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Abstract—We present a novel approach to automated estima-
tion of agreement intensity levels from facial images. To this
end, we employ the MAHNOB Mimicry database of subjects
recorded during dyadic interactions, where the facial images are
annotated in terms of agreement intensity levels using the Likert
scale (strong disagreement, disagreement, neutral, agreement and
strong agreement). Dynamic modelling of the agreement levels
is accomplished by means of a Conditional Ordinal Random
Field model. Specifically, we propose a novel Neural Conditional
Ordinal Random Field model that performs non-linear feature
extraction from face images using the notion of Neural Networks,
while also modelling temporal and ordinal relationships between
the agreement levels. We show in our experiments that the pro-
posed approach outperforms existing methods for modelling of
sequential data. The preliminary results obtained on five subjects
demonstrate that the intensity of agreement can successfully be
estimated from facial images (39% F1 score) using the proposed
method.

Keywords—agreement analysis; neural networks; conditional
ordinal random fields.

I. INTRODUCTION

The amount and intensity of (dis)agreement one can express,
as well as the frequency of its occurrence during interac-
tion/discussion with others, can serve as a useful indicator of
one’s personality [1]. Based on this, an estimate of the relation,
level of compatibility and cooperation between subjects can be
determined. Machine analysis of agreement can thus provide a
more objective approach (compared to humans) for personality
assessment during, for instance, employment process and
social interaction studies. Another important application of
(dis)agreement estimation is in Human Computer Interaction
(HCI) systems, endowing them with ability to automatically
‘sense’ users. However, existing approaches to analysis of
agreement focus on its detection, instead of intensity estima-
tion. Nevertheless, automated measurement of agreement on a
fine-grained scale (i.e., its intensity levels) would allow HCI
to better adapt its responses to target users.

Recognizing inter-personal concordance, i.e. agreement or
disagreement, is a sequential and time dependent process.
Moreover, the expression intensities follow the increasing
monotonicity rule such that in order to pass from a negative
intensity (disagreement) to a positive one (agreement), it must
first go through a neutral state (neither agree nor disagree).
Hence, it is important to take into account the time dependence

Fig. 1: Neural CORF model for intensity estimation of agreement intensity
levels. The input to the model are the facial points extracted from the i-th
input image sequence. These features are then projected via f(·) onto an
ordinal line separating different levels, the temporal dynamics of which is

modelled at the top level using the first-order transition model.

of each frame in the sequence. However, each of the facial
features used in the recognition process is correlated with the
others, therefore their independence should not be assumed.
This inter-correlation and the relationship between the features
extracted from facial images, and the labels is usually highly
non-linear, especially when working with spontaneously dis-
played facial expressions (as in MAHNOB data) that may
entail large head movements. In order to account for these
artefacts, we introduce a non-linear transformation of features
using the Feed-forward Neural Networks (NN) [2]. Specif-
ically, the non-linear feature extraction is performed jointly
with modelling of temporal and ordinal dependencies among
the intensity levels of agreement within the framework of
Conditional Ordinal Random Fields (CORF) [3]. The proposed
Neural CORF (NCORF) method extends the linear CORFs by
adding an additional non-linear hidden layer between the input
features and the output node, thus, allowing for non-linear
feature transformation and selection.

The contributions of this work can be summarized as
follows.
• We propose the first approach to automated estimation of

agreement intensity levels from images of spontaneously



displayed facial expressions.
• We propose a dynamic method for agreement intensity

estimation that offers a simple but effective non-linear
modelling of facial features for the target task by com-
bining the NNs and CORFs. We show that this model
outperforms its linear counterparts, as well as other non-
linear models based on the kernel learning.

The outline of the proposed NCORF model is given in Fig.1.

II. RELATED WORK

A. Agreement Detection

In the past, many approaches to quantitatively measur-
ing character and personality traits have been proposed [4].
The main challenge in automated measurement of attitudes,
character, and personality traits from faces is to identify the
most relevant facial cues and perform their mapping into
quantitative values such as the intensity of (dis)agreement
facial expression. Therefore, in order to make quantitative
measurements, the target intensity levels need to be properly
defined. To the best of our knowledge, and as noted in [5],
there is no formal definition and annotation procedure for
agreement and disagreement intensity levels. Moreover, this
type of social attitude can be inferred in multiple ways, from
auditory information, visual (non-verbal) and a combination
of these two. However, manual annotation of (dis)agreement
in facial images is a tedious, time-consuming process. Further-
more, humans’ reasoning about the agreement is the result of
the person-specific cognitive process, the character of which
may not be very detrimental (by typically developed people) as
it involves subjective interpretation of the semantics of the dis-
cussion, subject’s relationship, personality types, cultural and
group climate affects the topic discussed [6]. Therefore, while
automated intensity estimation of agreement could speed up
this process significantly, it can also provide more consistent
target annotations.

