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ABSTRACT
In this work, we propose a novel approach for large-scale data
enrichment, with the aim to address a major shortcoming of cur-
rent research in computational paralinguistics, namely, looking at
speaker attributes in isolation although strong interdependencies
between them exist. The scarcity of multi-target databases, in which
instances are labelled for different kinds of speaker characteris-
tics, compounds this problem. The core idea of our work is to
join existing data resources into one single holistic database with
a multi-dimensional label space by using semi-supervised learning
techniques to predict missing labels. In the proposed new Cross-
Task Labelling (CTL) method, a model is first trained on the labelled
training set of the selected databases for each individual task. Then,
the trained classifiers are used for the crosslabelling of databases
among each other.To exemplify the effectiveness of the ‘CTL’
method, we evaluated it for likability, personality, and emotion
recognition as representative tasks from the INTERSPEECH Com-
putational Paralinguistics ChallengE (ComParE) series. The results
show that ‘CTL’ lays the foundation for holistic speech analysis by
semi-autonomously annotating the existing databases, and expand-
ing the multi-target label space at the same time, while achieving
higher accuracy as the baseline performance of the challenges.

Index Terms— Data enrichment, semi-supervised learning,
missing labels, multi-target learning, holistic speech analysis

1. INTRODUCTION

With recent technology advances, the automatic analysis and under-
standing of speaker characteristics has received major attention due
to the multiplicity of possible applications in information and com-
munication systems, including not only natural human-machine in-
teraction (e.g., speech-based assistants adapting to the personality
and age of the user), but also multimedia information retrieval (e.g.,
video tagging), and monitoring of safety and security critical envi-
ronments (e.g., detection of intoxication or sleepiness).

Today, analysis of speaker characteristics and non-linguistic in-
formation has emerged to a major research field with a somewhat
standardised methodology that provides ‘reasonable’ results for a
variety of single tasks, which consider speaker characteristics in iso-
lation, i.e., single or only few speaker attributes are considered at
once. Consequently, there is very little exploitation of the interplay
and synergies between different speaker traits, states, and speak-
ing styles, yet in reality, strong interdependencies between bits of
paralinguistic information exist. On a ‘superficial’ level, biologi-
cal primitives such as height, gender, and ethnicity are coupled to
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some degree. For example, acoustic models for gender classifica-
tion (male vs female) should be different by age, since arguably the
most important feature, pitch, is also influenced by age. A semi-
nal study has recently shown that considering interdependencies be-
tween age, height, gender and ethnicity can significantly improve ac-
curacy of speaker trait prediction [1]. In a more subtle manner, per-
sonality influences the way that emotional states manifest in speech,
and especially also the subjective likability (i. e., agreeableness) of a
speaker’s voice by others. Still, before these interdependencies can
be exploited on a larger scale, richly annotated data sets will have to
be created: At present, typically encountered databases are labelled
for single tasks only. Following the belief ‘there is no data like more
data’, speech data covering as many speaker characteristics as pos-
sible should be collected to help generalisation of systems to real-
world use cases. Unfortunately, one of the major barriers of today’s
research is the costly consequences of obtaining human annotations,
which are time-consuming and expensive to obtain.

In this work, we propose a Cross-Task Labelling (CTL) method
that enables large-scale data enrichment to overcome the aforemen-
tioned shortcomings. The idea is to join existing data resources
into one holistic database annotated in multi-faceted paralinguistic
dimensions. To this end, we consider Semi-Supervised Learning
(SSL) techniques to successively complete the missing labels in each
single database without the need for human annotation [2, 3]. Partic-
ularly, we use self-training that trains a classifier on a small labelled
data set and re-trains the model iteratively with the most confident
machine predictions for a unlabelled data pool [4]. A great advan-
tage of this technique is that it does not require any intervention of
human oracles for the annotation of unlabelled data. Considering ac-
tual scenarios ‘in the wild’, for which we assume that the reference
labels in form of ‘ground truth’ or ‘gold standard’ are not available,
we evaluate the correctness of the predicted labels by reproducing
the baseline with the created holistic database as the new training set
and the original test set for each task. In this way, the annotation
quality can be accessed by comparing the new and previous baseline
accuracy.

