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Abstract

We revisit the problem of robust principal component analysis with
features acting as prior side information. To this aim, a novel, elegant,
non-convex optimization approach is proposed to decompose a given ob-
servation matrix into a low-rank core and the corresponding sparse resid-
ual. Rigorous theoretical analysis of the proposed algorithm results in
exact recovery guarantees with low computational complexity. Aptly de-
signed synthetic experiments demonstrate that our method is the first to
wholly harness the power of non-convexity over convexity in terms of both
recoverability and speed. That is, the proposed non-convex approach is
more accurate and faster compared to the best available algorithms for the
problem under study. Two real-world applications, namely image classi-
fication and face denoising further exemplify the practical superiority of
the proposed method.

1 Introduction

Many machine learning and artificial intelligence tasks involve the separation of
a data matrix into a low-rank structure and a sparse part capturing different
information. Robust principal component analysis (RPCA) Candes et al. [2011],
Chandrasekaran et al. [2011] is a popular framework that logically characterizes
this matrix separation problem.

Nevertheless, prior side information, oftentimes in the form of features, may
also be present in practice. For instance, features are available for the following
tasks:

– Collaborative filtering: apart from ratings of an item by other users, the
profile of the user and the description of the item can also be exploited in
making recommendations Chiang et al. [2015];

– Relationship prediction: user behaviours and message exchanges can assist
in finding missing links on social media networks Xu et al. [2013];

– Person-specific facial deformable models: an orthonormal subspace learnt
from manually annotated data captured in-the-wild, when fed into an im-
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age congealing procedure, can help produce more correct fittings Sagonas
et al. [2014].

It is thus reasonable to investigate how propitious it is for RPCA to exploit the
available features. Indeed, recent results Liu et al. [2017] indicate that features
are not redundant at all. In the setting of multiple subspaces, RPCA degrades
as the number of subspaces grows because of the increased row-coherence. On
the other hand, the use of feature dictionaries allows accurate low-rank recov-
ery by removing the dependency on row-coherence. Despite the theoretical and
practical merits of convexified RPCA with features, such as LRR Liu et al.
[2010] and PCPF Chiang et al. [2016], convex relaxations of the rank function
and l0-norm necessarily lead into algorithm weakening Chandrasekarana and
Jordan [2013].

On a separate note, recent advances in non-convex optimization algorithms
continue to undermine their convex counterparts Gong et al. [2013], Ge et al.
[2016], Kohler and Lucchi [2017]. In particular, non-convex RPCA algorithms
such as fast RPCA Yi et al. [2016] and AltProj Netrapalli et al. [2014] ex-
hibit better properties than the convex formulation. Most recently, Niranjan
et al. [2017] embedded features into a non-convex RPCA framework known as
IRPCA-IHT with faster speed. However, it remains unclear as to whether fea-
tures have been effectively incorporated into non-convex RPCA and the benefits
of accuracy, speed and so on have been exploited as much as possible.

In this work, we give positive answers to the above questions by proposing
a novel, non-convex scheme that fully leverages features, which reveal true row
and column subspaces, to decompose an observation matrix into a core matrix
with given rank and a residual part with informed sparsity. Even though the
proposed algorithm is inspired by the recently proposed fast RPCA Yi et al.
[2016], our contributions are by no means trivial, especially from a theoretical
perspective. First, fast RPCA cannot be easily extended to consistently take ac-
count of features. Second, as we show in this paper, incoherence assumptions on
the observation matrix and features play a decisive role in determining the cor-
ruption bound and the computational complexity of the non-convex algorithm.
Third, fast RPCA is limited to a corruption rate of 50% due to their choice
of the hard threshold, whereas our algorithm ups this rate to 90%. Fourth,
we prove that the costly projection onto factorized spaces is entirely optional
when features satisfy certain incoherence conditions. Although our algorithm
maintains the same corruption rate of O( n

r1.5 ) and complexity of O(rn2 log( 1
ε ))

as fast RPCA, we show empirically that massive gains in accuracy and speed
can still be obtained. Besides, the transfer of coherence dependency from ob-
servation to features means that our algorithm is capable of dealing with highly
incoherent data.

Unavoidably, features adversely affect tolerance to corruption in IRPCA-
IHT (O(nd )) compared to its predecessor AltProj (O(nr )). This is not always
true with our algorithm in relation to fast RPCA. And when the underlying
rank is low but features are only weakly informative, i.e. r � d, which is often
the case, our tolerance to corruption is arguably better. IRPCA-IHT also has
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a higher complexity of O((dn2 + d2r) log(1
ε )) than that of our algorithm. Al-

though feature-free convex and non-convex algorithms have higher asymptotic
error bounds than our algorithm, we show in our experiments that this does not
translate as accuracy in reality. Our algorithm still has the best performance in
recovering accurately the low-rank part from highly corrupted matrices. This
may be attributed to the fact that our bounds are not tight. Besides, PCPF and

AltProj have much higher complexity (O( n
3
√
ε
) and O(r2n2 log( 1

ε ))) than ours.

For PCPF, there does not exist any theoretical analysis under the deterministic
sparsity model. Nonetheless, we show in our experiments that our algorithm
is superior with regard to both recoverability and running time. The overall
contribution of this paper is as follows:

• A novel non-convex algorithm integrating features with informed sparsity
is proposed in order to solve RPCA problem.

• We establish theoretical guarantees of exact recovery under different as-
sumptions regarding the incoherence of features and observation.

• Extensive experimental results on synthetic data indicate that the pro-
posed algorithm is faster and more accurate in low-rank matrix recovery
than the compared state-of-the-art convex and non-convex methods for
RPCA (with and without features).

• Experiments on two real-world datasets, namely MNIST and Yale B database
demonstrate the practical merits of the proposed algorithm.

2 Notations

Lowercase letters denote scalars and uppercase letters denote matrices, unless
otherwise stated. Ai· and A · j represent the ith row and the jth column of A.
Projection onto support set Ω is given by ΠΩ. |A| is the element-wise absolute
value of matrix A. For norms of matrix A, ‖A‖F is the Frobenius norm; ‖A‖∗
is the nuclear norm; ‖A‖2 is the largest singular value; otherwise, ‖A‖p is the
lp-norm of vectorized A; and ‖A‖2,∞ is the maximum of matrix row l2-norms.
Moreover, 〈A,B〉 represents tr(ATB) for real matrices A,B. Additionally, σi
is the ith largest singular value of a matrix.

The Euclidean metric is not applicable here because of the non-uniqueness
of the bi-factorisation L∗ = A∗B∗T , which corresponds to a manifold rather
than a point. Hence, we define the following distance between (A,B) and any
of the optimal pair (A∗,B∗) such that L∗ = A∗B∗T :

d(A,B,A∗,B∗) = min
R

√
‖A−A∗R‖2F + ‖B−B∗R‖2F , (1)

where R is an r × r orthogonal matrix.
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3 Related Work

RPCA concerns a known observation matrix M which we are seeking to de-
compose into matrices L∗, S∗ such that L∗ is low-rank and S∗ is sparse and
of arbitrary magnitude. Conceptually, it is equivalent to solving the following
optimization problem:

min
L,S

rank(L) + γ‖S‖0 subject to L + S = M, (2)

for appropriate γ. This problem, regrettably, is NP-hard.
PCP Wright et al. [2009] replaces (2) with convex heuristics:

min
L,S

‖L‖∗ + γ‖S‖1 subject to L + S = M, (3)

for some γ. In spite of the simplification, PCP can exactly recover the solution
of RPCA under the random model Candes et al. [2011] and the deterministic
model Chandrasekaran et al. [2011], Hsu et al. [2011].

If feasible feature dictionaries, X and Y, regarding row and column spaces
are available, PCPF Chiang et al. [2016] makes use of these to generalize (3) to
the below objective:

min
H,S

‖H‖∗ + γ‖S‖1 subject to XHYT + S = M, (4)

for the same γ as in (3). Convergence to the RPCA solution has only been
established for the random sparsity model.

