly learns gait representation features
from GEIs and then corresponds to identities. As shown
in Table 5, the network of the GEINet has 4 layers, con-
sisting of 2 convolution and 2 Fully-Connected (FC) layers.
Softmax loss is adopted for optimization, and output from
the last FC is utilized to calculate a distance between probe
and gallery.

Table 5: Overview of adopted baselines, including input data type, num-
ber of network layers, dimensions of embedding feature, and loss. N in
#embedding of the GEINet means #training identities.

Baseline Input #Layers #Embed. Loss
GEINet GEI 4 N Softmax

TS-CNN GEI 6 - 2-cls Cross-entropy
GaitSet Sil. 10 15,872 Batch All triplet
GaitPart Sil. 10 4,096 Batch All triplet
PoseGait 3D Pose 22 512 Softmax&Center

GaitGraph 2D Pose 44 256 Contrastive

TS-CNN [65] framework adopts two-stream CNN archi-
tecture which learns similarities between GEIs pair for gait
recognition. MT architecture setting is utilized in this paper,
which matches mid-level features at the top layer. TS-CNN
also takes GEIs as input and has 6 layers. 2-class Cross-
entropy loss is used for training, while classifier indicates
probability of two subjects whether they are the same one
during inference.
GaitSet [4] uses several convolution and pooling layers
to extract convolutional templates on unordered silhouettes
set. Batch All triplet loss [17] is adopted for optimizing, and
15,872-d embedding features are utilized for recognition
during inference. Following the OU-MVLP training set-
ting, we use more channels convolutional layers and 250K
iterations with 2 learning rate schedule.
GaitPart [9] proposes a part-based network design focus-
ing on fine-grained representation and micro-motion in dif-
ferent parts of the human body. Training and testing on the
GREW benchmark follow most GaitSet settings.

3.2. Model-based

PoseGait [32] explores 3D human pose as gait recognition
input which is estimated by [5]. And 2D pose extracted
from [47] is utilized to obtain 3D pose information. For
the gait feature part, a 22-layers (20 convolution and 2 FC)
CNN with 512-d embedding is trained for extraction, which
is optimized by Softmax and Center losses.
GaitGraph [53] is a recent model-based gait recognition
approach with a promising result on CASIA-B. This work
combines 2D human pose input and graph convolutional
network to achieve gait recognition. Supervised Contrastive
loss is utilized to optimize the graph network, and we strict-
ly follow its augmentation and training details. During eval-
uation, the 256-d feature vector is extracted for calculating
distance between probe and gallery.

4. Experiments
In experiments, we perform extensive baselines and

analyses on the proposed GREW dataset. Firstly, main
baseline results of 6 approaches are reported. Then we
investigate the influence of the scale including increasing
training and testing identities, distractor set size. Third-
ly, performance on different human attributes is compared,
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Table 6: Rank-1, Rank-5, Rank-10, Rank-20 (%) of baselines. Trained on
the GREW train set and evaluated on test set.

Baseline Rank-1 Rank-5 Rank-10 Rank-20
GEINet 6.82 13.42 16.97 21.01

TS-CNN 13.55 24.55 30.15 37.01
GaitSet 46.28 63.58 70.26 76.82
GaitPart 44.01 60.68 67.25 73.47
PoseGait 0.23 1.05 2.23 4.28

GaitGraph 1.31 3.46 5.08 7.51

consisting of accuracy on gender, age group, carrying con-
dition and dressing style. Fourthly, we showcase the ef-
fectiveness of our dataset for pre-training, and time analy-
ses for practical applications. Last comes sample results on
successes and failures of gait recognition.

4.1. Main Baseline Results

The Rank-k accuracy of 6 baselines are illustrated in Fig-
ure 7 and summarized in Table 6. The GREW train and
test set are utilized for training and evaluation, respec-
tively. Results indicate that GaitSet [4] and GaitPart [9] are
superior approaches for gait recognition in the wild, con-
sistent with the performance on constrained CASIA-B [74]
and OU-MVLP [51]. More specifically, GaitSet and Gait-
Part score 46.28% and 44.01% in terms of Rank-1 metric,
respectively. Both of them exceed 60% and 70% for Rank-5
and Rank-20 criteria. Since TS-CNN [65] and GEINet [44]
take GEIs as input and have relatively fewer layers, they
achieve much lower accuracy on the GREW benchmark.
GEIs lose some useful temporal information, which may be
important for unconstrained gait recognition. Comparing
TS-CNN with GEINet, the former adopts two-stream met-
ric learning, thus suffers less from the over-fitting problem
and obtains higher accuracy. Model-based PoseGait [32]
and GaitGraph [53] baselines result in inferior performance
compared with appearance-based ones, indicating that gait
recognition in the wild is very challenging for human pose
input.

