Tiresias: low-overhead sample based scheduling
with task hopping

Chunliang Hao'*, Jie Shen’, Heng Zhang'*,Yanjun Wu', Mingshu Lif
nstitute of Software, Chinese Academy of Science, Beijing, China
HUniversity of Chinese Academy of Science, Beijing, China
$Department of Computing, Imperial College London, London, UK
Email: chunliang@nfs.iscas.ac.cn, js1907 @imperial.ac.uk, {hengzhang, yanjun, mingshu}@iscas.ac.cn

Abstract—Sample based distributed scheduling methods have
been shown to be promising lower overhead alternatives to their
centralized counterparts. These methods can make fast decisions
based on information gathered from just a small number of
worker nodes instead of the whole cluster. Most recent works
in the field tend to adopt a combination of probe actions and
worker-end queues in their design. However, as individual worker
nodes are becoming increasingly powerful thanks to the rapid
hardware evolution, we argue that one-node sampling is now a
viable choice. Specifically, we show that it is now possible to
achieve even lower scheduling latency by latency by abolishing
probes and worker-end queues altogether. With this insight, we
introduce Tiresias, a low overhead distributed scheduler based
on one-node sampling and a novel task hopping mechanism.
Comparing to Sparrow’s approach, experiment on Google trace
shows Tiresias could reduce 20% and 60% of Sparrow’s 50th
percentile and 90th percentile job runtime, respectively. In
addition, our experiment also shows Tiresias is especially effective
in reducing the delay of small jobs in non-highly loaded clusters.

I. INTRODUCTION

Centralized scheduling methods have been widely used in
production clusters in the past few decades [?]. Serving as
the single connection between jobs and workers, a centralized
scheduler can make highly optimal scheduling decisions and
is capable of enforcing complex global scheduling policies
[?]. However, as the scale of both cluster and workload keeps
expanding, centralized scheduler is increasingly more difficult
to maintain and may become a potential performance bottle-
neck [?]. Furthermore, with the trend that high throughput,
sub-second jobs are taking up larger fraction of production
workload [?], scheduling overhead is becoming an important
design consideration.

To address these problems, sample based scheduling meth-
ods have been proposed [?]. The core idea of such approaches
is to make scheduling decisions based on the information
gathered from only a small subset of nodes sampled from
the cluster. In doing so, the decision-making process becomes
much faster, resulting in low scheduling overhead, which is
crucial to small interactive jobs. To be able to sample mul-
tiple nodes at a time, most existing sample based scheduling
methods share the same design of using probes and worker-
end queues [?]. However, this design choice comes with its
own limitations [?], notably the sub-optimal job latency that
we aim to address in this work.

Thanks to the rapid development in computational infras-
tructure, we argue that nowadays scheduler may sample only
one node at a time, yet still achieve an acceptable level of
optimality in scheduling decisions made under most circum-
stances. In this case, probe action and worker-end queue are
no-longer mandatory features of the design. This, in turn,
allows us to explore simpler and faster sample based methods.
With this insight, we introduce Tiresias, a novel sample based
scheduler no longer relying on probes and worker-end queues.
Instead, Tiresias is based on direct task placement and a task
hopping mechanism. As a result, we show the combination of
these two techniques could decrease the runtime of all jobs
and significantly reduce the delay of short jobs.

The main contributions of this work are as follows: 1. We
show that under current cluster computing context one-node
sampling is now becoming a viable option for sample based
scheduler. Accordingly, we introduce direct task placement
technique to further decrease scheduling overhead. 2. To
compliment direct task placement, we further propose a task
hopping mechanism to efficiently utilize system resource and
in the same time to reduce the occurrences of sub-optimal
scheduling decisions. 3. We implement Tiresias, a low over-
head distributed scheduler based on direct task placement and
task hopping. Based on our quantitative evaluation, we show
Tiresias is capable of achieving lower scheduling overhead
comparing to existing approaches.