AltProj Netrapalli et al. [2014] addresses RPCA by minimizing an entirely
different objective:

min
L,S

‖M− L− S‖F

subject to L ∈ set of low-rank matrices

S ∈ set of sparse matrices,

(5)

where the search consists of alternating non-convex projections. That is, during
each cycle, hard-thresholding takes place first to remove large entries and pro-
jection of appropriate residuals onto the set of low-rank matrices with increasing
ranks is carried out next. Exact recovery has also been established.

Fast RPCA Yi et al. [2016] follows yet another non-convex approach to solve
RPCA. After an initialization stage, fast RPCA updates bilinear factors U, V
such that L = UVT through a series of projected gradient descent and sparse
estimations, where U, V minimize the following loss:

min
U,V

1

2
‖UVT + S−M‖2F +

1

8
‖UTU−VTV‖2F , (6)

for U, V properly constrained. Recovery guarantee is ensured.
IRPCA-IHT Niranjan et al. [2017] includes features X, Y in an iterative
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non-convex projection algorithm. Similar to AltProj, at each step, a new sparse
estimate is calculated from hard thresholding via a monotonically decreasing
threshold. After that, spectral hard thresholding takes place to attain the low-
rank estimate. IRPCA-IHT provably converges to the solution of RPCA.

We also mention here several works of non-convex objectives Oh et al. [2015],
Shang et al. [2017], though exact recovery guarantees are lacking.

4 Problem Setup

Suppose that there is a known data matrix M ∈ Rn1×n2 , which can be decom-
posed into a low-rank component L∗ and a sparse error matrix S∗ of compatible
dimensions. Our aim is to identify these underlying matrices and hence robustly
recover the low-rank component with the help of available side information in
the form of feature matrices X and Y.

Concretely, let L∗ = U∗Σ∗V∗Tbe the singular value decomposition and
P∗ = XTU∗Σ∗

1
2 and Q∗ = YTV∗Σ∗

1
2 . S∗ follows the random sparsity model.

That is, the support of S∗ is chosen uniformly at random from the collection
of all support sets of the same size. Furthermore, let us be informed of the
proportion of non-zero entries per row and column, denoted by α. Assume that
there are also available features X ∈ Rn1×d1 and Y ∈ Rn2×d2 such that they are
feasible, i.e. col(X)⊇col(U∗) and col(Y)⊇col(V∗) where col(A) is the column
space of A and XTX = YTY = I1.

In this paper, we discuss robust low-rank recovery using the above mentioned

features and three different incoherence conditions: (i) ‖U∗‖2,∞ ≤
√

µ1r
n1

and

‖V∗‖2,∞ ≤
√

µ1r
n2

; (ii) ‖X‖2,∞ ≤
√

µ2d1
n1

and ‖Y‖2,∞ ≤
√

µ2d2
n2

; (iii) both (i)

and (ii), where r is the given rank of L∗ and µ1, µ2 are constants.

5 Algorithm

We use a non-convex approach to achieve the above objective. The algorithm
consists of an initialization phase followed by a gradient descent phase. At each
stage, we keep track of the factors P, Q such that L = XPQTYT .

5.1 Hard-thresholding

We first introduce the sparse estimator via hard-thresholding which is used in
both phases. Given a threshold θ, Tθ(A) removes elements of A that are not
among the largest θ-fraction of elements in their respective rows and columns,
breaking ties arbitrarily for equal elements:

Tθ(A)ij =

{
0 if |Aij | ≤ Aθi· and |Aij | ≤ Aθ·j,
Aij otherwise,

(7)

1This can always achieved via orthogonalisation.
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where Aθi·,Aθ·j are the (n2θ)
th and (n1θ)

th largest element in absolute value
in row i and column j respectively.

5.2 Initialization

S is first initialized as S0 = Tα(M). Next, we obtain U0Σ0V
T
0 as the r-

truncated SVD of L0, which is calculated via L0 = M − S0. We can then

construct P0 = XTU0Σ
1
2
0 and Q0 = YTV0Σ

1
2
0 . Such an initialization scheme

gives P, Q the desirable properties for use in the second phase.

5.3 Gradient Descent

In case (i), we need the following sets:

P = {A ∈ Rd1×r|‖XA‖2,∞ ≤
√

2µ1r

n1
‖P0‖2}, (8)

Q = {A ∈ Rd2×r|‖YA‖2,∞ ≤
√

2µ1r

n2
‖Q0‖2}. (9)

Otherwise, we can simply take P as Rd1×r and Q as Rd2×r.
To proceed, we first regularise P0 and Q0:

P = ΠP(P0), Q = ΠQ(Q0). (10)

At each iteratiion, we first update S with the sparse estimator using a thresh-
old of α+ min(10α+ 0.1):

S = Tα+min(10α+0.1)(M−XPQTYT ). (11)

For P, Q, we define the following objective function

L(P,Q) =
1

2
‖XPQTYT + S−M‖2F +

1

64
‖PTP−QTQ‖2F . (12)

P and Q are updated by minimizing the above function subject to the con-
straints imposed by the sets P and Q. That is,

P = ΠP(P− η∇PL), (13)

Q = ΠQ(Q− η∇QL), (14)

where the step size η is determined analytically below. With properly initialized
P and Q, such an optimization design converges to P∗ and Q∗. The procedure
is summarized in Algorithm 1.
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Algorithm 1 Non-convex solver for robust principal component analysis with
features
Input: Observation M, features X,Y, rank r, corruption approximation α and

step size η.
Initialization:

1: S = Tα(M)
2: UΣVT = r-SVD(M− S)

3: P = XTUΣ
1
2

4: Q = YTVΣ
1
2

Gradient descent:
5: P = ΠP(P)
6: Q = ΠQ(Q)
7: while not converged do
8: S = Tα+min(10α+0.1)(M−XPQTYT )
9: P = ΠP(P− η∇PL)

10: Q = ΠQ(Q− η∇QL)
11: end while
Return: L = XPQTYT , S

6 Analysis

We first provide theoretical justification of our proposed approach. Then we
evaluate its computational complexity. The proofs can be found in the supple-
mentary material.

6.1 Convergence

The initialization phase provides us with the following guarantees on P and Q.

Theorem 1. In cases (i) and (iii), if α ≤ 1
16κrµ1

, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αrµ1

√
rκσ∗1 . (15)

In case (ii), if α ≤ 1
16κµ2

√
d1d2

, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αµ2

√
rd1d2κσ∗1 , (16)

where κ is the condition number of L∗ and d is a distance metric defined in the
appendix.

Theorem 2. For η ≤ 1
192‖L0‖2 , there exist constants c1 > 0, c2 > 0, c3 > 0,

c4 > 0, c5 > 0 and c6 > 0 such that, in case (i), when α ≤ c1

µ1(κr)
3
2

, we have the

following relationship

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c2ησ∗r )td(P0,Q0,P

∗,Q∗)2, (17)
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in case (ii), when α ≤ c3

µ2dr
1
2 κ

3
2

, we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c4ησ∗r )td(P0,Q0,P

∗,Q∗)2. (18)

and in case (iii), when α ≤ c5 min( 1
µ2dκ

, 1

µ1(κr)
3
2

), we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c6ησ∗r )td(P0,Q0,P

∗,Q∗)2. (19)

6.2 Complexity

From Theorem 2, it follows that our algorithm converges at a linear rate under
assumptions (ii) and (iii). To converge below ε of the initial error, O(log( 1

ε ))
iterations are needed. At each iteration, the most costly step is matrix multipli-
cation which takes O(rn2) time. Overall, our algorithm has total running time
of O(rn2log( 1

ε )).

7 Experimental results

We have found that when the step size is set to 0.5, reasonable results can be
obtained. For all algorithms in comparison, we run a total of 3000 iterations or
until ‖M− L− S‖F /‖M‖F < 10−7 is met.

