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Abstract
Traditional centralised scheduling has becoming unsuit-

able to analytics clusters with ever growing workload. As
a promising alternative, sample based scheduling is highly
scalable and, due to its decentralised nature, immune from
becoming potential system bottleneck. However, the exist-
ing design could only function well in very specific applica-
tion scenarios. Specifically, we argue that the performance
of the baseline sample based scheduling method is sensi-
tive to workload heterogeneity and the cluster’s individual
worker strength. In this work, we propose a novel method to
reduce these sensitivities. We implement our method in the
Sparkle scheduler and demonstrate our scheduler is capable
of adapting to a much wider range of scenarios. Instead of
introducing extra system costs, Sparkle’s improved perfor-
mance is gained by cutting unnecessary wastes and reduc-
ing the number sub-optimal scheduling decisions. Hence it
could also serve as a foundation model for further studies in
decentralised scheduling.

Categories and Subject Descriptors C.2.4 [Cloud comput-
ing]: Software architecture; K.6.4 [Management of com-
puting and information systems]: System Management–
Centralization/decentralization

Keywords Cluster computing, sample based method

1. Introduction
In the near future, the clusters are expected to expand fur-

ther in both size and workload[6][7]. This trend poses an
enormous challenge to the widely used centralised sched-
ulers. As the sole bridge between jobs and workers in a
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cluster, a centralised scheduler may become a potential sys-
tem bottleneck. Although the scheduler can be continuously
enhanced, each upgrade may also increase its complexity
and make it harder, and eventually, impractical to maintain.
Hence, adopting decentralised schedulers would be a more
effective solution in the long run[8].

One way to build decentralised schedulers is to use a
sample based design [3]. The core idea is that whenever a
scheduler needs to make a decision about task placement,
it no longer decides among the complete set of workers in
the cluster, but only chooses from a small randomly sampled
subset (known as the ’sample cluster’). To maintain overall
load balance, each scheduler redraws its sample cluster for
every new task. Following this strategy, there is no longer
a need to maintain the complete logic graph connecting all
jobs to all workers. Hence multiple schedulers may co-exist
in the same cluster, functioning independent from each other
[5]. Our DataOS project in ISCAS aims at building next-
generation data-centric cloud operating system, of which
decentralised scheduling method is an integral part.

However, the aforementioned method only fits into a nar-
row scope of usage. We identify its two weaknesses, namely,
the sensitivities to workload heterogeneity and individual
worker strength. Specifically, its performance (in terms of
job delay) deteriorates quickly when the workload becomes
more heterogeneous and when the individual workers are
weak (i.e., each containing fewer parallelisable slots). Al-
though the two issues have been long existed for centralised
scheduling as well and there have been a number of solutions
[1][9][13][15] proposed by the community, these solutions
cannot be easily adapted to sample based schedulers.

In this paper, we propose two novel methods to tackle
these problems in sample based scheduler. Firstly, we use a
worker-end prediction method called ”traffic light” to bet-
ter support heterogeneous workload. The traffic light gives
a quick and rough estimation about the worker’s availability
during the scheduling process, providing scheduler with ev-
idences toward better decision. It can also serve as the basis
for extra policies such as delayed scheduling. Secondly, to
reduce the impact of weak workers, each scheduler in our de-



sign maintains a worker blacklist. To be used in conjunction
with traffic light, the blacklist enables the scheduler to make
full use of information acquired from previous scheduling
sessions, thus further reduce the number of sub-optimal de-
cisions.

We implemented our methods in an adaptive scheduler
named Sparkle, which has been tested on a heavy weight
simulated cluster. The result shows that comparing to the
baseline method Sparkle could reduce up to 40% of the
extra job delay caused by workload heterogeneity. It also
better maintains its performance while switching to a cluster
with weaker workers, reducing up to 20% of delay in weak
worker cluster.