II. MOTIVATION

Although the probe-queue design is commonly adopted
by most existing sample based schedulers, it is not without
limitations. Notably, the use of worker-end queue may lead to
various kinds of sub-optimal decisions, lowering the perfor-
mance when handling interactive jobs [?] [?]. In addition, the
probing procedure incurs a fixed scheduling overhead, which
we suggest could be reduced.

Recent development in hardware capability has enabled
some worker nodes to support 32 or more concurrent threads
and more than 100GB of memory [?]. These powerful nodes
are capable of holding many tasks in parallel, especially for
small interactive ones. In this case, sampling only one node
during decision making can still give a good chance of finding
the required resource. For instance, when scheduling tasks
in an 80%-utilized cluster with 32 slots per node, there is

decisioning

Sampling 1.probe action .
with Probe > . =
2
““
Scheduler Worker Node
w1
One Node
Sampling

task Placemegp,,

w3

Scheduler Worker Node

Fig. 1. Multi-node sampling + probe-queue design (top scheduler) vs. one-
node sampling + direct task placement (bottom scheduler).

a 99.9208% chance that a randomly selected node will have
at least one available slot.

Reducing the sample size to one node allows us to eliminate
the probing procedure altogether and, in turn, to adopt a
simpler scheduler design. Namely, instead of having to send
out probe message and wait for the sampled node’s reply, the
scheduler can simply assigns the task directly to node since
there is no longer a need to choose between multiple nodes.

A comparison between the probe-based design and the
aforementioned direct task placement method is illustrated
in Fig. 1. The scheduler illustrated on the top row performs
two-node sampling, which requires three communication steps
when scheduling a task: step 1) the scheduler sends probe
messages to the randomly sampled nodes; step 2) the scheduler
receive status information from at least one node; step3)
based on the received information, the scheduler selects an
optimal node to assign the task. The usage of probe in
step 1, the information type and timing of response in step
2, and the decision-making logic in step 3 may vary in
different scheduler designs. However, this three step procedure
is shared among the approaches. In comparison, the direct task
placement method, as illustrated on the bottom row in Fig.1,
only requires a single step: the schedule simply assigns the
task to a randomly selected node. Apart from the decrease in
communication overhead, the method also requires very little
computation within the scheduler itself, thus further reduces
scheduling latency.

Even with powerful worker nodes, direct task placement
may still fail (when the selected node has no available slot at
all) from time to time, especially when the cluster is under
extreme workload or poor load balancing. When this happens,
putting the tasks into a worker-end queue is a straightforward
but often sub-optimal solution since there is usually a high
probability that another node in the cluster may have an
available slot allowing the task to be executed immediately.
In other words, when a fully occupied node receives a new

© &P
SHICHICE

|

£ | |

TIO] [—> wm |

> i de with i
O O Y — node wit

| | \. | | available slot |

Fig. 2. The Overall architecture of Tiresisas, demonstrated on 15 node.

task, passing the task to another randomly selected node may
allow the task to be executed faster, thus reduce task delay.
Therefore, it would not only be possible, but also beneficial to
replace the worker-end tasks queues with a novel task hopping
mechanism.

Based on direct task placement and task hopping, we pro-
pose Tiresias, a simple and effective low overhead distributed
scheduler.

III. TIRESIAS

Tiresias’s architecture and its scheduling procedure are il-
lustrated in Fig. 2. Functioning independently from each other,
instances of the Tiresias’s scheduler are deployed onto every
node in the cluster. Since Tiresias does not distinguish between
master node and worker node, it can tolerate malfunction in
any single node.

The core decision process of the Tiresias scheduler is quick
and simple: 1. The scheduling process starts when task k
arrives at node d;2. The scheduler tries to find an available
slot on node d to execute task k locally;3. If node d is fully
occupied, the scheduler passes the task to another randomly
selected node in the cluster.