7.1 Phase transition

Here, we vary the rank and the error sparsity to investigate the behavior of both
our algorithm and existing state-of-art algorithms in terms of recoverability.
True low-rank matrices are created via L∗ = JKT , where 200× r matrices J,K
have independent elements drawn randomly from a Gaussian distribution of
mean 0 and variance 5 · 10−3 so r becomes the rank of L∗. Next, we corrupt
each column of L∗ such that α of the elements are set independently with
magnitude U(0, r40 ). However, this does not guarantee α row corruption. We
thus select only matrices whose maximum row corruption does not exceed α+
6.5% but we still feed α to the algorithms in order to demonstrate that our
algorithm does not need the exact value of corruption ratio. We consider two
types of signs for error: Bernoulli ±1 and sgn(L∗). The resulting M thus
becomes the simulated observation. In addition, let L∗ = UΣVT be the SVD
of L∗. Feature X is formed by randomly interweaving column vectors of U with
5 arbitrary orthonormal bases for the null space of UT , while permuting the
expanded columns of V with 5 random orthonormal bases for the kernel of VT

forms feature Y. Hence, the feasibility conditions are fulfilled: col(X) ⊇col(L0),
col(Y) ⊇col(LT0 ). For each (r, α) pair, three observations are constructed. The
recovery is successful if for all these three problems,

‖L− L∗‖F
‖L∗‖F

< 10−3 (20)

8



Figure 1: Domains of recovery by various algorithms: (a) for random signs and
(b) for coherent signs.

from the recovered L.

Figures 1(I) plot results from algorithms incorporating features. Besides,
our algorithm contrasts with fast RPCA in Figure 1(II). Other feature-free al-
gorithms are investigated in Figure 1(III). Figures 1(a) illustrate the random
sign model and Figures 1(b) for the coherent sign model. All previous non-
convex attempts fail to outperform their convex equivalents. IRPCA-IHT is
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unable to deal with even moderate levels of corruption. The frontier of recov-
erability that has been advanced by our algorithm over PCPF is phenomenal,
massively ameliorating fast RPCA. The anomalous asymmetry in the two sign
models is no longer observed in non-convex algorithms.

7.2 Running Time

1500 1750 2000 2250 2500
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100

200
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400
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700

T
im

e

(i)

PCP
PCPF
fast RPCA
our algorithm
AltProj

2000 4000 6000 8000 10000
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0

200

400

600

800
(ii)

IRPCA-IHT
our algorithm

Figure 2: (i) Running times for observation matrices of increasing dimensions
for (i) PCP, PCPF, fast RPCA, AltProj, our algorithm and (ii) IRPCA-IHT

and our algorithm when ‖L−L∗‖F
‖L∗‖F ≤ 1%.

Next, we highlight the speed of our algorithm for large-scale matrices, typ-
ical of video sequences Xiong et al. [2016]. 1500×1500 to 2500×2500 random
observation matrices are generated, where the rank is chosen to be 20% of the
column number and random sign error corrupts 11% of the entries, with features
X,Y having a dimension of 50% of the column number. The running times of
all algorithms except IRPCA-IHT are plotted in 2 (i) because IRPCA-IHT is

not able to achieve a relative error (‖L−L∗‖F
‖L∗‖F ) less than 1% for larger matrices.

For fair comparison, we have relaxed the rank to 0.3% of the column number
and error rate to 0.1% to compare our algorithm with IRPCA-IHT for matrices
ranging from 2000×2000 to 10000×10000. We have used features X,Y having
a dimension of 80% of the column number to speed up the process. The result
is shown in Figure 2 (ii). All times are averaged over three trials. It is evident
that, for large matrices, our algorithm overtakes all existing algorithms in terms
of speed. Note that features in PCPF even slow down the recovery process.

7.3 Image Classification

Once images are denoised, classification can be performed on them. The classifi-
cation results directly reflect the image denoising ability. For a set of correlated

10



α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 30.45 82.75 83.35 81.4 65.2 81.1 86.9
15 25.1 82.95 83.4 81.15 49.65 79.65 84.8
20 89.65 23.15 83.5 84 79.3 37.8 78.65 83.8
25 18.65 81.35 82.65 74.05 30.35 75.3 83.15
30 18.6 77.95 79 71.5 24.1 72.9 82.05
35 16.95 71.2 73.4 67.75 21.05 71.45 79.05

Table 1: Classification results obtained by a linear SVM.

α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 87 87.25 87.3 86.45 89.3 89.25 90.3
15 75.85 87.15 87.4 86.75 82.85 87.2 89.8
20 92.25 64.35 87.6 87.55 84.65 71.2 85.55 88.55
25 55.85 87 86.95 79.4 62.35 82.65 87.8
30 47.15 81.15 81.55 76.75 53.5 78.3 85.65
35 40.55 74.8 75.7 71 47.4 76.75 85.15

Table 2: Classification results obtained by an SVM with RBF kernel.

0.1 0.15 0.2 0.25 0.3 0.35
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IRPCA-IHT

Figure 3: Relative error (‖L−L∗‖F
‖L∗‖F ) for sparsity values: 10%, 15%, 20%,

25%, 30%, 35%.

images, low-rank algorithms are normally used to remove noise that is sparse.
The same classifier is thus able to compare the different low-rank models.

The MNIST dataset is such an example which contains hand-written digits
divided into training and testing sets. Let the observation matrix be composed
of 2000 vectorized random images from the test set stacked column-wise. In this
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case, the left feature obtained from the training set is also applicable to the test
set because of the Eigendigit nature. This imparts our algorithm to supervised
learning where there are clean related training samples available. The right
feature does not posses such property and is set to the identity matrix. We add
a range of sparse noise to the test set separately where the noise sets the pixel to
255. For PCPF, we take d = 300 as in Chiang et al. [2016] and for IRPCA-IHT
and our algorithm we use d = 150 instead.

The relative error between the recovered matrix by the competing algorithms
and the clean test matrix is plotted in Figure 3. Our algorithm is most accurate
in removing the added artificial noise. To evaluate how classifiers perform on the
recovered matrices, we train the linear and kernel SVM using the training set
and test the corresponding models on the recovered images. Table 1 tabulates
the linear SVM. Table 2 tabulates the kernel SVM. Both classifiers confirm
the recovery result obtained by various models corroborating our algorithm’s
pre-eminent accuracy.

7.4 Face denoising

It is common practice to decompose raw facial images as a low-rank component
for faithful face representation and a sparse component for defects. This is be-
cause the face is a convex Lambertian surface which under distant and isotropic
lighting has an underlying model that spans a 9-D linear subspace Basri and
Jacobs [2003], but theoretical lighting conditions cannot be realised and there
are unavoidable occlusion and albedo variations in real images. We demonstrate
that there can be a substantial boost to the performance of facial denoising by
leveraging dictionaries learnt from the images themselves.

The extended Yale B database is used as our observation which consists
images under different illuminations for a fixed pose. We study all 64 images
of a randomly chosen person. A 32556 × 64 observation matrix is formed by
vectorizing each 168× 192 image. For fast RPCA and our algorithm, a sparsity
of 0.2 is adopted. We learn the feature dictionary as in Xue et al. [2017]. In a
nutshell, the feature learning process can be treated as a sparse encoding prob-
lem. More specifically, we simultaneously seek a dictionary D ∈ Rn1×c and a
sparse representation B ∈ Rc×n2 such that:

minimize
D,B

‖M−DB‖2F

subject to γi ≤ t for i = 1 . . . n2,
(21)

where c is the number of atoms, γi’s count the number of non-zero elements in
each sparsity code and t is the sparsity constraint factor. This can be solved
by the K-SVD algorithm. Here, feature X is the dictionary D, feature Y cor-
responds to a similar solution using the transpose of the observation matrix as
input. We set c to 40, t to 40 and used 10 iterations.

As a visual illustration, recovered images from all algorithms are exhibited in
Figure 4. For this challenging scenario, our algorithm totally removed all shad-
ows. PCPF is smoother than PCP but still suffers from shade. AltProj and
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(i)

(ii) (iii) (iv)

(v) (vi) (vii)

Figure 4: (i) original; (ii) PCPF; (iii) our algorithm; (iv) IRPCA-IHT; (v) PCP;
(vi) fast RPCA; (vii) AltProj.

fast RPCA both introduced extra artefacts. Although IRPCA-IHT managed to
remove the shadows but brought back a severely distorted image. To quantita-
tively verify the improvement made by our proposed method, we examine the
structural information contained within the denoised eigenfaces. Singular values
of the recovered low-rank matrices from all algorithms are plotted in Figure 5.
All non-convex algorithms are competent in incorporating the rank information
to keep only 9 singular values, vastly outperforming convex approaches. Among
them, our algorithm has the most rapid decay that is found naturally Wright
et al. [2011].
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Figure 5: Log-scale singular values of the denoised matrices.