Through data fusion and multi-target learning, we aim to bridge
the major gap between today’s systems and humans analysing
speech in a holistic fashion, learning how speaker characteristics
influence each other, and continuously improving their skills from
interactions with others.

In what follows, we describe the related work in Section 2. In
Section 3, we explain our proposed ‘CTL’ method. Then, in Section
4 and Section 5, we describe the database and feature set, respec-
tively. The experimental setup and the results are presented in Sec-
tion 6. In Section 7, we discuss our findings and explore possible
extensions of this work.
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2. RELATED WORK

In contrast to traditional single-target learning that deals with learn-
ing from data, where each example is associated with a single label l
from a set of disjoint labels L, |L| > 1, multi-target learning is con-
cerned with learning from data, where each training example is as-
sociated with multiple labels taken form a finite set of labels Y ⊆ L
[5]. For simplicity, we do not distinguish between the terms ‘multi-
label’, ‘multi-task’, and ‘multi-target’ in this work. For details on
the discrimination between the concepts the reader is referred to [6].
There is currently a wealth of multi-target learning methods, which
can be categorised into two main categories [7]: a) problem transfor-
mation methods, and b) algorithm adaption methods. Besides these
two categories of methods for multi-target learning, Madjarov et al.
[8] have introduced a third category: ensemble methods. In our pre-
vious work [6], a few initial experiments were carried out on the IN-
TERSPEECH 2012 Speaker Trait Challenge dataset (Likability Sub-
challenge) by using state-of-the-art multi-target learning methods of
the MEKA toolkit, which is an extension to the WEKA machine
learning framework by adding support for multi-target classification
[9]. More specifically, we compared the performance of the Ensem-
bles of Classifier Chains (ECC) [10], the Ensembles of Class Rele-
vance (ECR) method, and the ‘Oracle’ Multi-Target (OMT) learning
method, which trains single-task classifiers, while including the cor-
rect labels of the other tasks as features. As the obtained benchmark
results show clear signs of overfitting, poor generation performance
can be attributed to very limited amounts of training data. Yet, there
have been a few promising impulses, which will be the starting point
of our work. In this paper, we address the scarcity of multi-target
databases and alleviate overfitting to enable holistic processing of
paralinguistic information.

3. METHODOLOGY

In this section, we explain the principle of the ‘CTL’ method based
on self-training and confidence measure. The data fusion process
aims to overcome the scarcity of multi-target databases by joining
existing corpora that are annotated in a related context (e. g., emo-
tion, likability, personality). The main issue here is that typically
encountered databases are labelled for single or a few tasks only.
Thus, the (partially) missing labels in each single database need to
be completed in order to create a ‘universal’ data collection pool that
is labelled in a common multi-dimensional label space shared by all
databases. For crosslabelling, we resort to self-training which is a
well-known SSL method based on the principle of confidence mea-
sure, in such a way that the predicted classes with higher certainty
levels are automatically labelled and added to the training set.

3.1. Confidence Measure

For the confidence measure, we use Support Vector Machines
(SVMs) as the classification model. SVMs are supervised learn-
ing models that construct decision hyperplanes to separate instances
of different classes by using the decision function f(x), while
maximising the functional margin. For each instance, the output
distances to the decision boundaries are then transformed into prob-
ability values through a parametric method of logistic regression
[11]. As there can be more than two classes when it comes to multi-
target data, the following consideration needs to be made. In case
of binary classification, the confidence value for the predicted class
is obtained by forming the difference of the posterior probabilities

P0(x), P1(x) for classes ‘0’ and ‘1’, respectively.

C(x) = |P1(x)− P0(x)| (1)

For the classification of more than two classes, the highest two prob-
abilities are deducted from each other.

Formally, the query function for self-training is defined as:

x = arg max
x

|C(x)|, (2)

where C(x) denotes the confidence value assigned to the predicted
label of a given instance x.