Based on conclusions in [7], there are several ways in which
(dis)agreement can be expressed by subjects - direct (using
specific words); indirect (not explicit, but through congruent
or contradictory statements) and non-verbal (using auditory
or visual non-verbal cues). This causes a very important
issue with annotating (dis)agreement data - the inconsistencies
between the modes in which (dis)agreement is conveyed.
The labels obtained using either semantics obtained from the
discussion (meaning) or non-verbal cues individually, could be
discrepant to a large extent. A more comprehensive analysis
of (dis)agreement expression modes and cues is presented
in [5], including related work on (dis)agreement estimation
on lexical [8] and text-based [9] data, auditory and prosodic
data [10] and based on non-verbal cues [7].

B. Annotation Scale

Various rating scales have been developed to measure atti-
tudes/agreement. The most accepted scale, Likert scale [11],
relies on the principle of measuring attitudes by asking people
to respond to a series of statements about a topic, in a way
that they specify their level of agreement or disagreement

on a symmetric agree-disagree scale, and thus tapping into
the cognitive and affective components of attitudes. Likert
scale assumes that the strength/intensity of agreement can be
represented on a continuum from strongly agree to strongly
disagree.

Likert scale defines intensity levels as follows: in the case of
5 levels, the first and last level (-2 and +2, or 1 and 5) should
be assigned to the extremes of the attitude range (strongly
disagree and strongly agree, respectively), and the middle level
(0 or 3) should be assigned to the undecided position. The
remaining two levels (-1 and +1, or 2 and 4) are then assigned
to the intermediate positions between the extreme and neutral
ones. Based on these guidelines, we apply a 5 level Likert
scale to our case by defining the (dis)agreement levels as:
Neutral level {0}: Comprises of the frames where the subject
is either making a new statement, listening to the collocutor
without expressing its own opinion or contemplating about the
topic, again, without expressing any distinguishable opinions,
not verbally nor non-verbally.
(Dis)agreement level {-1,+1}: Corresponds to situations in
which the subject has understood the collocutors statement,
about which he has no previous opinion or has a weakly
opposing one, but is willing to consider it as a valid point
and maybe even change his previous view on this point. In
case of disagreement, it would result in a counter argument,
while for agreement an affirmative non-verbal cues.
Strong (dis)agreement level {-2,+2}: Occurs in circum-
stances in which the subject hears a statement that is com-
pletely concurring with his own point of view on that topic
(strong agreement) and the subject expresses this. Strong
disagreement occurs when the subject hears an opinion di-
ametrically different to his own, and there is no willingness
to consider it, neither partly agree with it.

In our case, the sessions were annotated by an expert
annotator, using the scale definitions defined above. Fig. 2
shows the distribution of the levels in the data used.
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Fig. 2: Distribution of the agreement intensity levels.



C. Modelling Approaches

Existing methods applicable to the target task can be divided
into static and dynamic. Furthermore, they can be divided into
classification-based and regression-based methods. The former
use classifiers for nominal data, such as the static methods
based on the Support Vector Machine (SVM), to classify
the intensity levels of facial action units (FAUs) [12]. The
regression-based methods model the intensity of FAUs/pain
on a continuous scale using static versions of the Relevance
Vector Machine (RVM) regression [13], and Support Vector
Regression (SVR) [14]. For instance, Kaltwang et al. [13]
used the RVM model for intensity estimation of spontaneously
displayed facial expressions of pain and 11 FAUs from the
Shoulder-pain dataset [15]. The effectiveness of different im-
age features such as Local Binary Patterns (LBPs), Discrete
Cosine Transform (DCT) and facial landmarks, as well as their
fusion, was evaluated for the target task. While these methods
perform feature learning/selection using the kernel machines,
other static methods are based on Neural Networks [2]. The
advantage of using NNs is that they can perform non-linear
feature learning from large amount of training data (in contrast
to the kernel methods where a limited number of kernels has
to be selected). Yet, learning of the structure of NNs is not
trivial.