8 Conclusion

This work proposes a new non-convex algorithm to solve RPCA with the help
of features when the error sparsity is roughly known. Exact recovery guarantee
has been established for three different assumptions about the incoherence con-
ditions on features and the data observation matrix. Simulation experiments
suggest that our algorithm is able to recover matrices of higher ranks corrupted
by errors of higher sparsity than previous state-of-the-art approaches. Large
synthetic matrices also show that our algorithm scales best with observation
matrix dimension. MNIST and Yale B datasets further justify that our algo-
rithm leads other approaches by a fair margin. Future work may involve finding
a more accurate initialization scheme.
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Appendices

A Convex Projection

Given P, the problem of finding ΠP(P) can be seen as projection onto the
intersection of a series of closed convex sets Pi, that is P = P1

⋂
· · ·
⋂
Pd1 ,

where Pi = {A ∈ Rd1×r||Xi·A|2 ≤
√

2µ1r
n1
‖P0‖2}. We have emperically found

that the Cyclic Dykstra algorithm Reich and Zaslavski [2012] has the fastest
rate of convergence. Let A0 = P, and B−(d1−1) = B−(d1−2) = · · · = B−1 =

B0 = 0 ∈ Rd1×r, the Cyclic Dykstra algorithm updates, at each iteration,
Ak+1 = ΠPk+1 mod d1

(Ak + Bk+1−d1) and Bk+1 = Ak + Bk+1−d1 −Ak+1.

For ΠPi(P), we formulate the equivalent optimisation problem below

min
A
‖A−P‖2F s.t. |Xi·A|2 =

√
2µ1r

n1
‖P0‖2, (22)

for |Xi·P|2 >
√

2µ1r
n1
‖P0‖2. Its solution is given by

A = (Id1×d1 +

( |Xi·P|2√
2µ1r
n1
‖P0‖2

− 1)XT
i·Xi·

|Xi·|22
)−1P. (23)

For Q, ΠQ(Q) follows similarly.

We have also run experiments to see how much improvement can be gained by
convex projection. 200×200 high-incoherence matrices are created with ranks
from 140 to 155 and corrupted by 10% random sign errors. Our algorithm is
applied with projection several times. Each uses a different number of iterative
steps ranging from 0 to 2000. Recoverability is plotted against the number of
iterative projections in Figure 6. There is hardly any noticeable improvement
so we do not use convex projection in our comparison experiments. Further
analysis is demanded to justify the redundency of convex projection.
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Figure 6: Effectiveness of convex projection.

B Proofs

For simplicity, we assume that n1 = n2 = n, d1 = d2 = d.

B.1 Proof of Theorem 1

We first declare some lemmas that will be essential to our result.

Lemma B.1. Let S0 be obtained from the initialisation phase, we have

‖M− S0 − L∗‖∞ ≤ 2‖L∗‖∞. (24)

Proof. See Yi et al. [2016] theorem 1.

Lemma B.2. For any matrix A ∈ Rn×n for which the proportion of non-zero
entries per row and column is β, we have

‖A‖2 ≤ βn‖A‖∞. (25)

Proof. See Netrapalli et al. [2014] lemma 4.

Lemma B.3. For two rank r matrices L1 and L2 of the same dimension whose
compact SVDs are L1 = U1Σ1V

T
1 and L2 = U2Σ2V

T
2 , we have

d(U1Σ
1
2
1 ,V1Σ

1
2
1 ,U2Σ

1
2
2 ,V2Σ

1
2
2 )2 ≤ 2√

2− 1

‖L1 − L2‖2F
σr(L2)

, (26)

16



provided ‖L1 − L2‖2 ≤ 1
2σr(L2).

Proof. See Tu et al. [2016] lemma 5.14.

Lemma B.4. For any matrices A and B of consistent sizes, we have

‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖2. (27)

Proof. See Liu et al. [2017] lemma 4.2.

Lemma B.5. For any matrix A with compact SVD A = UΣVT ,

‖A‖∞ ≤ ‖Σ‖2‖U‖2,∞‖V‖2,∞. (28)

Proof. See Yi et al. [2016] theorem 1.

Lemma B.6. Let U0,V0,Σ0,S0 be obtained from the initialisation phase, we
have

‖U0Σ0V
T
0 −M + S0‖2 ≤ ‖M− S0 − L∗‖2 (29)

Proof. Weyl’s theorem tells us that, for 1 ≤ i ≤ n, |σi(L∗)−σi(M−S0)| ≤ ‖M−
S0−L∗‖2. When i = r+1, σi(L

∗) = 0 and σi(M−S0) = ‖U0Σ0V
T
0 −M+S0‖2

because L∗ has rank r and U0Σ0V
T
0 = r-SVD(M− S0).

Lemma B.7. For A,B,C,D ∈ Rd×r

d(XTA,YTB,XTC,YTD) ≤ d(A,B,C,D). (30)

Proof.

d(XTA,YTB,XTC,YTD)

= min
R

√
‖XT (A−CR)‖2F + ‖YT (B−DR)‖2F

≤ min
R

√
‖XT ‖22‖(A−CR)‖2F + ‖YT ‖22‖(B−DR)‖2F

= min
R

√
‖(A−CR)‖2F + ‖(B−DR)‖2F

= d(A,B,C,D).

(31)

We begin by deriving a bound on ‖M− S0 − L∗‖2,

‖M− S0 − L∗‖2 ≤ 2αn‖M− S0 − L∗‖∞ ≤ 4αn‖L∗‖∞
≤ 4αn‖Σ∗‖2‖U∗‖2,∞‖V∗‖2,∞,

(32)
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where the first inequality follows from Lemma B.2 with β = 2α, the sec-
ond from Lemma B.1 and the third from Lemma B.5. Next, we look at
‖U0Σ0V

T
0 − L∗‖2:

‖U0Σ0V
T
0 − L∗‖2

≤ ‖U0Σ0V
T
0 −M + S0‖2 + ‖M− S0 − L∗‖2

≤ 2‖M− S0 − L∗‖2
≤ 8αn‖Σ∗‖2‖U∗‖2,∞‖V∗‖2,∞,

(33)

where we have used Lemma B.6 and (32).
In cases (i) and (iii), the condition α ≤ 1

16κµ1r
gives ‖U0Σ0V

T
0 −L∗‖2 ≤ 1

2σr(L
∗)

and we have

d(P0,Q0,P
∗,Q∗)2

= d(XTU0Σ
1
2
0 ,Y

TV0Σ
1
2
0 ,X

TU∗Σ∗
1
2 ,YTV∗Σ∗

1
2 )2

≤ d(U0Σ
1
2
0 ,V0Σ

1
2
0 ,U

∗Σ∗
1
2 ,V∗Σ∗

1
2 )2

≤ 2√
2− 1

‖U0Σ0V
T
0 − L∗‖2F

σr(L∗)

≤ 2r√
2− 1

‖U0Σ0V
T
0 − L∗‖22

σr(L∗)
≤ 128r3α2κσ∗1µ

2
1√

2− 1
,

(34)

using Lemma B.7, Lemma B.3 and (33). So, we have

d(P0,Q0,P
∗,Q∗) ≤ 18µ1αr

√
rκσ∗1 . (35)

In case (ii), we have

‖U∗‖2,∞ = ‖XXTU∗‖2,∞ ≤ ‖XTU∗‖2‖X‖2,∞ ≤
√
µ2d

n
, (36)

‖V∗‖2,∞ = ‖YYTV∗‖2,∞ ≤ ‖YTV∗‖2‖Y‖2,∞ ≤
√
µ2d

n
. (37)

The condition α ≤ 1
16κµ2d

gives ‖U0Σ0V
T
0 − L∗‖2 ≤ 1

2σr(L
∗) and we have

similar to (35)
d(P0,Q0,P

∗,Q∗) ≤ 18µ2αd
√
rκσ∗1 . (38)

B.2 Proof of Theorem 2

To ease our exposition, we define the following auxiliary quantities.