The remainder of this paper is organised as follows. Sec-
tion 2 presents background and related works. Section 3
presents the design of Sparkle. In Section 4, experiment re-
sults are discussed. Finally, Section 5 concludes this paper
with some remarks on future work.

2. Related Work
Centralised scheduling is neither the only nor the ideal

method for cluster computing[8]. Many efforts have been
invested to explore alternative, decentralised, methods. Stan-
dalone resource management like in Mesos[2] and Yarn[10]
splits the centralised structure into layered structure, so that
the load of scheduler could be shared. These methods, how-
ever, are still not easily scalable. Auction based method[12]
offers dynamic and decentralised structure based on attract
economy model. Omega[8] provides flexible and scalable
design based on shared state mechanism and optimistic
conflict expectations. Sparrow[5] optimize sample (probe)
based design for sub-second parallel jobs while keeping the
inherited high scalability. Our work extends sample based
design, enabling it to better handle heterogeneous workload.
The impact of workload heterogeneity has been widely in-
vestigated for centralised (monolithic) scheduling[13]. Reor-
ganisation of job and task[11], invoke intentional delay[14],
implement priorities and preemptive action[4], execution
estimation[9], etc, could all, to some extend, reduce such
impact. In this paper we focus on how such improvement
could be made for sample based structure.

3. The Sparkle Scheduler
The high scalability of sample based scheduling is a clear

advantage over the more traditional centralised scheduling
strategies in today’s ever-expanding clusters. However, in
practice, the performance of sample based scheduling can
be hindered by a number of issues, preventing the method
to reach its full potential. In Sparkle, we try to tackle the
two most prominent ones, namely, the method’s sensitivity
to workload heterogeneity and individual worker strength.
The principle of our design is to reduce the impact by cutting
unnecessary waste and the number of sub-optimal schedul-
ing decisions.
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Figure 1. The availability status of two workers (running
on nodes N1 and N2, respectively) in a sample cluster. Both
workers have 4 slots for parallelised execution of tasks.

To keep this work concentrated, a number of simplified
assumptions have been made. Firstly, following the ”power
of two” law[3], we fix the sample cluster size to two workers.
Secondly, since we are focusing on task-level scheduling
in this study, we assume each job only contains one task.
Nonetheless, existing methods about how to efficiently break
jobs into tasks can be directly applied on top of Sparkle in
practice.

3.1 Traffic Light
Traffic light is designed to mitigate the impact of hetero-

geneous workload in sample based scheduling.
Because sample based scheduler allocates tasks to a small

subset of workers, it is more likely to need to choose be-
tween two busy workers, hence is more prone to making
poor decisions because of workload heterogeneity. An exam-
ple is shown in Figure 1. There are two workers on node N1
and N2, respectively, and both are busy. When these workers
form a sample cluster, according to queue length, N2 should
be selected for the new task because it has an empty task
queue. In this case, the waiting time of the new task would be
proportional to the execution time of long tasks. In compar-
ison, although there are two tasks queued in N1, the waiting
time for a new task would be only in proportion to the length
of sub-second tasks. Therefore, although N2 has a shorter
task queue, allocating the new task to N2 is actually a sub-
optimal decision.

We aim at reducing these sub-optimal scheduling deci-
sions by utilising a worker-end prediction method called
traffic light. In our method, in addition to queue length, the
sampled workers also provide a more informative discrete
indicator (the traffic light) about their availability. The indi-
cator can be in one of the following three states. A green
light represents that there are resources (i.e., empty slots)
immediately available in this worker, hence choosing it is
recommended. A red light means the worker is busy and the



waiting time for the new task is expected to be unacceptably
long, thus the scheduler should avoid placing the new task on
this worker. A yellow light tells that the worker is busy but
will have resources available in the near future. The pseudo
code for determining traffic light colour is given in Algo-
rithm 1. As illustrated in the code, the difference between
red light and yellow light is that in the former case, the new
task would need to wait for the completion of at least one
task having an expected execution time an order of magni-
tude longer than its own. Choosing a yellow coloured worker
does not guarantee low responding latency, but it does make
sure the new task’s waiting time is in proportion to its own
length.