The temporal models aim at capturing the dynamics of the
intensity levels. For instance, [16] expands the image features
by adding features of the neighbouring frames, which are then
fed into a static classifier such as SVM. On the other hand, to
avoid modelling high-dimensional feature vectors, graphical
models such as Hidden Markov Models and Conditional
Random Fields [17] have been proposed to model first order
dependences between image frames. To account for increas-
ing monotonicity constraints in intensity level data, different
variants of Conditional Ordinal Random Fields (CORFs) [18]
and their kernel extensions [19] have been proposed for facial
expression intensity estimation and its temporal segmentation.

Due to the learning and inference complexity when work-
ing with kernel extensions of CRF-based models [19], [20],
several authors combined NNs with CRFs to perform non-
linear feature extraction. For instance, the Conditional Neural
Fields [21] implement a logistic gate function node hidden
layer, which extracts the non-linear representation of the
features opposed to their linear combination as in standard
Conditional Random Fields. Due to a relatively small number
of parameters, the optimization could be done jointly with
Conditional Random Fields (CRFs). Another implementation
of CRFs with NNs, a structured regression model using
continuous outputs, called Continuous Conditional Random
Fields (CCNFs), has been proposed in [22]. However, these
methods fail to account for ordinal information inherent to the
intensity levels.

III. METHOD

We introduce an approach to sequence prediction that
combines the artificial neural networks’ non-linear feature
representation abilities with the CORF model, which performs

ordinal classification of temporal data. To this end, we assume
we are given n image sequences D = {(xl,yl)}nl=1, where x
denotes the the location of a set of facial points extracted from
facial images, and used for predicting the intensity levels of
agreement as encoded per frame by the labels y.

A. Neural Conditional Ordinal Random Fields (NCORF)

In this section, we extend the linear CORF [3], [18] model
for dynamic, non-linear estimation of facial expression inten-
sity levels. The CORF model is an adaptation of the linear-
chain CRF [17] model, obtained by setting CRF’s node fea-
tures using the ordinal regression [23] modelling framework.
In this way, the monotonicity constraints are imposed on the
ordinal labels (in our case, (dis)agreement levels). Formally,
given the i-th image sequence, xi = {xi1, . . . , xiTi

}, and
the corresponding intensity labels, yi = {yi1, . . . , yiTi

}, the
conditional distribution P (y|x) of the CORF model can be
written as the Gibbs form clamped on the observations x:

P (y|x, θ) =
1

Z(x; θ)
es(x,y;θ), (1)

where Z(x; θ) =
∑

y∈Y es(x,y;θ) is the normalizing parti-
tion function (Y is a set of all possible output configurations),
and θ are the parameters of the score function (or the negative
energy)1. By assuming the linear-chain model with node
cliques (r ∈ V ) and edge cliques (e = (r, s) ∈ E), the score
function s(x,y; θ) can be expressed as the sum:

s(x,y; θ) =
∑
r∈V

v>Ψ(V )
r (x, yr)+∑

e=(r,s)∈E

u>Ψ(E)
e (x, yr, ys),

(2)

where θ = {v,u} are parameters of node features,
Ψ

(V )
r (x, yr), and edge features, Ψ

(E)
e (x, yr, ys), respectively.

The score function in (2) has a great modeling flexibility,
allowing the node and edge features to be chosen depending
on target task.

1) Node features: In the CORF model [3], the node
features are defined using the homoscedastic ordinal regression
model [23] (i.e., with the constant variance σ) as:

vTΨ(V )
r (x, yr)→

R∑
c=1

I(yr = c)·[
Φ

(
byr − f(xr)

σ

)
− Φ

(
byr−1 − f(xr)

σ

)]
,

(3)

where Φ (·) is the cumulative density function (CDF) of the
standard normal distribution, I(·) is the indicator function that
returns 1(0) if the argument is true (false), and σ is usually set
to 1 for the model identification purpose. In ordinal regression,
the difference between the CDFs in (3) is the probability of the
observed features, given by xr, belonging to class yr = c ∈
{1, ..., R} iff bc−1 < f(xr) ≤ bc, where b0 = −∞ ≤ · · · ≤
bR =∞ are (strictly increasing) thresholds or cut points.

In the standard CORF model [3], f(xr) = βxr, where β is
the (linear) ordinal projection. In the proposed NCORF model,

1For simplicity, we often drop the dependency on θ in notations.



instead of using a linear projection of the observed features
xr, we adopt a non-linear feature transformation learned by
means of a non-linear hidden layer with sigmoid activation
functions and a linear output layer, which is given by:

f(xr) = ωTout(σ(

H∑
h=1

ωTh xr + biasin)) + biasout, (4)

where σ is the sigmoid function, defined as σ(x) = 1
1+e−x ,

and ωh and ωout are the weights of the hidden and output
layer, respectively. The bias parameters biasin and biasout,
are associated with the input and hidden layer, respectively.
The number of nodes in the hidden layer is given by H .