The transferring of task from one scheduler to another is
referred to as ’task hopping’. In Tiresias, a task may hop
through the entire cluster following a random walk pattern un-
til it reaches the node allowing it to be executed. Specifically,
when a task arrives at a fully occupied node, the scheduler
will simply pass the task to another randomly selected node
(as shown in Fig. 2). In order to account for potential failure
of scheduler, node, and / or network connection, the scheduler
will later receive an asynchronous acknowledgement from the
hopping destination.

To prevent excessive hopping, Tiresias imposes a hop limit
to all tasks. When a task reaches its hop limit, it will be marked
as waiting for retry. A retry notification will then be sent to
task’s entry point, allowing the task to be either dropped or to
be retried later.

Tiresias scheduler treats all incoming tasks equally, regard-
less of their source. Specifically, tasks transferred from other
nodes are treated in the same way as those received from
applications. This simplicity guarantees Tiresias’s processing
speed and throughput.

IV. EVALUATIONS

A. Methodology

Workloads: In this work, we used the publicly available
Google trace [?] [?] as the benchmark workload for evaluation.

100.00% 3 1 -

50th percentile jobs
B 90th percentile jobs
= ®=avg cluster utilization Hawk|

W Tiresias - 0.3ms RTT
B Tiresias - 1ms RTT
[Hawk - 0.3ms RTT
I Hawk - 1ms RTT

80.00%

2 2
51.5 P . X 18
£ 50th percentile jobs H
§1'6 = 90th percentile jobs Io 16
I} 14 =®=avg cluster utilization Sparrow h 14
o 12 Q 12
9 S
8 =
Tgo: > 9 9 7 g o; >
£o .o a0 s ey
Z 06 .o % é i é 7 w 06 =7
8 04 7= g -1 é g 7 ‘g 04 % %
F Ll .m0 A Ll O 7

10k 15k 20k 25k 30k 35k 40k 45k 50k 10 15 20 25

Number of total slots in the cluster (thousands)

(a) All jobs, runtime, Tiresias/Sparrow

Number of total slots in the cluster (thousands)

(b) All jobs, runtime, Tiresias/Hawk

60.00% —®=_avg cluster utilization Hawk
T T

40.00% e

20.00%

Pct. small jobs with delay > 1ms

NN NN

[NNNNNNY NN
NN NN

0.00% ki
30 35 40 45 50 10 15 20 25 30 35 40 45 50

Number of total slots in the cluster (thousands)

(c) Small jobs, delay, Tiresias/Hawk

Fig. 3. Google trace, simulation, comparing Tiresias to Sparrow and Hawk

Cleaning the trace by removing failed or invalid information
resulted in a total of 506.4k valid jobs. Since many jobs do
not have reducers, only mapper tasks were selected. Taking
task parallelism into consideration, the jobs’ duration were
estimated by the duration of their longest task.

Simulation run: We compared the results of Tireias with
Sparrow and Hawk. We used Hawk and Sparrow’s own
publicly available simulator to evaluate their performance. For
Tiresias, we further augmented the event-based simulator. In
simulation, each node was set to have 50 slots to represent the
latest setting of production cluster (Sparrow and Hawk simu-
lator analogues the performance of multiple slots containing
independent queue by separated nodes). We used two settings
of average RTT time for simulation, 1ms and 0.3ms. Local
computation time such as decisioning time were not taken
into account during the simulations.

Real cluster run: EC2 100-node cluster was used in the
real cluster run test. We used a 5000 jobs subset of Goolge
trace in this test. The subset was selected to match the original
distribution of jobs according to estimated job duration. We
then scaled down the duration of tasks by 1000x to make
runtime proportional to Google trace. The number of task in
each job was also scaled down to maintain the same ratio
between the job’s maximum task count and overall cluster
slot count. In real cluster run, the job’s mean inter-arrival time
was changed to create different cluster load. We first found a
biggest mean inter-arrival time that overload the 100 node in
EC2 cluster, and then used it as the baseline. We gradually
increased this mean inter-arrival time to create high, medium
and low utilized situations.