Algorithm 1 Calculate Traffic Light Colour
Require: The new task being scheduled, task; The worker

running this calculation, worker;
Ensure: The traffic light colour, TLworker

1: m = the number of tasks running in worker with a
duration order of magnitude longer than task;

2: n = the number of tasks in worker’s queue with a
duration order of magnitude longer than task;

3: sc = the total number of slots in worker;
4: If worker is not busy, TLworker =GREEN;
5: Else If m+n < sc, TLworker =YELLOW;
6: Else TLworker =RED;

Figure 2 illustrates how traffic light is used in Sparkle.
When a sample cluster is formed, the scheduler sends a
probe with task description to all sampled workers. The cal-
culation of traffic light then takes place on the worker-side.
After receiving the status information (which contains the
traffic light colour) from all workers, the scheduler allocates
the task based on the following policies:
P1. Choose any green coloured worker if at least one exists;
P2. If all workers are either yellow or red, choose the yellow
worker with shorted task queue length;
P3. If all workers are red, choose the one with shortest task
queue length;
This policy set is also configurable in order to meet the spe-
cific needs of different application scenarios. Moreover, the
simplicity of the traffic light also allows it to serve as a basis
for other existing methods, such as delayed scheduling.

3.2 Worker Blacklist
The effectiveness of the traffic light method alone can be

less significant when the cluster is constructed from a large
number of weak workers. With both the workload and over-
all cluster strength stay unchanged, a scheduler would still
have a higher probability to encounter only red-coloured
workers in its sample cluster when each worker contains
fewer slots. When the traffic light can no longer provide
discriminative information, tasks would be scheduled in the
same way (i.e., only based on worker’s task queue length) as
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Figure 2. Using traffic light in Sparkle.

in the baseline sample based scheduling method, thus obtain-
ing no improvement. Aiming at eliminating these degenera-
tive situations, we propose the worker blacklist mechanism
as a further refinement.

The blacklist mechanism reduces the chance of drawing
red-colour workers by reusing the worker status informa-
tion collected from previous scheduling sessions. The base-
line sample based scheduler is stateless, meaning that no
worker status statistics is accumulated over time. After each
scheduling session, the information received from sampled
workers is discarded completely. This approach is based on
the assumption that worker status can change extremely fast.
However, with traffic light introduced, it can be deduced
that this assumption does not hold for red-coloured workers.
Since these workers are executing tasks at least an order of
magnitude longer than the task being scheduled, their status
(in terms of traffic light colour) is unlikely to change when
a subsequent task of the same type arrives. Therefore, by
recording these workers in a blacklist and avoiding choosing
them when forming a sample cluster for the subsequent task,
the chance of drawing red-coloured workers can be reduced.

Specifically, the worker blacklist mechanism works as
follows. We use a separate worker blacklist for each type of
tasks and each scheduler maintains its own set of blacklists.
When a red-coloured worker is identified during scheduling
a task of type T, it is put into the blacklists for type T and
all other task types of a shorter length. These entries would
have an expiration time set to T’s length. When a new task
of type T arrives, the scheduler would first mask all workers
in blacklists for type T and all other task types of a longer
length and then form a sample cluster from the remaining
workers.

Under high task throughput scenarios, the blacklists
would mask a considerable amount of unsuitable worker be-
fore the scheduling starts, thus lead to much better schedul-
ing performance. This improvement is especially noticeable
in clusters with many weak workers, which are more sus-
ceptible to becoming red workers.