Considering that the GREW is the first unconstrained
gait benchmark, we compare the result with that on CASIA-
B and OU-MVLP. For top-performed GaitSet and GaitPart,
Rank-1 scores on CASIA-B and OU-MVLP exceed 80%.
Due to more challenging factors on the GREW dataset such
as diverse view, carrying and dressing variations, they on-
ly successfully recognize 46.28% and 44.01% sequences in
terms of Rank-1 criteria. When the distractor set is added to
the gallery, the best accuracy decreases to 41.97%, showing
the difficulty of real-world gait recognition. Results indi-
cate that GREW is essential and effective for unconstrained
gait recognition, and there is a lot of room for improvement.

4.2. Influence of the Scale

In the deep learning era, large-scale labelled data plays
an significant role for bench-marking various vision tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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44.01  73.47 GaitPart
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1.31  7.51   GaitGraph
0.23  4.28   PoseGait

Figure 7: Rank-k result (%) of baselines. Trained on the GREW train
and evaluated on test set. Legend shows Rank-1→ Rank-20 accuracy.

[41, 33, 13, 81]. In this section, we investigate the data
scale influence for training and testing on the GREW.
Accuracy with Increasing Training Identities In this ex-
periment, we demonstrate gait recognition accuracy with in-
creasing training identities. 6 different subset sizes are pre-
pared, including 1K, 2K, 4K, 8K, 16K and the maximum
20K. The first 5 training subsets are randomly chosen but
fixed for different algorithms. The evaluation is performed
on whole GREW test set.

As presented in Figure 8, for state-of-the-art GaitSet and
GaitPart, the Rank-1 on test set grows stably with more
training identities. Therefore, the 20K size of the whole
training set achieves the highest Rank-1 accuracy. Specifi-
cally, GaitSet increases the Rank-1 from 28.0% on 1K train-
ing subjects to 46.28% on 20K subjects. The results clearly
show that large-scale GREW training data is helpful for fu-
ture gait recognition research.

For GEINet baseline, the scale of training data does not
obviously influence the performance. The reason may be
that the network architecture in GEINet has limited capa-
bility to learn from large data. TS-CNN uses a two-stream
metric learning network structure and takes pairs of GEIs as
inputs, which may be less suffered from over-fitting. There-
fore, its Rank-1 accuracy slightly increases from 9.50% to
13.55%. Model-based baselines are not sensitive to training
data scales due to inferior accuracy.

1K 2K 4K 8K 16K 20K
Training IDs
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Figure 8: Rank-1 accuracy (%) on test set with increasing training iden-
tities. Legend shows performance changes from 1K to 20K data.
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Accuracy with Increasing Test Identities A sufficient test
set is essential for evaluating the performance of the gait
recognizer. In this experiment, we study the relationship
between the search space scale and the Rank-1 accuracy as
shown in Figure 9. When the test identities increase from
1K to 6K, almost all approaches suffer from accuracy degra-
dation. More specifically, GaitSet scores 57.45% Rank-1 on
1K test identities but decreases to 49.83% when test size is
doubled. When the subjects increase to 6K, precision degra-
dations of both GaitSet and GaitPart are more than 10%.
With increasing identities in the gallery, the possibility of
inter-subject appearance similarity becomes higher, so rec-
ognizing certain identity by top retrieval is more challeng-
ing. Evaluation results on other baselines come to the same
conclusion.

Figure 9: Rank-1 accuracy (%) with different identities in test set. Legend
shows performance changes from 1K to 6K test data.

Accuracy with Distractor Set In gait applications, the
gallery size may be very large considering numerous un-
related identities. We add the constructed distractor set into
the gallery to investigate this practical setting. As shown in
Figure 10, by enlarging the gallery with distractor set, most
approaches obtain lower recognition scores. When all 233K
distractor sequences are involved, Rank-1 of the best base-
line GaitSet decreases to 41.97%. Accuracy with distractor
set shows the necessity of the GREW benchmark again.

4.3. Performance on Different Attributes

This section investigates the performance variations of
gait recognition between different attributes, including gen-
der, age group, carrying and dressing. We adopt GaitSet
[4] as the recognition approach since it performs best in the
baseline experiments.

The Rank-1 accuracy for gender and age group is il-
lustrated in Figure 11. According to the results, for most
age groups, gait recognition performance on females is al-
ways better than that on males. We argue that females con-
tain more different variations such as wearing and hairstyle,
which may be helpful for individual recognition by gait sil-
houettes. For results on different age groups, one can find

Figure 10: Rank-1 accuracy (%) with increasing gallery size. Different dis-
tractor scales are added. Legend shows performance changes from test
to test + distractor.

that performance on the children is worse than other group-
s because of walking mode immaturity. Besides, recogni-
tion accuracy on elders is slightly lower than on adults due
to physical degeneration. The attribute results on carrying
and dressing are shown in Table 7. Compared with normal
walking (i.e. None), various carryings always decrease gait
recognition accuracy. More specifically, Lift-stuff is most d-
ifficult since it contains more diversity. For dressing styles,
results indicate that Skirt is more challenging to recognize
by silhouettes in GaitSet.

