
Tensor Contraction Layers for Parsimonious Deep Nets

Jean Kossaifi
Amazon AI

Imperial College London
jean.kossaifi@imperial.ac.uk

Aran Khanna
Amazon AI

arankhan@amazon.com

Zachary Lipton
Amazon AI

University of California, San Diego
zlipton@cs.ucsd.edu

Tommaso Furlanello
Amazon AI

University of Southern California
furlanel@usc.edu

Anima Anandkumar
Amazon AI

California Institute of Technology
anima@amazon.com

Abstract

Tensors offer a natural representation for many kinds of
data frequently encountered in machine learning. Images,
for example, are naturally represented as third order ten-
sors, where the modes correspond to height, width, and
channels. In particular, tensor decompositions are noted
for their ability to discover multi-dimensional dependen-
cies and produce compact low-rank approximations of data.
In this paper, we explore the use of tensor contractions as
neural network layers and investigate several ways to apply
them to activation tensors. Specifically, we propose the Ten-
sor Contraction Layer (TCL), the first attempt to incorpo-
rate tensor contractions as end-to-end trainable neural net-
work layers. Applied to existing networks, TCLs reduce the
dimensionality of the activation tensors and thus the num-
ber of model parameters. We evaluate the TCL on the task of
image recognition, augmenting popular networks (AlexNet,
VGG). The resulting models are trainable end-to-end. We
evaluate TCL’s performance on the task of image recog-
nition, using the CIFAR100 and ImageNet datasets, study-
ing the effect of parameter reduction via tensor contraction
on performance. We demonstrate significant model com-
pression without significant impact on the accuracy and, in
some cases, improved performance.

1. Introduction
Following their successful application to computer vi-

sion, speech recognition, and natural language processing,

deep neural networks have become ubiquitous in the ma-

chine learning community. And yet many questions remain

unanswered: Why do deep neural networks work? How

many parameters are really necessary to achieve state of the

art performance?

Recently, tensor methods have been used in attempts to

better understand the success of deep neural networks [4, 6].

One class of broadly useful techniques within tensor meth-

ods are tensor decompositions. While the properties of ten-

sors have long been studied, in the past decade they have

come to prominence in machine learning in such varied ap-

plications as learning latent variable models [1], and devel-

oping recommender systems [10]. Several recent papers ap-

ply tensor learning and tensor decomposition to deep neural

networks for the purpose of devising neural network learn-

ing algorithms with theoretical guarantees of convergence

[17, 9].

Other lines of research have investigated practical ap-

plications of tensor decomposition to deep neural networks

with aims including speeding up convolutional neural net-

works [15], multi-task learning [20], and sharing residual

units [3]. However, to our knowledge, no attempt has been

made to apply tensor decompositions as a generic layer di-

rectly on the activations or weights of a deep neural network

and to train the resulting network end-to-end. Most current

work applies decompositions only for either initialization

[20] or post-training [16]. These techniques then often re-

quire additional fine-tuning to compensate for the loss of

information [11].

In deep convolutional neural networks, the output of

each layer is a tensor. We posit that tensor algebraic tech-

niques can allow us to exploit multidimensional depen-

dencies in the activation tensors. We propose to leverage

that structure by incorporating Tensor Contraction Layers

(TCLs) into neural networks. Specifically, in our experi-

ments, we apply TCLs directly to the third-order activation

tensors produced by the final convolutional layer of an im-

age recognition network. Traditional networks flatten this

activation tensor, passing it to subsequent fully-connected

layers. However, the flattening process loses information

2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops

2160-7516/17 $31.00 © 2017 IEEE

DOI 10.1109/CVPRW.2017.243

1940

about the multidimensional structure of the tensor. Our ex-

periments show that incorporating TCLs into several pop-

ular deep convolutional networks can improve their perfor-

mance, despite reducing the number of parameters. More-

over, inference on TCL-equipped networks, which contain

less parameters, requires considerably fewer floating point

operations.