Let the solution set be

E = {(A,B) ∈ Rd×r × Rd×r|d(A,B,P∗,Q∗) = 0}. (39)
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For any (P,Q) ∈ Rd×r × Rd×r, the corresponding solution is given by

(P†,Q†) ∈ arg min
(A,B)∈E

‖P−A‖2F + ‖Q−B‖2F . (40)

Let ∆P = P − P†, ∆Q = Q −Q† and δ = ‖∆P‖2F + ‖∆Q‖2F , from which we
have

2‖∆P‖F ‖∆Q‖F ≤ ‖∆P‖2F + ‖∆Q‖2F ,

‖∆P‖F + ‖∆Q‖F ≤
√

2δ,

‖∆P‖2F + ‖∆Q‖F ‖∆P‖F ≤
√

2δ‖∆P‖F ,

‖∆Q‖2F + ‖∆Q‖F ‖∆P‖F ≤
√

2δ‖∆Q‖F ,
4‖∆Q‖F ‖∆P‖F ≤ ‖∆P‖2F + ‖∆Q‖2F + 2‖∆Q‖F ‖∆P‖F

≤
√

2δ(‖∆Q‖F + ‖∆P‖F ).

(41)

Let H = 1
2‖XPQTYT + S−M‖2F and ∆M = ∇LH(P,Q), we have

∇LH(P,Q) = XPQTYT + S−M = L + S− L∗ − S∗. (42)

We also have
∇PH(P,Q) = XT∇LHYQ, (43)

∇QH(P,Q) = (XT∇LHY)TP. (44)

Let G(P,Q) = 1
64‖P

TP−QTQ‖2F , we have

∇PG(P,Q) =
1

16
P(PTP−QTQ), (45)

∇QG(P,Q) =
1

16
Q(QTQ−PTP). (46)

Let F =

[
P
Q

]
, F† =

[
P†

Q†

]
and ∆F = F− F†, then we have δ = ‖∆F‖2F .

We now state several lemmas that will help us construct the proof.

Lemma B.8. For any P ∈ Rd×r and Q ∈ Rd×r, we have

‖L− L∗‖2F ≤ 2δ(
√
σ∗1 +

√
2δ

4
)2. (47)

Proof.

‖L− L∗‖F = ‖XPQTYT −XP†Q†TYT ‖F
= ‖X(P†∆QT + ∆PQ†T + ∆P∆QT )YT ‖F
≤ ‖P†∆QT ‖F + ‖∆PQ†T ‖F + ‖∆P∆QT ‖F
≤ ‖P†‖2‖∆Q‖F + ‖∆P‖F ‖Q†‖2 + ‖∆P‖F ‖∆Q‖F

≤
√
σ∗1‖∆Q‖F +

√
σ∗1‖∆P‖F +

√
2δ

4
(‖∆Q‖F + ‖∆P‖F )

≤ (
√
σ∗1 +

√
2δ

4
)(‖∆Q‖F + ‖∆P‖F ) ≤ (

√
σ∗1 +

√
2δ

4
)
√

2δ.

(48)
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Lemma B.9. For 1 ≤ i, j ≤ n, in case (i), if ‖XP‖2,∞ ≤
√

3µ1rσ∗
1

2n and

‖YQ‖2,∞ ≤
√

3µ1rσ∗
1

2n , then

|(L− L∗)ij | ≤
1

2

√
µ1rσ∗1
n

(3 +

√
3

2
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2) (49)

and in cases (ii) and (iii), if ‖XP‖2,∞ ≤
√

3µ2dσ∗
1

2n and ‖YQ‖2,∞ ≤
√

3µ2dσ∗
1

2n ,

then

|(L− L∗)ij | ≤
1

2

√
µ2dσ∗1
n

(3 +

√
3

2
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2). (50)

Proof.

|(L− L∗)ij |
= |(XPQTYT −XP†Q†TYT )ij |
≤ |(XP†)i·(Y∆Q)T·j |+ |(X∆P)i·(YQ†)T·j |+ |(X∆P)i·(Y∆Q)T·j |
≤ ‖(XP†)i·‖2‖(Y∆Q)j·‖2 + ‖(X∆P)i·‖2‖(YQ†)j·‖2 + ‖(X∆P)i·‖2‖(Y∆Q)j·‖2
≤ ‖XP†‖2,∞‖(Y∆Q)j·‖2 + ‖YQ†‖2,∞‖(X∆P)i·‖2

+
1

2
‖X∆P‖2,∞‖(Y∆Q)j·‖2 +

1

2
‖Y∆Q‖2,∞‖(X∆P)i·‖2

≤ 1

2
((3‖XP†‖2,∞ + ‖XP‖2,∞)‖(Y∆Q)j·‖2

+ (3‖YQ†‖2,∞ + ‖YQ‖2,∞)‖(X∆P)i·‖2),

(51)

where we have used ‖X∆P‖2,∞ ≤ ‖XP†‖2,∞ + ‖XP‖2,∞ and ‖Y∆Q‖2,∞ ≤
‖YQ†‖2,∞ + ‖YQ‖2,∞.

In case (i),

|(L− L∗)ij | ≤
1

2
(3

√
µ1rσ∗1
n

+

√
3µ1rσ∗1

2n
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2)

=
1

2

√
µ1rσ∗1
n

(3 +

√
3

2
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2).

(52)

In cases (ii) and (iii),

|(L− L∗)ij | ≤
1

2
(3

√
µ2dσ∗1
n

+

√
3µ2dσ∗1

2n
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2)

=
1

2

√
µ2dσ∗1
n

(3 +

√
3

2
)(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2).

(53)
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Lemma B.10. For any α ∈ (0, 1), suppose the support index set Ω ⊆ [n]× [n]
satisfies |Ωi·| ≤ αn for all i ∈ [n] and |Ω·j | ≤ αn for all j ∈ [n] where Ωi· =
{(i, j) ∈ Ω|j ∈ [n]} and Ω·j = {(i, j) ∈ Ω|i ∈ [n]}. In case (i), we have

‖ΠΩ(L− L∗)‖2F ≤
αµ1rσ

∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F ), (54)

and in cases (ii) and (iii), we have

‖ΠΩ(L− L∗)‖2F ≤
αµ2dσ

∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F ). (55)

Proof.

‖ΠΩ(L− L∗)‖2F =
∑
i,j∈Ω

|(L− L∗)ij |2. (56)

Using Lemma B.9, in case (i),∑
i,j∈Ω

|(L− L∗)ij |2

≤
∑
i,j∈Ω

µ1rσ
∗
1

4n
(3 +

√
3

2
)2(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2)2

≤
∑
i,j∈Ω

µ1rσ
∗
1

2n
(3 +

√
3

2
)2(‖(X∆P)i·‖22 + ‖(Y∆Q)j·‖22)

≤ µ1rσ
∗
1

2n
(3 +

√
3

2
)2(
∑
i,j∈Ω

‖(X∆P)i·‖22 +
∑
i,j∈Ω

‖(Y∆Q)j·‖22)

≤ µ1rσ
∗
1

2n
(3 +

√
3

2
)2(
∑
i

∑
j∈Ωi·

‖(X∆P)i·‖22 +
∑
j

∑
i∈Ω·j

‖(Y∆Q)j·‖22)

≤ αµ1rσ
∗
1

2
(3 +

√
3

2
)2(‖X∆P‖2F + ‖Y∆Q‖2F )

≤ αµ1rσ
∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F ).