3.2. Cross-Task Labelling

The algorithm of the ‘CTL’ method based on self-training is depicted
in Figure 1. We define the following notations: L denotes the la-
belled training set of a specific task. U comprises all the training
data of the other tasks, where the missing target labels are indicated
with the question mark ‘?’. The self-learning process starts by train-
ing a model on the labelled data and subsequently using this model
to classify the instances from the unlabelled data pool U . The confi-
dence values are ranked and stored in a queue (in descending order).
Accordingly, a subset Nst ⊂ U that is classified with the highest
confidence is selected and added to the training set, together with
their predicted labels. Then, the classifier is retrained and the itera-
tive process is repeated until all unlabelled instances are annotated.
In the outer loop, the self-training process is performed for every
task, resulting in a holistic database containing the completely filled
label space regarding all tasks.

Algorithm: Cross-Task Labelling
Repeat for each task:
Repeat until U ∈ {}:

1. (Optional) Upsample training set L to even class distribution
LD

2. Use L/LD to train classifierH, then classify U
3. Select a subsetNst that contains those instances predicted

with the highest confidence values
4. RemoveNst from the unlabelled set U , U = U \ Nst

5. AddNst to the labelled set L, L = L ∪Nst

Fig. 1. Pseudocode description of the Cross-Task Labelling (CTL)
algorithm

4. DATABASE

4.1. Speaker Likability Database

The “Speaker Likability Database” (SLD) [12] is a subset of the
German Agender database [13] (800 speakers, age and gender bal-
anced). Likability ratings for each recording used were obtained
from 32 annotators on a 7-point Likert scale. To establish a con-
sensus from the individual likability ratings, the evaluator weighted
estimator (EWE) [14] was used. The EWE is a weighted mean,
with weights corresponding to the ‘reliability’ of each rater, which
is the cross-correlation of her/his rating with the mean rating (over
all raters). The EWE rating was discretised into the ‘likable’ (L)
and ‘non-likable’ (NL) classes based on the median EWE rating of
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Table 1. Partitioning into training and test sets. Binary classifica-
tion: Speaker Likability Database by (L: likable / NL: non-likable);
Speaker Personality Corpus by (X: high on trait X / NX: low on trait
X, X∈ {O, C, E, A, N }); GEMAP by (pos(itive) / neg(ative); arousal
(A) and valence (V), where ‘undefined’ is excluded from evaluation
in binary tasks)

Sub-Task # Train Test Σ

LIKABILITY L 281 119 400
NL 291 109 400

OPENNESS O 167 80 247
NO 272 121 393

CONSCIENTIOUS. C 191 99 290
NC 248 102 350

EXTRAVERSION E 213 107 320
NE 226 94 320

AGREEABLENESS A 178 105 323
NA 221 96 317

NEUROTICISM N 228 90 318
NN 211 111 322

AROUSAL pos 380 220 600
neg 390 210 600
–∗ 48 12 60

VALENCE pos 384 216 600
neg 386 214 600
–∗ 48 12 60

Σ 1829 871 2700

all stimuli in the SLD. The data were partitioned into training and
test based on the subdivision in the INTERSPEECH 2012 Speaker
Trait Challenge (IS12 STC) (Age and Gender Sub-Challenges). The
resulting partitioning is shown in Table 1.

4.2. Speaker Personality Corpus

The “Speaker Personality Corpus” (SPC) bases on 640 clips ex-
tracted from the French speaking Swiss national broadcasting ser-
vice. The number of speakers is 322. Eleven raters annotated each
recording in terms of the perceived personality of the speakers using
BFI-10, a personality assessment questionnaire. The personality
traits assessed correspond to the Big-Five personality dimensions:
OPENNESS to new experiences; CONSCIENTIOUSNESS; EX-
TRAVERSION; AGREEABLENESS; and NEUROTICISM. Each
clip is labelled to be above average (X) for a given trait X ∈ {
O, C, E, A, N } if at least six judges (the majority) assign to it a
score higher than their average for the same trait; otherwise, it is la-
belled NX. Training and test set are defined by speaker independent
subdivision of the SPC, stratifying by speaker gender (cf. Table 1).