We organize the rest of this paper as follows: Section 1.1

introduces prerequisite concepts needed to understand the

TCL; Section 2 explains the TCL in detail; Section 3 exper-

imentally evaluates the TCL.

1.1. Tensor Contraction

Notation: We define tensors as multidimensional arrays,

denoting first-order tensors v as vectors, second-order ten-

sors M as matrices and by X̃ , refer to tensors of order 3 or

greater. M� denotes the transpose of M.

Tensor unfolding: Given a tensor, X̃ ∈ R
I1×I2×···×IN ,

the mode-n unfolding of X̃ is a matrix X[n] ∈ R
In,IM ,

with M =
∏N

k=1,
k �=n

Ik and is defined by the mapping from

element (i1, i2, · · · , iN) to (in, j), with j =
∑N

k=1,
k �=n

ik ×∏N
m=k+1 Im.

n-mode product: For a tensor X̃ ∈ R
I1×I2×···×IN and

a matrix M ∈ R
R×In , the n-mode product of X̃ by M is

a tensor of size (I1 × · · · × In−1 ×R× In+1 × · · · × IN)
and can be expressed using the unfolding of X̃ and the clas-

sical matrix multiplication as:

X̃ ×n M = MX̃[n] ∈ R
I1×···×In−1×R×In+1×···×IN (1)

Tensor contraction: Given a tensor X̃ ∈ R
I1×I2×···×IN ,

we can decompose it into a low-dimensional core tensor

G̃ ∈ R
R1×R2×···×RN through projection along each of

its modes by projection factors
(
U(1), · · · ,U(N)

)
, with

U(k) ∈ R
Rk,Ik , k ∈ (1, · · · , N). In other words, we can

write:

G̃ = X̃ ×1 U
(1) ×2 U

(2) × · · · ×N U(N) (2)

or, in short:

G̃ = �X̃ ; U(1), · · · ,U(N)� (3)

Typically, the factors of the contraction are obtained by
solving a least squares problem. In particular, closed form
solutions can be obtained for the factor by considering the

n−mode unfolding of X̃ that can be expressed as:

G[n] = U(n)X[n]

(
U(1) ⊗ · · ·U(n−1) ⊗U(n+1) ⊗ · · · ⊗U(N)

)T

(4)

We refer the interested reader to the seminal work of

Kolda and Bader [12].

Figure 1. A representation of the Tensor Contraction Layer (TCL)

applied on a tensor of order 3. The input tensor X̃ is contracted

into a low-dimensionality core G̃.

1.2. Networks with Large fully connected layers

Many popular convolutional neural networks for com-

puter vision, e.g. AlexNet, ResNet, and Inception, require

hundreds of millions of parameters to achieve the reported

results. This can be problematic when running these net-

works for inference on resource-constrained devices, where

it may not be easy to run hundreds of millions of calcula-

tions just to classify a single image.

While these widely used architectures exhibit consider-

able variety, they also exhibit some commonalities. Often,

they consist of blocks containing convolution, activation

and pooling layers followed by fully-connected layers be-

fore the final classification layer. Both the popular networks

AlexNet [14] and VGG [19] follow this meta-architecture,

with both containing two fully-connected layers of 4096
hidden units each. In both networks, these fully connected

layers hold over 80 percent of the parameters. In VGG,

the hidden units contain 119,545,856 of the 138,357,544

total parameters, and in AlexNet the hidden units contain

54,534,144 out the 62,378,344 total parameters.

Given the enormous computational costs for both train-

ing and running inference in these networks, we desire tech-

niques that preserve high accuracy while reducing the num-

ber of parameters in the network. Notable work in this di-

rection includes approaches to induce and exploit sparsity

in the parameters during training [7].

2. Tensor Contraction Layer
In this paper, we propose to incorporate the tensor con-

traction into convolutional neural networks as an end-to-end

trainable layer, applying it to the third order activation ten-

sor output by the final convolutional layer.

In particular, given an activation tensor X̃ of size

(D1, · · · , DN), we seek a low dimensional core G̃ of

smaller size (R1, · · · , RN) such that:

G̃ = X̃ ×1 V
(1) ×2 V

(2) × · · · ×N V(N) (5)

with V(k) ∈ R
Rk,Ik , k ∈ (1, · · · , N).