(57)
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and in cases (ii) and (iii),∑
i,j∈Ω

|(L− L∗)ij |2

≤
∑
i,j∈Ω

µ2dσ
∗
1

4n
(3 +

√
3

2
)2(‖(X∆P)i·‖2 + ‖(Y∆Q)j·‖2)2

≤
∑
i,j∈Ω

µ2dσ
∗
1

2n
(3 +

√
3

2
)2(‖(X∆P)i·‖22 + ‖(Y∆Q)j·‖22)

≤ µ2dσ
∗
1

2n
(3 +

√
3

2
)2(
∑
i,j∈Ω

‖(X∆P)i·‖22 +
∑
i,j∈Ω

‖(Y∆Q)j·‖22)

≤ µ2dσ
∗
1

2n
(3 +

√
3

2
)2(
∑
i

∑
j∈Ωi·

‖(X∆P)i·‖22 +
∑
j

∑
i∈Ω·j

‖(Y∆Q)j·‖22)

≤ αµ2dσ
∗
1

2
(3 +

√
3

2
)2(‖X∆P‖2F + ‖Y∆Q‖2F )

≤ αµ2dσ
∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F ).

(58)

Lemma B.11. Given that S = Tα+min(10α,0.1)(M − XPQTYT ), we have in
case (i)

〈XT∇LH(P,Q)Y,PQT −P†Q†T + ∆P∆QT 〉 ≥ ‖L− L∗‖2F

− µ1rσ
∗
1δ

4
((4+β)α+2 min(10α, 0.1))(3+

√
3

2
)2− 2αδ

βmin(10α, 0.1)
(
√
σ∗1 +

√
2δ

4
)2

−

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
), (59)

and in cases (ii) and (iii)

〈XT∇LH(P,Q)Y,PQT −P†Q†T + ∆P∆QT 〉 ≥ ‖L− L∗‖2F

− µ2dσ
∗
1δ

4
((4+β)α+2 min(10α, 0.1))(3+

√
3

2
)2− 2αδ

βmin(10α, 0.1)
(
√
σ∗1 +

√
2δ

4
)2

−

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
). (60)

Proof.

〈XT∇LH(P,Q)Y,PQT −P†Q†T + ∆P∆QT 〉
= 〈L + S− L∗ − S∗,L− L∗ + X∆P∆QTYT 〉
≥ ‖L− L∗‖2F − |〈S− S∗,L− L∗〉| − |〈L + S− L∗ − S∗,X∆P∆QTYT 〉|.

(61)
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Following Yi et al. [2016] lemma 2, we have

|〈S−S∗,L−L∗〉| ≤ ‖ΠΩ(L−L∗)‖2F+(1+
β

2
)‖ΠΩ∗\Ω(L−L∗)‖2F+

α

βmin(10α, 0.1)
‖L−L∗‖2F ,

(62)
where β > 0, Ω and Ω∗ are supports of S and S∗ respectively.

On the other hand,

|〈L + S− L∗ − S∗,X∆P∆QTYT 〉| ≤ |〈ΠΩ∗c∩Ωc(L− L∗),X∆P∆QTYT 〉|
+ |〈ΠΩ∗∩Ωc(∆M),X∆P∆QTYT 〉|, (63)

because ∆M has support Ωc. From Cauchy-Swartz inequality, we have

|〈ΠΩ∗c∩Ωc(L− L∗),X∆P∆QTYT 〉|
≤ ‖ΠΩ∗c∩Ωc(L− L∗)‖F ‖X∆P∆QTYT ‖F
≤ ‖L− L∗‖F ‖X∆P∆QTYT ‖F
≤ ‖L− L∗‖F ‖∆P‖F ‖∆Q‖F

≤ δ

2
‖L− L∗‖F .

(64)

From Yi et al. [2016] lemma 2, we have

|〈ΠΩ∗∩Ωc(∆M),X∆P∆QTYT 〉| ≤

√
2α

min(10α, 0.1)
‖L− L∗‖F ‖X∆P∆QTYT ‖F

≤ δ
√

α

2 min(10α, 0.1)
‖L− L∗‖F .

(65)

So,

|〈L + S− L∗ − S∗,X∆P∆QTYT 〉| ≤ δ

2
‖L− L∗‖F + δ

√
α

2 min(10α, 0.1)
‖L− L∗‖F

≤ δ

2
(1 +

√
2α

min(10α, 0.1)
)‖L− L∗‖F .

(66)

Together, we have

〈XT∇LH(P,Q)Y,PQT −P†Q†T +∆P∆QT 〉 ≥ ‖L−L∗‖2F −‖ΠΩ(L−L∗)‖2F

−(1+
β

2
)‖ΠΩ∗\Ω(L−L∗)‖2F−

α

βmin(10α, 0.1)
‖L−L∗‖2F−

δ

2
(1+

√
2α

min(10α, 0.1)
)‖L−L∗‖F .

(67)
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From Lemma B.8, we have

〈XT∇LH(P,Q)Y,PQT −P†Q†T +∆P∆QT 〉 ≥ ‖L−L∗‖2F −‖ΠΩ(L−L∗)‖2F

−(1+
β

2
)‖ΠΩ∗\Ω(L−L∗)‖2F−

2αδ

βmin(10α, 0.1)
(
√
σ∗1+

√
2δ

4
)2−

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1+

√
2δ

4
).

(68)

Since ΠΩ(L−L∗) and ΠΩ∗\Ω(L−L∗) have at most α+ min(10α, 0.1)-fraction
and α-fraction non-zero entries per row and column respectively, from Lemma
B.10, we have in case (i)

〈XT∇LH(P,Q)Y,PQT −P†Q†T + ∆P∆QT 〉

≥ ‖L− L∗‖2F −
αµ1rσ

∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− min(10α, 0.1)µ1rσ
∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− αµ1rσ
∗
1

2
(1 +

β

2
)(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− 2αδ

βmin(10α, 0.1)
(
√
σ∗1 +

√
2δ

4
)2 −

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
)

≥ ‖L− L∗‖2F −
µ1rσ

∗
1δ

4
((4 + β)α+ 2 min(10α, 0.1))(3 +

√
3

2
)2

− 2αδ

βmin(10α, 0.1)
(
√
σ∗1 +

√
2δ

4
)2 −

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
),

(69)
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and in cases (ii) and (iii)

〈XT∇LH(P,Q)Y,PQT −P†Q†T + ∆P∆QT 〉

≥ ‖L− L∗‖2F −
αµ2dσ

∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− min(10α, 0.1)µ2dσ
∗
1

2
(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− αµ2dσ
∗
1

2
(1 +

β

2
)(3 +

√
3

2
)2(‖∆P‖2F + ‖∆Q‖2F )

− 2 min(10α, 0.1)αδ

β
(
√
σ∗1 +

√
2δ

4
)2 −

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
)

≥ ‖L− L∗‖2F −
µ2dσ

∗
1δ

4
((4 + β)α+ 2 min(10α, 0.1))(3 +

√
3

2
)2

− 2 min(10α, 0.1)αδ

β
(
√
σ∗1 +

√
2δ

4
)2 −

√
2 + 2

√
α

min(10α,0.1)

2

√
δ3(
√
σ∗1 +

√
2δ

4
).

(70)

Lemma B.12. When ‖F−F†‖2 ≤
√

2σ∗r , given that ‖P‖2 ≤
√

3σ∗
1

2 and ‖Q‖2 ≤√
3σ∗

1

2 we have

〈∇PG(P,Q),P−P†〉+ 〈∇QG(P,Q),Q−Q†〉 ≥ 1

64
‖PTP−QTQ‖2F

+
1

64
(2
√
σ∗rδ − δ)2 − 1

16
‖L− L∗‖2F −

√
2 +
√

3

32

√
σ∗1δ

3. (71)

Proof.

P†TP† = (XTU∗Σ∗
1
2 R)T (XTU∗Σ∗

1
2 R)

= RTΣ∗
1
2TU∗TXXTU∗Σ∗

1
2 R

= RTΣ∗
1
2TU∗TU∗Σ∗

1
2 R

= RTΣ∗
1
2TΣ∗

1
2 R

= RTΣ∗
1
2TV∗TV∗Σ∗

1
2 R

= RTΣ∗
1
2TV∗TYYTV∗Σ∗

1
2 R

= (YTV∗Σ∗
1
2 R)T (YTV∗Σ∗

1
2 R)

= Q†TQ†.