4.3. Geneva Multimodal Emotion Portrayals

The “Geneva Multimodal Emotion Portrayals” (GEMEP) contains
1.2 k instances of emotional speech from ten professional actors
in 18 categories [15]. Applying the same heuristic approach as in
the INTERSPEECH 2013 ComParE Emotion sub-challenge, these
classes are mapped to the two dimensions arousal and valence
(binary tasks). The category ‘undefined’ is considered in the cross-
labelling process, but excluded from evaluation in binary tasks to
ensure a fair comparison between the challenge baseline and the
‘CTL’ method. The resulting partitioning is shown in Table 1.

5. ACOUSTIC FEATURES

5.1. ComParE Acoustic Feature Set

The COMPARE set of supra-segmental (utterance-level) acoustic
features is used, as for the baselines in the previous instalments
of the challenge series [16, 17, 18]. The COMPARE feature set
contains 6 373 static features, which are obtained as functionals of
low-level descriptor (LLD) contours. We use TUM’s open-source
openSMILE feature extractor in its 2.1 release [19].

5.2. Extended Geneva Minimalistic Acoustic Parameter Set

For alleviating overfitting, we further applied the “extended Geneva
Minimalistic Acoustic Parameter Set” (eGEMAPS) [20], which was
selected based on a) their potential to index affective physiological
changes in voice production, b) their proven value in former stud-
ies as well as their automatic extractability, and c) their theoreti-
cal significance. The minimalistic acoustic parameter set contains a
compact set of 18 Low-level descriptors (LLD), containing 62 pa-
rameters. It does not contain any cepstral parameters and only very
few dynamic parameters (i. e., it contains no delta regression coeffi-
cients and no difference features; only the slopes of rising and falling
F0 and loudness segments encapsulate some dynamic information).
Further, especially cepstral parameters have proven highly success-
ful in modelling of affective states, e. g., by [21], [22], [23]. There-
fore, an extension set to the minimalistic set is used which contains
the following 7 LLD in addition to the 18 LLD in the minimalistic
set:
Spectral (balance/shape/dynamics) parameters:
• MFCC 1–4 Mel-Frequency Cepstral Coefficients 1–4.

• Spectral flux difference of the spectra of two consecutive
frames.

Frequency related parameters:
• Formant 2–3 bandwidth added for completeness of Formant

1–3 parameters.

As functionals, the arithmetic mean and the coefficient of variation
are applied to all of these 7 additional LLD to all segments (voiced
and unvoiced together), except for the formant bandwidths to which
the functionals are applied only in voiced regions. This adds 14 extra
descriptors. Additionally, the arithmetic mean of the spectral flux in
unvoiced regions only, the arithmetic mean and coefficient of vari-
ation of the spectral flux and MFCC 1–4 in voiced regions only is
included. This results in another 11 descriptors. Additionally the
equivalent sound level is included. This results in 26 extra pa-
rameters. In total, when combined with the Minimalistic Set, the
eGeMAPS set contains 88 parameters.

6. EXPERIMENTS AND RESULTS

As performance measure, we retain the choice of unweighted av-
erage recall (UAR) in accordance with the IS challenges [24]. In
the given case of two classes (‘X’ and ‘NX’), it is calculated as
(Recall(X)+Recall(NX))/2, i. e., the number of instances per class
is ignored by intention to compensate imbalances. For transparency
and reproducibility, we used open-source classifier implementations
of SVMs from the WEKA data mining toolkit [9]. As classifiers,
we chose linear kernel SVMs trained with Sequential Minimal Op-
timization (SMO), as they are robust against over-fitting in high di-
mensional feature spaces. For each task, we chose the complexity
parameter C ∈ {10−4, 10−3, 10−2, 10−1} for the SMO algorithm
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Table 2. Personality, Likability, and Emotion Sub-Challenge performance measures by unweighted average recall (UAR) in percent; C:
complexity parameter (by 5-fold cross-validation (CV); Test: Results on test set, by training on the original training set for baseline, and on
the joint multi-target training set for CTL; Acoustic feature sets: ComParE vs eGeMAPS.