We leverage this formulation and define a new layer that

takes the activation tensor X̃ obtained from a previous layer

1941

Figure 2. A representation of the symbolic graph of the Tensor

Contraction Layer.

and applies such a projection to it (Figure. 1). We optimize

the projection factors
(
V(k)

)
k∈[1,···N]

to obtain a low di-

mensional projection of the activation tensor as the output

of the layer. We learn the projection factors by backpropa-

gation jointly with the rest of the network’s parameters. We

coin this new layer the Tensor Contraction Layer (TCL) and

denote by size–(R1, · · · , RN) TCL, or TCL–(R1, · · · , RN)
a tensor contraction layer producing a contracted output of

size (R1, · · · , RN).
The gradients with respect to each of the factors can be

derived easily from 4. Specifically, for each k ∈ 1, · · · , N ,

we use the following equivalences:

∂G̃
∂V(k)

=
∂X̃ ×1 V(1) ×2 V(2) × · · · ×N V(N)

∂V(k)
=

∂G̃[k]

∂V(k)

=
∂V(k)X[k]

(
V(1) ⊗ · · ·V(k−1) ⊗V(k+1) ⊗ · · · ⊗V(N)

)T

∂V(k)

In practice, with minibatch training, we might think of

the first mode of an activation tensor as corresponding to the

batch-size. Technically, it is possible to applying a transfor-

mation along this dimension too, but we leave this consid-

eration for future work. It is trivial to address this case by

either starting the n−mode products at the second mode or

by setting the first factor to be the Identity and not optimize

over it. Therefore, in the remainder of the paper, we con-

sider the activation tensor for a single sample for clarity,

without loss of generality.

Figure. 2 presents the symbolic graph of the tensor con-

traction layer. Note that when taking the n-mode product

over different modes, the order in which the n-mode prod-

ucts are computed does not matter.

2.1. Complexity of the TCL

In this section we detail the number of parameters and

complexity of the tensor contraction layer.

Number of parameters Let X̃ be an activation tensor

of size (D1, · · · , DN) which we pass through a size–

(R1, · · · , RN) Tensor Contraction Layer.

This TCL has a total of
∑N

k=1 Dk×Rk parameters (cor-

responding to the factors of the N n−mode products) and

produces as input a tensor of size (R1, · · · , RN).

By comparison, a fully connected layer producing an

output of the same size, i.e. with H =
∏N

k=1 Rk hidden

units, and taking the same (flattened) tensor as input would

have a total of
∏N

k=1 Dk ×
∏N

k=1 Rk parameters.

Complexity As previously exposed, one way to look at

the TCL is as a series of matrix multiplications between the

factors of the contraction and the unfolded activation ten-

sor. Let’s place ourselves in the setting previously detailed

with an activation tensor X̃ of size (D1, · · · , DN) and a

TCL–(R1, · · · , RN) of complexity O(CTCL). We can write

CTCL =
∑N

k=1 Ck where Ck is the complexity of the kth

n−mode product. Note that the order in which the prod-

ucts are taken doesn’t matter due to the commutativity of

the n−mode product over disjoint modes (e.g. it is commu-

tative for X̃ ×iU
(i)×jU

(j) as long as i �= j). However, for

illustrative purposes, we consider them to be done in order,

from the first mode to the N th. We then have:

Ck = Rk ×Dk

k−1∏
i=1

Ri

N∏
j=k+1

Dj (6)

It follows that the overall complexity of the TCL is:

CTCL =
N∑

k=1

k∏
i=1

Ri

N∏
j=k

Dj (7)

Comparison with a fully-connected layer A fully-

connected layer with H hidden units has complexity

O(CFC), with:

CFC = H

N∏
i=1

Di (8)

1942

Method Added TCL 1st fully connected 2nd fully connected Accuracy (%) space savings (%)
Baseline - 4096 hidden units 4096 hidden units 65.41 0