B. Overall results on Google trace

What is the results for all jobs in Google trace?

Tiresias achieved the best 50th and 90th runtime when the
cluster was not overloaded(i.e. 10k slots). As shown in Fig.
3(a), Tiresias surpassed Sparrow’s 50th percentile runtime and
90th percentile runtime by 84% and 91% under high cluster
utilization(i.e. 15k, 20k slots), 35% and 51% under medium
cluster utilization(i.e. 25k - 35k slots), 10% and 33% under
low cluster utilization(i.e. 40k - 50k slots), respectively. As
shown in Fig. 3(b), Tiresias surpassed Hawk’s 50th percentile
runtime and 90th percentile runtime by 57% and 58% under
high cluster utilization, 18% and 7% under medium cluster

utilization, 2% and 0% under low cluster utilization, respec-
tively.

What is the results for small interactive jobs?

As shown in Fig. 3(c), under Ims RTT setting, Tiresias
performed best in medium utilized(i.e. 30k, 35k slots) and
low utilized(i.e. 40k - 50k slots) clusters. This is because
majority of there tasks were executed after only one hop. In
high utilized(i.e. 40k - 50k slots) clusters, tasks started to hop
more than once, leading to longer delay. In comparison, Hawk
results were all near 100%. Correspondingly, under 0.3ms RTT
setting, in high utilized clusters Tiresias had less than 20% jobs
with delay longer than 1ms, when Hawk had more than 40%.
In clusters from 25k to 50k slots, Tiresias had less than 5%
jobs with delay longer than 1ms, especially in 45k and 50k
slots clusters when the number reduced to below 1%.

How many hops are required to place one task?

As shown in TABLE I, in both medium utilized(i.e. 25k -
35k slots) and low utilized clusters(i.e. 40k - 50k slots), the
90th percentile task hop count was always 1. The average
hop count for task was within the range of 1.00 to 3.9. This
means in each of these cluster most tasks were scheduled
with very small delay. It also indicates in 30k-50k clusters
the overall communication cost required by Tiresias was less
than Sparrow and Hawk. In high utilized clusters(i.e. 15k -
20k), task hop count started to rise. The average hop count
of 10-30 per task indicate a higher communication cost than
Sparrow and Hawk. In overloaded cluster(i.e. 10k) Tireisas
still functioned properly but with most task hopped more than
once.

C. Real cluster run results

What is the EC2 cluster run results for all jobs?

As shown in Fig. 4, EC2 cluster results show similar
trends as simulation results. Specifically, Tiresias performed
the best when cluster was high utilized(i.e. 1.2x and 1.4x
baseline average inter-arrival time), in which case Tiresias
surpassed the 50th percentile and 90th percentile runtime of
Sparrow by 18.5% and 61.3%, respectively. Under medium
utilized situations(i.e. 1.6x and 1.8x baseline average inter-
arrival time), Tiresias improved 3% and 32%, and under low
utilized situations(i.e. 2x -2.4x baseline average inter-arrival
time) 1.4% and 22.3%, respectively.

What is the EC2 cluster run results for small jobs?

TABLE I
GOOGLE TRACE, TIRESIAS, THE NUMBER OF HOPS FOR ONE TASK.

Total Cluster slots 10k 15k 20k 25k 30k 35k 40k 45k 50k

minimum task hop 1 1 1 1 1 1 1 1 1
10th percentile task hop 1 1 1 1 1 1 1 1 1
20th percentile task hop 2 1 1 1 1 1 1 1 1
30th percentile task hop 25 1 1 1 1 1 1 1 1
40th percentile task hop 82 1 1 1 1 1 1 1 1
50th percentile task hop 101 1 1 1 1 1 1 1 1
60th percentile task hop 101 3 1 1 1 1 1 1 1
70th percentile task hop 101 80 2 1 1 1 1 1 1
80th percentile task hop 102 101 2 1 1 1 1 1 1
90th percentile task hop 108 101 98 1 1 1 1 1 1

maximum task hop 501 301 129 111 109 106 106 105 105
Average Hops per Task 79.37 32.88 12.18 3.90 1.69 1.19 1.08 1.01 1.00