(72)
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Then, following Yi et al. [2016] lemma 3, we have

〈∇PG(P,Q),P−P†〉+ 〈∇QG(P,Q),Q−Q†〉

=
1

32
‖PTP−QTQ‖2F +

1

32
〈PTP−QTQ,∆PT∆P−∆QT∆Q〉. (73)

1

32
〈PTP−QTQ,∆PT∆P−∆QT∆Q〉

≤ 1

32
|〈PTP−QTQ,∆PT∆P−∆QT∆Q〉|

≤ 1

32
‖PTP−QTQ‖F ‖∆PT∆P−∆QT∆Q‖F

≤ 1

32
‖PTP−QTQ‖F (‖∆P‖2F + ‖∆Q‖2F )

≤ 1

32
‖PTP−P†TP† + Q†TQ† −QTQ‖F δ

≤ 1

32
(‖PTP−P†TP†‖F + ‖QTQ−Q†TQ†‖F )δ

≤ 1

32
(‖PTP−PTP† + PTP† −P†TP†‖F + ‖QTQ−QTQ† + QTQ† −Q†TQ†‖F )δ

≤ 1

32
(‖PT∆P + ∆PTP†‖F + ‖QT∆Q + ∆QTQ†‖F )δ

≤ 1

32
((‖P‖2 + ‖P†‖2)‖∆P‖F + (‖Q‖2 + ‖Q†‖2)‖∆Q‖F )δ

≤ 1

32
(
√
σ∗1 +

√
3σ∗1
2

)(‖∆P‖F + ‖∆Q‖F )δ

≤
√

2 +
√

3

32

√
σ∗1δ

3.

(74)

Following Yi et al. [2016] lemma 3, we have

1

32
‖PTP−QTQ‖2F ≥

1

64
‖PTP−QTQ‖2F+

1

64
(
√

2‖∆FF†T ‖F−δ)2− 1

16
‖L−L∗‖2F ,

(75)
where we have used the fact that −‖PQT − P†Q†T ‖2F ≥ −‖XPQTYT −
XP†Q†TYT ‖2F .

We know that F† =

[
P†

Q†

]
=

[
XTU∗

YTV∗

]
Σ∗

1
2 R. If we let E =

[
XTU∗

YTV∗

]
, then

ETE = [U∗TX V∗TY ]

[
XTU∗

YTV∗

]
= 2I ∈ Rr×r. So

F† = (

√
2

2

[
XTU∗

YTV∗

]
)(
√

2Σ∗
1
2 )R, (76)
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is the SVD of F†. Therefore,

1

32
‖PTP−QTQ‖2F ≥

1

64
‖PTP−QTQ‖2F +

1

64
(2
√
σ∗rδ − δ)2 − 1

16
‖L− L∗‖2F .

(77)
Thus, altogether we have

〈∇PG(P,Q),P−P†〉+ 〈∇QG(P,Q),Q−Q†〉 ≥ 1

64
‖PTP−QTQ‖2F

+
1

64
(2
√
σ∗rδ − δ)2 − 1

16
‖L− L∗‖2F −

√
2 +
√

3

32

√
σ∗1δ

3. (78)

Lemma B.13. When S = Tα+min(10α,0.1)(M−XPQTYT ), given that ‖P‖2 ≤√
3σ∗

1

2 and ‖Q‖2 ≤
√

3σ∗
1

2 , we have

‖∇LH(P,Q)‖2F ≤ (1 +

√
2α

min(10α, 0.1)
)2‖L− L∗‖2F , (79)

‖∇PG(P,Q)‖2F + ‖∇QG(P,Q)‖2F ≤
3σ∗1
256
‖PTP−QTQ‖2F . (80)

Proof.

‖∇PG(P,Q)‖2F + ‖∇QG(P,Q)‖2F

= ‖ 1

16
P(PTP−QTQ)‖2F + ‖ 1

16
Q(QTQ−PTP)‖2F

≤ 1

256
(‖P‖22 + ‖Q‖22)‖PTP−QTQ‖2F

≤ 1

256
(
3σ∗1
2

+
3σ∗1
2

)‖PTP−QTQ‖2F

≤ 3σ∗1
256
‖PTP−QTQ‖2F .

(81)

From Lemma B.11, we have

‖∇LH(P,Q)‖F ≤ (1 +

√
2α

min(10α, 0.1)
)‖L− L∗‖F , (82)

so

‖∇LH(P,Q)‖2F ≤ (1 +

√
2α

min(10α, 0.1)
)2‖L− L∗‖2F . (83)
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We conduct the proof of Theorem 2 by induction.

If α is small, then from Theorem 1 we have ‖U0Σ0V
T
0 − L∗‖2 ≤ 1

2σ
∗
1 . By

Weyl’s theorem, we have

‖U0Σ
1
2
0 ‖2 ≤

√
3σ∗1
2
, (84)

‖V0Σ
1
2
0 ‖2 ≤

√
3σ∗1
2
, (85)

and

‖P0‖2 ≤ ‖XTU0Σ
1
2
0 ‖2 ≤ ‖X‖2‖U0Σ

1
2
0 ‖2 ≤

√
3σ∗1
2
, (86)

‖Q0‖2 ≤ ‖YTV0Σ
1
2
0 ‖2 ≤ ‖Y‖2‖V0Σ

1
2
0 ‖2 ≤

√
3σ∗1
2
. (87)

In case (i), we thus have

‖XΠP(P0)‖2,∞ ≤
√

2µ1r

n
‖P0‖2 ≤

√
3σ∗1µ1r

n
, (88)

‖YΠQ(Q0)‖2,∞ ≤
√

2µ1r

n
‖Q0‖2 ≤

√
3σ∗1µ1r

n
. (89)

And it also follows that d(ΠP(Pt),ΠQ(Qt),P
∗,Q∗) ≤ d(Pt,Qt,P

∗,Q∗).

By definition,

‖P − P †‖2F ≤ δ,

‖P − P †‖2 ≤ ‖P − P †‖F ≤ δ
1
2 .

(90)

And from Weyl’s theorem, if δ
1
2 ≤ (

√
3
2 − 1)

√
σ∗1 , we have

‖P‖2 ≤
√

3σ∗1
2
. (91)

Similarly, we also have

‖Q‖2 ≤
√

3σ∗1
2
. (92)

In cases (ii) and (iii), we have

‖XP‖2,∞ ≤ ‖P‖2‖X‖2,∞ ≤
√

3σ∗1
2
×
√
µ2d

n
≤
√

3dµσ∗1
2n

, (93)

‖YQ‖2,∞ ≤ ‖Q‖2‖Y‖2,∞ ≤
√

3σ∗1
2
×
√
µ2d

n
≤
√

3dµσ∗1
2n

. (94)
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Now, we verify that δ diminishes:

δt+1 = ‖Pt+1 −P†t+1‖2F + ‖Qt+1 −Q†t+1‖2F
≤ ‖Pt+1 −P†t‖2F + ‖Qt+1 −Q†t‖2F
= ‖Pt − η∇PHt − η∇PGt −P†t‖2F + ‖Qt − η∇QHt − η∇QGt −Q†t‖2F
= δt − 2η〈∇PHt +∇PGt,Pt −P†t〉 − 2η〈∇QHt +∇QGt,Qt −Q†t〉

+ η2‖∇PHt +∇PGt‖2F + η2‖∇QHt +∇QGt‖2F
= δt + η2‖∇PHt +∇PGt‖2F + η2‖∇QHt +∇QGt‖2F − 2η〈∇PGt,Pt −P†t〉

− 2η〈∇QGt,Qt −Q†t〉 − 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ η2(‖∇PHt‖F + ‖∇PGt‖F )2 + η2(‖∇QHt‖F + ‖∇QGt‖F )2

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ 2η2(‖XT∇LHtYQ‖2F + ‖∇PGt‖2F + ‖(XT∇LHtY)TP‖2F + ‖∇QGt‖2F )

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )

+ 2η2(‖Q‖22‖XT∇LHtY‖2F + ‖P‖22‖(XT∇LHtY)T ‖2F )

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )

+ 2η2(‖Q‖22‖X‖22‖Y‖22‖∇LHt‖2F + ‖P‖22‖X‖22‖Y‖22‖∇LHt‖2F )

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )

+ 2η2(
3σ∗1
2
‖∇LHt‖2F +

3σ∗1
2
‖∇LHt‖2F )

≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉
+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F + 3σ∗1‖∇LHt‖2F ).