Added TCL TCL–(256, 3, 3) 4096 hidden units 4096 hidden units 65.53 -0.25

Added TCL TCL–(192, 3, 3) 3072 hidden units 3072 hidden units 65.92 43.28

Added TCL TCL–(128, 3, 3) 2048 hidden units 2048 hidden units 66.57 74.49

1 TCL substitution - TCL–(256, 3, 3) 4096 hidden units 65.52 62.77

1 TCL substitution - TCL–(192, 3, 3) 3072 hidden units 65.95 78.72

1 TCL substitution - TCL–(128, 3, 3) 2048 hidden units 64.95 90.25

2 TCL substitutions - TCL–(256, 3, 3) TCL–(256, 3, 3) 62.98 98.64

2 TCL substitutions - TCL–(192, 3, 3) TCL–(144, 3, 3) 62.06 99.22
Table 1. Results with AlexNet on CIFAR100. The first column presents the method, the second specifies whether a tensor contraction was

added and when this is the case, the size of the TCL. Columns 3 and 4 specify the number of hidden units in the fully connected layers or

the size of the TCL used instead when relevant. Column 5 presents the top-1 accuracy on the validation. Finally, the last column presents

the reduction factor in the number of parameters in the fully connected layers (which represent, as previously mentioned, more than 80%

of the total number of parameters of the networks) where the reference is the original network without any modification (Baseline).

Consider a TCL that maintains the size of its input, i.e.,

for any k in [1 . . N], Rk = Dk. In other words, Ck =

Dk

∏N
i=1 Di. Therefore,

CTCL =
N∑

k=1

Dk

N∏
i=1

Di (9)

By comparison, a fully-connected layer that also main-

tains the size of its input, i.e. H =
∏N

k=1 Dk, would have a

complexity of:

CFC =

(
N∏
i=1

Di

)2

(10)

Notice the product in the fully-connected case versus a

sum for the TCL case.

2.2. Incorporating TCL in a network

We see several straightforward ways to incorporate the

tensor contraction layer into existing neural network archi-

tectures.

TCL as An Additional Layer First, we can insert a ten-

sor contraction layer following the last pooling layer, reduc-

ing the dimensionality of the activation tensor before feed-

ing it to the subsequent two fully connected layers and soft-

max output of the network. In general, flattening induces a

loss of information. By applying tensor contraction we re-

duce dimensionality efficiently by leveraging the multi di-

mensional dependencies in the activation tensor.

TCL as Replacement of a Fully Connected Layer We

can also incorporate the TCL into existing architectures by

completely replacing fully-connected layers. This has the

advantage of significantly reducing the number of parame-

ters in our model. Concretely, consider an activation ten-

sor of size (256, 7, 7) that is fed to either a fully-connected

layer (after having been flattened) or to a TCL. A fully-

connected layer with 4096 hidden units has 256 × 7 ×
7 × 4096 = 51, 380, 224 parameters. A TCL that pre-

serves the size of its input, on the other hand, only has

2562 + 72 + 72 = 1, 712, 622 parameters. The TCL has

30 times fewer parameters than the fully-connected layer.

Similarly, a TCL–(128, 5, 5) (approximately half size) will

have only 256×128+7×5+7×5 = 32, 838 parameters, or

1, 500 times fewer parameters than a fully-connected layer.

3. Experiments
Our experiments investigate the representational power

of the tensor contraction layer, demonstrating results on the

CIFAR100 dataset [13]. Subsequently, we offer some pre-

liminary results on the ImageNet 1k dataset [5]. We hypoth-

esize that an tensor contraction layer can efficiently repre-

sent an activation tensor for processing by subsequent layers

of the network, allowing for a large reduction in parameters

without a reduction in accuracy.

We conduct our investigation on CIFAR100 using the

AlexNet [14] and VGG [19] architectures, each modified

to take 32 × 32 images as inputs. We also present results

with a traditional AlexNet on ImageNet. In all cases we re-

port the accuracy (top-1) as well as the space saved, which

we quantify as:

space saving = 1− noriginal

nTCL

where noriginal is the sum of the number of parameters in the

fully connected layers of the standard network and nTCL is

the sum of the number of parameters in the fully-connected

layers of the network modified to include the TCL.