2) Edge features: The edge features are defined using the
transition model as in the standard CRF:

Ψ(E)
e (yr, ys) =

[
I(yr = k ∧ ys = l)

]
R×R

, (5)

enforcing the smoothness of the predicted intensity levels of
agreement along the target image sequence.

3) Learning and Inference: Using the node and edge
features defined above, we arrive at the regularized objective
function of the NCORF model:

arg min
θ

∑
i=1..N

− lnP (y|f(x), θ) + Ω(θ), (6)

where θ = {ωout, ωin, b1, . . . , bR−1,u} are the model param-
eters, and Ω(θ) = ρ1‖u‖2 + ρ2(‖ωout‖2 + ‖ωin‖2), is the L2

regularization used to avoid overfitting of the model parame-
ters. The parameters are separated into two sets, the network
weights and CORF parameters, and are assigned a different
regularization parameter for each group (ρ1/ρ2). The weights
for each term in the regulizer are found using a cross-validation
procedure based on a grid search. To ensure that the threshold
parameters b satisfy the ordinal constraints, the displacement
variables δl are introduced, where bl = b1 +

∑l−1
n=1 δ

2
n for

l = 2, . . . , R− 1.
The quasi-Newton limited-memory BFGS method can then

be used to find new (unconstrained) parameters θ by jointly
optimizing the top layer weights and CORF parameters. The
optimization is done using the gradients of the parameters
w.r.t. the objective function in (6). The derivation of the CORF
gradients can be found in [3]. The gradients of the projection
function f w.r.t. the weights of the top layer of the NN
projection are:

∂f

∂ωoutLk

= σk(

X∑
j=1

ωhkjxj),
∂f

∂biasout
= 1, (7)

Where L stands for the output node, k ∈ H for the corre-
sponding nodes in the hidden and j ∈ X in the input layer.
For the weights of the hidden layer:

∂f

∂ωhkj

= ωoutLkσk(ωhkjxj)(1− σk(ωhkjxj))xj ,

∂f

∂biasink

= ωoutLkσk(ωhkjxj)(1− σk(ωhkjxj))

(8)

The most critical aspect of the NCORF model is optimiza-
tion of the NN weights’s as their number scales with the input

dimension Dx as (Dx + 1) ∗ H + (H + 1). Thus, when Dx

and H are both large, a careful regularization of the model
parameters is needed to avoid overfitting. Once the model
parameters are estimated, inference of test sequences is carried
out using Viterbi decoding [3].

IV. EXPERIMENTAL RESULTS

We conducted experiments using facial images from the
MAHNOB-Mimicry [24] dataset, which consists of 54 ses-
sions of dyadic discussions, by 40 subjects in total. The
subjects discussed either one of the topics such as money,
television, women & men, book, smoking, etc. (34 sessions),
or participated in the “landlord - student looking to rent” role
playing game (20 sessions). Since the former last longer and
contain more instances of both agreement and disagreement,
they have been considered in these experiment. Furthermore,
for this study, we selected 5 subjects, annotated by an expert
using the Likert scale (in terms of the agreement level).
Although the number of subjects considered is low, the target
image sequences were 15 minutes long on average (∼ 55K
frames), providing sufficient amount of training/test data for
the model evaluation.

The features used are the (x, y) coordinates of 49 tracked
facial points (shown in Fig. 5), obtained using the facial point
tracker [25]. The facial points have been properly aligned to
account for the head position and orientation. The resulting
feature vector was of dimension Dx = 98. Such features were
pre-processed using Principal Component Analysis, preserving
∼ 98 % of energy, resulting in Dpca

x = 30. These features
were used as input to the models evaluated. Furthermore,
due to the high sampling rate (58 fps), the sequences have
been down-sampled by the rate of 4. Still, most parts of the
target sessions contained mainly neutral level of agreement,
because the subject recorded is either listening to his collocutor
making a statement, or is making a statement himself. For this
reason, each session was pre-segmented into a number of small
sequences which contain at least one non-neutral level. These
sequences were then used to perform a subject-independent 5-
fold cross-validation of the model. Each of the folds contained
a similar number of sequences on average.