0%

25%

50%

<16 16-30 31-45 46-60 >60

Female Male

Figure 11: Rank-1 accuracy (%) on gender and age group attributes.

Table 7: Rank-1 accuracy (%) on carrying and dressing attributes. Subsets
of probe (sequences with the corresponding attribute) are chosen to per-
form gait recognition. For evaluation with dressing, All means gait probe
and gallery are paired without attention to any clothing style. Short/Long
refers to short/long-wearing in both upper and lower body.

Carrying Rank-1 Dressing Rank-1
None 52.36 All 46.28

Backpack 48.83 Short 48.16
Shoulder bag 46.68 Long 44.92

Handbag 47.02 Skirt 44.30
Lift-stuff 45.66 - -

4.4. GREW for Pre-training

To validate the effectiveness of pre-trained models us-
ing the GREW dataset, we conduct a cross-dataset exper-
iment in this section. Original (both training and testing
on CASIA-B), direct cross-dataset evaluation (training on
GREW, testing on CASIA-B), and fine-tuning (pre-trained
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by the GREW, finetuning and evaluating on CASIA-B) per-
formance of the GaitSet are compared. Specifically, GaitSet
obtains 83.64%, 45.14%, 84.48% on CASIA-B via three
settings. The accuracy of the second configuration is infe-
rior because of the obvious domain gap. With fine-tuning
on the target domain, gait recognition accuracy significant-
ly outperforms the original ones by 0.84%, which shows the
superior capacity of our dataset for pre-training.

4.5. Times

Apart from accuracy, speed is also a crucial factor for
practical gait recognition, which is always neglected in pre-
vious literature. In this section, we compare inference time
of different baselines, including pre-processing, gait fea-
ture extraction, and searching in the gallery. Times are
roughly measured on the GREW test set by averaging
all sequences duration. As shown in Table 8, for a se-
quence with 157 frames on average, pre-processing (i.e. de-
tection, segmentation, pose estimation et al.) takes most of
the time. Gait feature extraction (main network inference)
and searching procedure are relatively faster. FLOPs and
parameters of gait networks are also calculated for compar-
ison. In summary, current gait recognition pipelines need to
be optimized for real-world applications.

Table 8: Inference time, FLOPs and parameters of baselines (with single
2080TI GPU). Since TS-CNN needs multiple forward steps for a certain
sequence, it is not compared.

Baseline Pre-process Feature Search Total FLOPs Params
GEINet 45.62s 0.03s 0.00066s 45.65s 0.02G 7.68M
GaitSet 45.62s 2.89s 0.00058s 48.51s 1.06G 6.31M
GaitPart 45.62s 3.09s 0.00234s 48.71s 0.92G 6.01M
PoseGait 54.69s 0.18s 0.00046s 54.87s 0.08G 7.74M

GaitGraph 53.59s 0.05s 0.00041s 53.64s 0.06G 527.95K

4.6. Sample results

Figure 12 provides several sample results on the GREW
test set, which are performed by GaitSet baseline. For
the first probe, GaitSet successfully retrieves the subject in
Rank-1 result, with changed clothes and different walking
directions. For the second probe, the results of Rank-1 are
incorrect due to similar skirt dressing, while following two
retrievals, with carrying and partial occlusion, are true pos-
itive.

5. Discussion and Conclusion
Discussion During construction of the GREW bench-
mark, privacy and bias problems are our first concern.
To protect privacy, only silhouettes, flow and human poses
would be utilized and released, which do not reveal any per-
sonal visual information. We will provide strict access for
applicants who sign the license, and try our best to guar-
antee it for research purposes only. For dataset bias, the

Figure 12: Sample results on the GREW with GaitSet. Left part with blue
boxes shows probes (3 frames belong to the same sequence), while results
with green and red boxes are true positive and false positive respectively.
Note that only silhouettes are used for gait recognition, and RGB images
are just for visualization.

GREW has balanced gender distribution, while some at-
tributes (e.g. race, age group, dressing) are inevitably biased
due to capture location and time. Since our dataset is large-
scale and diverse, one can sample balanced data to train
models with less bias. Besides, recent de-bias researches
in the biometrics community [59, 11, 58] may also alleviate
this problem.

Conclusion This paper makes the first step to large-scale
gait recognition in the wild, to the best of our knowledge.
Firstly, the GREW dataset contains 128K sequences of 26K
subjects with rich attribute variations from flexible data.
Secondly, we manually annotate thousands of hours streams
from hundreds of cameras, resulting in 14M boxes with au-
tomatic silhouettes and human poses. Moreover, 233K dis-
tractor set sequences are collected for practical evaluation.
Lastly, comprehensive baselines are conducted to quantita-
tively analysis the challenges in unconstrained gait recog-
nition, deriving in-depth and constructive insights. Future
work will further investigate open problems for gait recog-
nition, e.g. influence of pre-processing, deeper and mod-
ern network, disentanglement, soft-biometric recognition,
un/semi/self-supervised learning.
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