To avoid vanishing or exploding gradients, and to make

the TCL more robust to changes in the initialization of the

factors, we added a batch normalization layer [8] before and

after the TCL.

1943

Method Added TCL 1st fully connected 2nd fully connected Accuracy (%) space savings (%)
Baseline - 4096 hidden units 4096 hidden units 69.98 0

Added TCL TCL–(512, 3, 3) 4096 hidden units 4096 hidden units 70.07 -0.73

Added TCL TCL–(384, 3, 3) 3072 hidden units 3072 hidden units 68.56 42.99

Added TCL TCL–(256, 3, 3) 2048 hidden units 2048 hidden units 67.57 74.35

1 TCL substitution - TCL–(512, 3, 3) 4096 hidden units 69.71 45.8

1 TCL substitution - TCL–(384, 3, 3) 3072 hidden units 68.83 69.16

1 TCL substitution - TCL–(256, 3, 3) 2048 hidden units 68.51 85.98

2 TCL substitutions - TCL–(512, 3, 3) TCL–(512, 3, 3) 67.20 97.27

2 TCL substitutions - TCL–(384, 3, 3) TCL–(288, 3, 3) 67.38 98.43
Table 2. Results obtained on CIFAR100 using a VGG-19 network architecture with different variations of the Tensor Contraction Layer.

In all cases we report Top-1 Accuracy and space savings with respect to the baseline. As observed with the AlexNet, TCL allows for large

space savings with minimal impact on performance and even improvement in some cases.

3.1. Results on CIFAR100

The CIFAR100 dataset is composed of 100 classes con-

taining 600 32× 32 images each, with 500 training images

and 100 testing images per class. In all cases, we report

performance on the testing set in term of accuracy (Top-

1). We implemented all models using the MXNet library

[2] and ran all experiments training with data parallelism

across multiple GPUs on Amazon Web Services, with two

NVIDIA k80 GPUs.

Because both the original AlexNet and VGG architec-

tures were defined for the ImageNet data set, which has a

larger input image size, to adapt them for CIFAR100 by ad-

justing the stride size on the input convolution layer of both

networks so that they would take 32× 32 input images. We

investigate two sets of experiments, described below.

Added TCL In the first experiments, we add TCL as ad-

ditional layer after the last pooling layer and perform

the contraction along the two spacial modes of the im-

age, leaving the modes corresponding to the channel

and the batch size untouched. We gradually reduced

the number of hidden units in these last two layers with

and without the TCL included and retrain the nets until

convergence to demonstrate how the tensor contraction

layer can learn more compact representations without

compromising accuracy.

TCL substitution In this case, we completely replace one

or both of the fully-connected layers by a tensor con-

traction layer. We reduce the number of hidden units

in the subsequent layers proportionally to the reduction

in the size of the activation tensor.

Network architectures We experimented with an

AlexNet, with an adjusted stride and filter size in the final

convolutional layer. From the last convolutional layer, we

get an activation tensor of size (batch size, 256, 3, 3). Sim-

ilarly, in the case of the VGG network, we obtain activation

tensors of size (batch size, 512, 3, 3). We experiment with

several variations of the tensor contraction layer. First,

we consider the case where we project the activations

to a tensor of identical shape. Additionally, we evaluate

the effect of reducing the dimensionality of the activation

tensor by 25% and by 50%. For AlexNet, because the

spatial modes already compact are already, we preserve the

spatial dimensions, and reduce dimensionality along the

channel.

3.1.1 Results

Table 1 summarizes our results on CIFAR100 using the

AlexNet, while results with VGG are presented in Table 2.

The first column presents the method, the second specifies

whether a tensor contraction was added and when this is the

case, the size of the contracted core. Columns 3 and 4 spec-

ify the number of hidden units in the fully connected layers

or the size of the TCL used instead when relevant. Column

5 presents the top-1 accuracy on the validation. Finally, the

last column presents the reduction factor in the number of

parameters in the fully connected layers (which represent,

as previously mentioned, more than 80% of the total num-

ber of parameters of the networks) where the reference is

the original network without any modification (Baseline).