UAR [%] ComParE eGeMAPS
Baseline CTL Baseline CTL

C CV Test C CV Test C CV Test C CV Test
IS12 STC Personality Sub-Challenge

(N)O 10−2 60.3 60.8 10−1 76.4 55.0 10−3 59.0 56.0 10−3 39.3 56.0
(N)C 10−2 72.5 78.1 10−2 77.5 78.1 10−1 70.8 78.1 10−2 80.0 69.5
(N)E 10−1 79.1 71.7 10−2 86.6 72.8 10−1 75.8 71.4 10−3 81.7 68.0
(N)A 10−3 65.9 58.2 10−2 88.0 61.0 10−1 65.1 58.6 10−1 76.8 63.1
(N)N 10−2 71.9 63.3 10−2 90.1 66.3 10−1 72.3 65.5 10−1 89.5 65.0
Mean 69.9 66.4 83.7 66.6 68.6 65.9 73.5 64.3

IS12 STC Likability Sub-Challenge
(N)L 10−4 58.3 57.2 10−1 82.3 60.3 10−3 57.2 58.6 10−1 82.2 53.5

IS13 ComParE Emotion Sub-Challenge
Arousal 10−1 97.0 68.9 10−1 97.7 69.0 10−1 85.0 72.9 10−1 86.5 73.2
Valence 10−1 96.7 61.6 10−1 97.6 59.3 10−1 68.3 60.0 10−1 80.9 58.5
Mean 96.9 65.3 97.7 64.2 76.7 66.5 83.7 65.9

that achieves the best UAR value in the 5-fold crossvalidation on
the training set. An argument in favour of the crossvalidation in-
stead of the original training vs development partition as used in the
challenges is that the data fusion process leads to increasing data
volume of the training data while the development set would retain
the same size. At each learning iteration of the self-training process,
we selected a subset Nst comprising 30% of the unlabelled data to
be merged into the labelled training set. This iterative process is re-
peated until the target label is completed in all databases. The values
for C turned by CV as well as the performance measures are depicted
in Table 2. According to the results, the following observations can
be made. First, it can be seen that the CV results obtained through
‘CTL’ are markedly better than the corresponding baseline results
for each feature set. The performance increase can be explained by
the fusion of the three databases. Simply put, the joint training set
contains only around 1/3 of the samples originating from human
annotation. The rest of the instances are estimates obtained through
‘CTL’. Hence, in each iteration of the crossvalidation, the validation
fold also contains 2/3 of its samples, which are labelled by ‘CTL’,
causing heavily biased results. Second, we found that the ComParE
set leads to increased tendency of overfitting. This is expected be-
cause the dimensionality of this feature set is much higher than the
total number of instances. In comparison, the CV results are closer to
the ‘test’ results when using the eGeMAPS feature set. Third, there
is a slight (although statistically insignificant) tendency that ‘CTL’
leads to improved performance on the test set by using the ComParE
set. Finally, we computed the Student’s t-test to statistically com-
pare the test performances of baseline vs CTL for each feature set.
The analysis of the significance levels (p = 0.87 >> .05) confirms
the correctness of the crosslabelling process by showing that there
is no significant difference between the test results. This fact is of
paramount importance for our data enrichment approach because it
demonstrates the effectiveness of the ‘CTL’ method to fuse existing
databases into one multi-target database that can be expanded in a
continuously increasing label space, thus enabling large-scale data
collection with truly multi-dimensional (‘universal’) labels.

7. CONCLUSION

In this paper, we introduced a cross-task labelling method that over-
comes the scarcity of multi-target databases by semi-autonomously
completing the target labels which are partially or completely miss-
ing. Through data fusion, the ‘CTL’ method generates a multi-target
database, while achieving the comparable test results as the origi-
nal baseline performance of the ComParE challenges. In this way, a
‘universal’ database with a continuously expanding label space can
be created, enabling large-scale data enrichment.

For future research, we aim to exploit the label correlations
between different tasks and benefit from the created multi-target
database. Methods such as Conditional Random Fields and Dy-
namic Bayesian Networks, are also promising candidates, which
will be investigated for their suitability for multi-target learning.
Dynamic Bayesian Networks allow for modelling of interdependen-
cies between all desirable labels and the input data. Combined with
nonparametric learning methods and hybrid/tandem approaches,
they are one powerful method for holistic speaker characteristics
analysis.

Through multi-target data collection and learning from them, we
aim to achieve a holistic understanding of all the paralinguistic facets
of human speech in tomorrows real-life information, communication
and entertainment systems.
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