3.3 Sparkle Architecture
Illustrated in Figure 3, Sparkle combines traffic light and

worker blacklist with the sample based process. The proce-
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Figure 3. Sparkle’s scheduling dynamics.

s Number of slots per worker
t Mean task service time
z Sample size per task
h Number of schedulers functioning
q Queue length of a busy worker
λ Mean request arrival rate
ρ Overall Cluster load (fraction non-idle slots)

Table 1. Summary of notation.

dure of Sparkle’s scheduling dynamics is labelled as eight
steps in the figure. The procedure starts when a task is about
to be scheduled. In step 1, the scheduler generates probes
for information gathering. Step 2 sees the scheduler check-
ing the blacklists to make sure all target workers in the probe
are likely to be either green or yellow. In step 3, the probe
action requests all target worker to response. When receiv-
ing the probe in step 4, workers calculate their traffic light
colour and return their status. All information then gathered
from the sample cluster in step 5 and red-coloured workers
are identified in step 6. These workers are recorded in the
blacklists in step 7. Finally, in step 8, a scheduling decision
is made according to predefined policies. Note that when the
policy is default to delayed scheduling, step 8 may also ac-
tively start a re-scheduling process.

3.4 Analysis
In this section, we give a brief analysis about traffic light.

Notations used are listed in Table 1. When the cluster is un-
der load ρ, the probability of a size z sample cluster contain-
ing at least one idle slot is: 1−ρz∗s. This also means for each
scheduling session, there is a ρz∗s chance to encounter only
busy workers in the sample cluster. Without traffic light, this
is when a sub-optimal scheduling decision may be made, as
comparison based on queue length only makes sense with
homogeneous workload.

Although traffic light does not change the proportion of
available workers, it categorises busy workers a step further,
thus facilitates better informed decision making. Consider
the situation when the scheduler is working with heteroge-
neous workload, for every particular task to be scheduled,
the workload can be divided into two set: set A for tasks be-
ing the same or order(s) of magnitude shorter than the new
task and set B for all other tasks. In this case, for any busy
slot, the probability of running a task in B is: λB ∗ tB/(λA ∗
tA+λB ∗tB) (denoted by ϕB). Hence in a busy worker with
q queued tasks, the probability that x task(s) from B exist in
this worker is:

(
x

s+q

)
∗ (ϕB

x) ∗ ((1 − ϕB)
s+q−x) (denoted

by ψB(x)). The probabilities of different traffic light colours
are shown as in equation (1).

P(light) =


1− ρs light is GREEN
ρs ∗

∑s−1
x=0 ψB(x)) light is YELLOW

ρs ∗
∑s+q

x=s ψB(x)) light is RED
(1)

With traffic light enabled, we have a P(RED) chance
of declaring one worker in the sample cluster as temporar-
ily inappropriate for the given task type. This enables the
scheduler to reduce misjudgements between multiple busy
workers, hence increase the cluster performance. More im-
portantly, it allows us to take future measures on these red
light workers. At high rate of λ∗z/h, traffic light is evaluated
frequently and red-coloured workers are put into blacklists.
Hence during each scheduling session, the number of work-
ers to choose from is reduced. Since the number of ’good’
(non-red-coloured) workers stays the same, this leads to a
decrease in the expected averaged waiting time.

4. Experimental Evaluation
We performed two experiments to examine the per-

formance of Sparkle. The first experiment evaluated how
Sparkle compares to the baseline sample based scheduling
method under different levels of workload heterogeneity.
The second experiment tested Sparkle’s adaptability to weak
workers. We implemented Sparkle and the baseline sched-
uler in a custom-built heavy-weight simulation platform. All
schedulers and the simulation platform is available online at:
https://github.com/chunliang-hao/Sparkle.

In our experiments, we used two different metrics for the
evaluation of scheduling performance. One is the average
relative delay in task response, which reflects the ratio be-
tween a task’s actual response time and its expected execu-
tion time. This metric is used (instead of absolute delay) be-
cause it is normalised for different of task types in heteroge-
neous workload so that the measurement would be unbiased.
The second metric we chose is the proportion of tasks with a
relative delay exceeding 0.1. This metric is chosen because,
in practice, one common requirement in SLA is to have a
maximum relative delay of 0.1.