(95)
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Applying Lemma B.13, we get

δt+1 ≤ δt − 2η〈∇PGt,Pt −P†t〉 − 2η〈∇QGt,Qt −Q†t〉

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
2α

min(10α, 0.1)
)2σ∗1‖Lt − L∗t ‖2F ).

(96)

Applying Lemma B.12, we get

δt+1 ≤ δt + η(
1

8
‖Lt − L∗t ‖2F −

1

32
‖PT

t Pt −QT
t Qt‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2)

− 2η〈∇LHt,X(PtQ
T
t −P†tQ

†T
t + ∆Pt∆QT

t )YT 〉

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
2α

min(10α, 0.1)
)2σ∗1‖Lt − L∗t ‖2F ).

(97)

Applying Lemma B.11, we have in case (i)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
α

min(10α, 0.1)
)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 2 min(10α, 0.1))(3 +

√
3

2
)2 +

4αδt
βmin(10α, 0.1)

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
2α

min(10α, 0.1)
)2σ∗1‖Lt − L∗t ‖2F ),

(98)
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and in cases (ii) and (iii)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
α

min(10α, 0.1)
)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ2dσ

∗
1δt

2
((4 + β)α+ 2 min(10α, 0.1))(3 +

√
3

2
)2 +

4αδt
βmin(10α, 0.1)

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
2α

min(10α, 0.1)
)2σ∗1‖Lt − L∗t ‖2F ),

(99)

If 10α < 0.1, then min(10α, 0.1) = 10α.
Therefore, we have in case (i)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 +

√
2

5
)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 20α)(3 +

√
3

2
)2 +

2δt
5β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
1

5
)2σ∗1‖Lt − L∗t ‖2F )

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((24 + β)α)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
20)2σ∗1‖Lt − L∗t ‖2F ),

(100)
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and in cases (ii) and (iii)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ2dσ

∗
1δt

2
((24 + β)α)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
20)2σ∗1‖Lt − L∗t ‖2F ).

(101)

On the other hand, we have min(10α, 0.1) = 0.1 if 10α ≥ 0.1.
Then, we have in case (i)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
10α)

√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 0.2)(3 +

√
3

2
)2 +

40αδt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
20α)2σ∗1‖Lt − L∗t ‖2F ).

(102)

But α ≤ 1, so

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 20α)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
20)2σ∗1‖Lt − L∗t ‖2F ).

(103)
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And, similarly, we have in cases (ii) and (iii)

δt+1

≤ δt − η(
1

32
‖PT

t Pt −QT
t Qt‖2F +

15

8
‖Lt − L∗t ‖2F )

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt − δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

))

+ η(
µ2dσ

∗
1δt

2
((4 + β)α+ 20α)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η2(
3σ∗1
128
‖PT

t Pt −QT
t Qt‖2F + 6(1 +

√
20)2σ∗1‖Lt − L∗t ‖2F ).

(104)

If η ≤ 5
16(1+

√
20)2σ∗

1

, we have in case (i)

δt+1 ≤ δt + η(
µ1rασ

∗
1δt

2
(24 + β)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt− δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

)).

(105)

and in cases (ii) and (iii)

δt+1 ≤ δt + η(
µ2dασ

∗
1δt

2
(24 + β)(3 +

√
3

2
)2 +

40δt
β

(
√
σ∗1 +

√
2δt
4

)2)

+ η(

√
2 +
√

3

16

√
σ∗1δ

3
t −

1

32
(2
√
σ∗rδt− δt)2 + (

√
2 + 2

√
10)
√
δ3
t (
√
σ∗1 +

√
2δt
4

)).

(106)

If δt ≤ 2σ∗r , we have in case (i)

δt+1 ≤ δt + η(
25
√

2 +
√

3 + 48
√

10

16
δt
√
σ∗1δt −

3−
√

2

16
σ∗rδt)

+ η(
µ1rσ

∗
1δtα

2
(24 + β)(3 +

√
3

2
)2 +

90δtσ
∗
1

β
)

≤ δt(1 + η(
25
√

2 +
√

3 + 48
√

10

16

√
σ∗1δt −

3−
√

2

16
σ∗r )

+ η(
µ1rσ

∗
1α

2
(24 + β)(3 +

√
3

2
)2 +

90σ∗1
β

)),

(107)

and in cases (ii) and (iii)

δt+1 ≤ δt(1 + η(
25
√

2 +
√

3 + 48
√

10

16

√
σ∗1δt −

3−
√

2

16
σ∗r )

+ η(
µ2dσ

∗
1α

2
(24 + β)(3 +

√
3

2
)2 +

90σ∗1
β

)),

(108)
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In case (i), if α ≤ 1
16κrµ1

, we have

δ
1
2 = d(P0,Q0,P

∗,Q∗) ≤ 18αrµ1

√
rκσ∗1 , (109)

which leads to

δt+1 ≤ δt(1 + η(
µ1rσ

∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r )

+ η(
90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αrµ1σ

∗
1

√
rκ)),

(110)

In case (ii), if α ≤ 1
16κdµ2

, we have

δ
1
2 = d(P0,Q0,P

∗,Q∗) ≤ 18αdµ2

√
rκσ∗1 , (111)

which leads to

δt+1 ≤ δt(1 + η(
µ2dσ

∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r )

+ η(
90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αdµ2σ

∗
1

√
rκ)),

(112)

In case (iii), if α ≤ 1
16κrµ1

, we have

δ
1
2 = d(P0,Q0,P

∗,Q∗) ≤ 18αrµ1

√
rκσ∗1 , (113)

which leads to

δt+1 ≤ δt(1 + η(
µ2dσ

∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r )

+ η(
90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αrµ1σ

∗
1

√
rκ)),

(114)

In case (i), we require that

µ1rσ
∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r +

90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αrµ1σ

∗
1

√
rκ ≤ 0, (115)

which leads to

α ≤
3−
√

2
16 + 90κ

β

µ1rκ
2 (24 + β)(3 +

√
3
2 )2 + 225

√
2+9
√

3+432
√

10
8 κrµ1

√
rκ
. (116)

Since other constraints on α are milder, for β large enough, there exist c1 and
c2 such that if α ≤ c1

µ1(κr)
3
2

,

δt ≤ (1− c2ησ∗r )tδ0. (117)
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In case (ii), we require that

µ2dσ
∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r +

90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αdµ2σ

∗
1

√
rκ ≤ 0, (118)

which leads to

α ≤
3−
√

2
16 + 90κ

β

µ2dκ
2 (24 + β)(3 +

√
3
2 )2 + 225

√
2+9
√

3+432
√

10
8 κdµ2

√
rκ
. (119)

Since other constraints on α are milder, for β large enough, there exist c1 and
c2 such that if α ≤ c3

µ2dr
1
2 κ

3
2

,

δt ≤ (1− c4ησ∗r )tδ0. (120)

In case (iii), we require that

µ2dσ
∗
1α

2
(24 + β)(3 +

√
3

2
)2 − 3−

√
2

16
σ∗r +

90σ∗1
β

+
225
√

2 + 9
√

3 + 432
√

10

8
αrµ1σ

∗
1

√
rκ ≤ 0, (121)

which leads to

α ≤
3−
√

2
16 + 90κ

β

µ2dκ
2 (24 + β)(3 +

√
3
2 )2 + 225

√
2+9
√

3+432
√

10
8 κrµ1

√
rκ
. (122)

Since other constraints on α are milder, for β large enough, there exist c5 and
c6 such that if α ≤ c5 min( 1

µ2dκ
, 1

µ1(κr)
3
2

),

δt ≤ (1− c6ησ∗r )tδ0. (123)
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