A first observation is that adding a tensor contraction

layer (Added TCL in Tables 1 and 2) consistently increases

performance while having minimal impact on the overall

number of parameters. Replacing the first fully-connected

layer (1 TCL substitution in the Tables) allows us to reduce

the number of parameters in the fully connected layers by

a factor of more than 3, while observing the same perfor-

mance as the original network. By replacing both fully con-

nected layers (2 TCL substitutions in the Tables) we can

obtain a reduction of more than 92×, with only a 2.5% de-

crease in performance.

3.2. Results on ImageNet

In this section, we present preliminary experiments us-

ing the larger ILSVRC 2012 (ImageNet) dataset [5], using

1944

Method Additional TCL 1st fully connected 2nd fully connected Accuracy (in %) space savings (%)
Baseline - 4096 hidden units 4096 hidden units 56.29 0

Added TCL TCL–(256, 5, 5) 4096 hidden units 4096 hidden units 57.54 -0.11

Added TCL TCL–(200, 5, 5) 3276 hidden units 3276 hidden units 56.11 35.36

TCL substitution - TCL–(256, 5, 5) 4096 hidden units 56.57 35.49
Table 3. Results obtained with AlexNet on ImageNet, for a standard AlexNet (baseline), with an added Tensor Contraction Layer (Added
TCL) and by replacing the first fully-connected layer with a TCL (TCL substitution). Simply adding the TCL results in a higher performance

while having a minimal impact on the number of parameters in the fully connected layers. By reducing the size of the TCL or using a TCL

to replace a fully connected layer, we can obtain a space savings of more than 35% with virtually no deterioration in performance.

the AlexNet architecture. ImageNet is composed of 1.2 mil-

lions image for testing and 50,000 for validation and com-

prises 1,000 labeled classes.

For these experiments, we trained each network simulta-

neously on 4 NVIDIA k80 GPUs using data parallelism and

report preliminary results. We report Top-1 accuracy on the

validation set, across all 1000 classes. All experiments were

run using the same setting.

Network architecture We use a standard AlexNet [14].

From the last convolutional layer, we get an activation ten-

sor of size (batch size, 256, 5, 5). As in the CIFAR100

case, we experiment with several variations of the tensor

contraction layer. We first insert a TCL before the fully

connected layers, either a size-preserving TCL (i.e. pro-

jecting to a tensor of the same size) or with a smaller size

TCL and a proportionally smaller number of hidden units in

the subsequent fully connected layers. We then experiment

with replacing completely the first fully connected layer by

a TCL.

3.2.1 Results

In Table 3 we summarize the results from a classical

AlexNet (Baseline, first row), with an added tensor contrac-

tion layer (Added TCL) that preserves the dimensionality of

its input (row 2) or reduces it (last row). We also report

result for substituting the first fully connected layer with a

TCL (1 TCL substitution, last row). Simply adding the TCL

improves performance while the increase in number of pa-

rameters in the fullly connected layers is negligible. We can

obtain similar performance by first adding a TCL to reduce

the dimensionality of the activation tensor and reducing the

number of hidden units in the fully connected layers, lead-

ing to a large space saving with virtually no decrease in per-

formance. Replacing the first fully connected layer with a

size-preserving TCL results in a similar space savings while

maintaining the same performance as the standard network.

4. Discussion
We introduced a new neural network layer that performs

a tensor contraction on an activation tensor to yield a low

dimensional representation of it. By exploiting the natu-

ral multi-linear structure of the data in the activation ten-

sor, where each mode of the tensor corresponds to a distinct

modality of the data (i.e. the dimensions of the image and

the channels) we are able to decrease the size of the data

representation passed to later layers in the network without

compromising accuracy on image recognition tasks.