Figure 4. Average relative response delay under different
workload heterogeneity levels when using the schedulers
with and without traffic light.

4.1 Sparkle with Heterogeneous Workload
We compared sample based schedulers with and without

traffic light on a simulated 200 worker cluster, with each
worker containing 8 slots. Sample size was fixed to 2 and
one-task-jobs were used for simplification, as discussed ear-
lier. We started with a homogeneous workload with only 0.1s
jobs. We then ran 10 subsequent tests, each having a work-
load containing both short (0.1s) job and long (0.5s 5s) job.
The arrival intervals for both types of jobs followed an iden-
tical Poisson distribution. In all tests, the overall workload
was adjusted so that cluster was stable at 80% utilisation.

The performance of the two schedulers in terms of rela-
tive response delay is illustrated in Figure 4. As shown in the
figure, the schedulers performed almost the same under ho-
mogeneous workload. In this case, the small difference be-
tween their performances could be attributed to the random-
ness in job arrival and worker sampling. When the work-
load gradually became more heterogeneous, the scheduler
with traffic light (labelled as ’with TL’ in the figured) consis-
tently outperformed the baseline method. The figure shows
that traffic light eliminated more than one third of delays
caused by workload heterogeneity in this experiment. The
improvement is especially noticeable at high heterogeneity
levels. In particular, Sparkle with traffic light outperformed
the baseline scheduler by more than 30% in the last test with
a workload composed from 0.1s and 5s jobs.

Figure 5 shows the proportion of jobs with relative delay
exceeding 0.1 (referred to as unqualified jobs) in the same
experiment. As can be observed, enabling traffic light re-
duced the amount of unqualified jobs by around 15% under
high workload heterogeneity scenarios. Through this exper-
iment, we show that traffic light allowed the sample based
scheduler to better handle heterogeneous workload, alleviat-
ing about one third of the performance loss caused by work-

Figure 5. Proportion of unqualified jobs under different
workload heterogeneity levels when using the schedulers
with and without traffic light.

load heterogeneity with only small computation cost and no
extra communication cost.

4.2 Sparkle with Weak Workers
In this experiment, we tested Sparkle on clusters with dif-

ferent level of worker strength to observe how it could help
reducing the loss in scheduling performance on clusters built
from weak workers. In a series of tests, we gradually re-
duced the amount of resources (number of slots) available
to each worker while maintaining the overall resource level
in the cluster unchanged (through increasing the number of
workers). During each test, we injected the workload with
equal amounts of 0.1s and 1s jobs until the cluster stabilised
at 60%, 70% and 80% overall load level, respectively. Fig-
ure 6 shows that as individual workers became weaker, the
overall average job delay increased accordingly. However,
the increase was at a slower pace when Sparkle was used. In
particular, comparing to the baseline, Sparkle achieved 40%
improvement in terms of relative delay on the cluster built
from 2-slot workers, under 80% cluster load level.

Figure 7 shows that the baseline sample based scheduler
produced much more unqualified jobs on clusters with weak
workers. Specifically, in the cluster constructed from 2-slot-
workers, the proportion of unqualified jobs reached 50%
under 80% cluster load level. In comparison, up to a third
of these unqualified jobs were eliminated when Sparkle was
used.

5. Conclusions and Future Work
In this paper, we proposed the traffic light and worker

blacklist mechanisms to extend the scope of sample based
scheduling by reducing the number of sub-optimal schedul-
ing decisions caused by workload heterogeneity and weak
workers. Our methods only introduce few steps of compu-
tation and incur no extra communication cost. We imple-



Figure 6. Average relative response delay on clusters with
different worker strength levels when using Sparkle and the
baseline scheduler.

Figure 7. Proportion of unqualified jobs on clusters with
different worker strength levels when using Sparkle and the
baseline scheduler.

mented these refinements in the Sparkle scheduler, which
can also be easily extended to incorporate delayed schedul-
ing, batch scheduling, late binding and other existing meth-
ods due to its simplicity.
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