Average Cluster Utilization | 95.45% | 77.34% | 60.05% | 48.98% | 40.85% | 35.02% | 30.65% | 27.24% | 24.52%

18
1.6

50th percentile jobs
B 90th percentile jobs

== avg cluster utilization Sparrow

14

1.2

08 g ~A
0.6 ;
0.4

7
0.2 /

Tiresias Normalized to Hawk
-

N
/
TS
NN NN
) SETTTTTITNNY

AN

1 1.2 1.4 1.6 18 2 22 2.4

Average Job Inter-arrival time (normalized)

Fig. 4. EC2 cluster run, Tiresias normalized to Sparrow, duration of all jobs.

100.00% =1

80.00%

60.00%

40.00%

Tiresias

20.00% || [Sparrow

Pct. small jobs with delay > 10ms

==®=avg cluster utilization Sparrow |}

0.00%
1 1.2 14 1.6 1.8 2 22 2.4

Average Job Inter-arrival time (normalized)

Fig. 5. EC2 cluster run, Tiresias and Sparrow, delay of small jobs.

In real cluster run, job runtime contains various source of
cost that are not counted in simulation, including transport
protocol overhead, local computing cost, network instability,
and so on. As a result, job delay around 1ms becomes hard
to observe. Hence in EC2 cluster run we only compare the
proportion of small jobs(with estimated duration<100ms) that
has delay larger than 10ms. Smaller results are preferred. As
shown in Fig. 5, for these small jobs, Tiresias performed
the best when the cluster is low utilized. In specific, when
average job inter-arrival time is 2.4x baseline(cluster was 20%
utilized), only 62.2% of small jobs in Tiresias had larger than
10ms delay, while Sparrow had 91.55%.

V. CONCLUSION

Tiresias uses direct task placement and task hopping for
decision making. To the best of our knowledge, Tiresias is
the first sample based scheduler without using probe messages
and worker-end queues. Its simpler scheduling process signifi-
cantly reduces job delay, especially in non-high-loaded cluster.
In addition, our approach also improves job runtime thanks to
the task hopping behaviour.

VI. ACKNOWLEDGEMENT

This work is financially supported by the Strategic Priority
Research Program of the Chinese Academy of Science (No.
XDA06010600), as part of the DataOS project. The work of Jie
Shen has also been funded in part by the European Community
Horizon 2020 [H2020/2014-2020] under grant agreement no.
645094 (SEWA). We thank all members in DataOS group for
discussions and comments. We also thank Delgado Pamela
and Florin Dinu for their support and advices.

REFERENCES

[1] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010, pp. 265-278.

[2] Apache hadoop capacity scheduler. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop- yarn/hadoop-yarn-site/
CapacityScheduler.html.

[3] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
EuroSys, 2013, pp. 351-364.

[4] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in SOSP, 2013, pp. 69-84.

[5] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in USENIX ATC, 2015, pp. 499-510.

[6] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao, “Efficient queue management for cluster scheduling,” in EuroSys,
2016, pp. 1-15.

[7]1 C. Hao, J. Shen, H. Zhang, X. Zhang, Y. Wu, and M. Li, “Sparkle:
adaptive sample based scheduling for cluster computing,” in CloudDP,
2015.

[8] Amazon elastic compute cloud. [Online]. Available: http://aws.amazon.
com

[9] J. Wilkes. More google cluster data. [Online]. Available: http:

//googleresearch.blogspot.ch/2011/11/more- google-cluster-data.html

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,

“Heterogeneity and dynamicity of clouds at scale: Google trace analy-

sis,” in SoCC, 2012, pp. 7-13.

[10]