The biggest practical contribution of the tensor contrac-

tion layer is the drastic reduction in the number of param-

eters with little to no performance penalty. This also al-

lows neural networks to perform faster inference with fewer

parameters by increasing their representational power. We

demonstrated this via the performance of our Tensor Con-

traction Layer on the widely used CIFAR100 dataset with

two established architectures, namely AlexNet and VGG.

We also show results with AlexNet on the ImageNet dataset.

Our proposed tensor contraction layer seems to be able to

capture the underlying structure in the activation tensor and

improve performance when added to an existing network.

When we replace fully-connected layers with TCLs, we sig-

nificantly reduce the number of parameters and nevertheless

maintain (or in some cases even improve) performance.

Going forward, we plan to extend our work to more net-

work architectures, especially in settings where raw data or

learned representations exhibit natural multi-modal struc-

ture that we might capture via high-order tensors. We also

endeavor to advance our experimental study of TCLS for

large-scale, high-resolutions vision datasets. Given the time

required to train a large network on such datasets we are in-

vestigating ways to reduce the dimension of the tensor con-

tractions of an already trained model and simply fine tune.

In addition, recent work [18] has shown that new extended

BLAS primitives can avoid transpositions needed to com-

pute the tensor contractions. This will further speed up the

computations and we plan to implement it in future. Fur-

thermore, we will look into methods to induce and exploit

sparsity in the TCL, to understand the parameter reductions

this method can yield over existing state of the art prun-

ing methods. Finally, we are working on an extension to

the TCL: a tensor regression layer to replace both the fully

connected and final classification, potentially yielding in-

creased accuracy with even greater parameter reductions.

1945

References
[1] A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and

M. Telgarsky. Tensor decompositions for learning latent

variable models. Journal of Machine Learning Research,

15(1):2773–2832, 2014. 1

[2] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. CoRR, abs/1512.01274, 2015. 5

[3] Y. Chen, X. Jin, B. Kang, J. Feng, and S. Yan. Sharing resid-

ual units through collective tensor factorization in deep neu-

ral networks. 2017. 1

[4] N. Cohen, O. Sharir, and A. Shashua. On the expres-

sive power of deep learning: A tensor analysis. CoRR,

abs/1509.05009, 2015. 1

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 4, 5

[6] B. D. Haeffele and R. Vidal. Global optimality in ten-

sor factorization, deep learning, and beyond. CoRR,

abs/1506.07540, 2015. 1

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quan-

tization and huffman coding. International Conference on
Learning Representations (ICLR), 2016. 2

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015. 4

[9] M. Janzamin, H. Sedghi, and A. Anandkumar. Generaliza-

tion bounds for neural networks through tensor factorization.

CoRR, abs/1506.08473, 2015. 1

[10] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.

Multiverse recommendation: n-dimensional tensor factor-

ization for context-aware collaborative filtering. In Proceed-
ings of the fourth ACM conference on Recommender systems,

pages 79–86. ACM, 2010. 1

[11] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for fast

and low power mobile applications. CoRR, abs/1511.06530,

2015. 1

[12] T. G. Kolda and B. W. Bader. Tensor decompositions and

applications. SIAM REVIEW, 51(3):455–500, 2009. 2

[13] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009. 4

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012. 2, 4, 6

[15] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and

V. S. Lempitsky. Speeding-up convolutional neural networks

using fine-tuned cp-decomposition. CoRR, abs/1412.6553,

2014. 1

[16] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Ten-

sorizing neural networks. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Sys-
tems, NIPS’15, pages 442–450, 2015. 1

[17] H. Sedghi and A. Anandkumar. Training input-output re-

current neural networks through spectral methods. CoRR,

abs/1603.00954, 2016. 1

[18] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka. Ten-

sor contractions with extended blas kernels on cpu and gpu.

In 2016 IEEE 23rd International Conference on High Per-
formance Computing (HiPC), pages 193–202, Dec 2016. 6

[19] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 2, 4

[20] Y. Yang and T. M. Hospedales. Deep multi-task represen-

tation learning: A tensor factorisation approach. CoRR,

abs/1605.06391, 2016. 1

1946