The proposed approach is compared with other baseline
methods, such as static classifiers - artificial NNs with sigmoid
function, SVMs (using LIBSVM [26]) (Linear and Radial
Basis Function kernel), and also sequence classifiers - CRF
and the standard linear CORF, using the Matlab DOC toolbox2

[27], [28]. Moreover, we compare the performance of the
proposed NCORF to the non-linear extension of the CORF
model, i.e., kernel CORF (KCORF) [19]. The measures used to
show the prediction performance are: F1 score, Mean Absolute
Error (MAE), and the commonly used measure in behavioural
sciences, Intraclass Correlation Coefficient (ICC) [29], which
measures the agreement between the annotations and model
predictions.

2http://ibug.doc.ic.ac.uk/resources/DOC-Toolbox/
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Fig. 4: Confusion matrices of the compared methods. The rows represent
the actual, and columns the predicted labels.

We first investigate the performance of the NCORF model
w.r.t. to the number of hidden nodes. From Fig. 3, we observe
that, as expected, the architecture of the employed NN affects
the performance of the model. In other words, the number
of hidden nodes (HN) in the hidden layer plays an important
role since it performs the non-linear projection of the input
features onto the CORFs ordinal classification line. The results
suggest that for the target task, having 10 HN is optimal for
modelling the non-linear feature projection. On the other hand,
by increasing the number of HNs, also the number of NN’s
weight parameters to optimize significantly increases. This
makes the optimization process harder and leads to a worse
performance.

The performance of different models is reported in Table I.
For the NN-based models, we show the results for the best
number of hidden nodes (50 for NN, and 10 for NCORF),
found by a cross-validation over the number of nodes. The
number of kernel bases in the kernel methods was found by
another cross-validation, where, for instance, for KCORF we

TABLE I: PERFORMANCE COMPARISON OF DIFFERENT MODELS APPLIED
TO (DIS)AGREEMENT INTENSITY LEVEL ESTIMATION.

Methods F1 MAE ICC
NN (50HN) 0.15 0.99 0.07
SVM (rbf) 0.19 1.09 0.15
SVM (lin) 0.20 1.23 0.12
CRF 0.22 1.18 0.14
CORF 0.30 1.15 0.19
KCORF (100 bases) 0.34 0.97 0.26
NCORF (10HN) 0.39 0.94 0.28

found 100 bases (we evaluated 50, 100, 200 and 300), to result
in the best performance by this model. As can be observed
from Table I, the proposed NCORF model outperforms the
other models across all three measures. Note that although
KCORF achieves comparable ICC as NCORF, the difference
in F1 score is 5%. This indicates that both models predict
well the trend of the target signal, however, KCORF fails to
predict intensity levels per frame at the same accuracy level as
NCORF. This can also be noted from Fig. 4, where NCORF
predicts the -2 level (strongly disagree), much better than
KCORF (43% versus 14%). This is attributed to the fact that
while both methods tend to misclassify mainly neighbouring
intensity levels, KCORF is more prone to overfitting of the
lower intensities. We also note that temporal linear models,
CORF and CRF outperform static models (SVM and NNs),
with CORF outperforming CRF due to its modelling of the
ordinal node features.

Finally, we show in Fig. 5 a sample sequence of the
annotated and estimated labels. It can be seen that the pro-
posed model performs well in distinguishing between neutral,
agreement and disagreement, and follows the trend of the
target labels. However, as we can judge from the models
scores, particularly low F1 and ICC, there is still room
for improvement in order to achieve precise discrimination
between the intensity levels of agreement.

V. CONCLUSION

We proposed a model for dynamic estimation of agreement
intensity levels from image sequences. The proposed model
takes advantages of NN’s non-linear feature transformation
and CORF’s dynamical ordinal modelling capabilities. Our
preliminary results on data of a small number of subjects
show that taking into account the dynamics and, especially the
ordinal nature of the data, helps to better distinguish among
the agreement levels, compared to other approaches applicable
to the target task. Furthermore, the non-linear feature trans-
formation results in the model’s ability to better discriminate
the more subtle intensity levels (e.g. strong (dis)agreement
vs (dis)agreement), when compared to existing models. In
future work, we plan to extend the model using the notion
of deep neural networks for the feature selection, and perform
evaluation using a significantly larger amount of training data.
Moreover, we are also planning to investigate the use of the
audio modality which may also contain useful information
for estimating the level of agreement. This can be further
combined with our video-only approach in order to build



Fig. 5: Examples of facial expressions with tracked facial points connected with corresponding annotated frames from the sample sequence of annotations
vs. predictions. The presented predictions are obtained using the NCORF model with 10 hidden nodes.

an audiovisual intensity level estimator, which is expected to
further improve the agreement level estimation.
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