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Abstract—This paper presents a user-independent emotion recognition method with the goal of recovering affective tags for videos
using electroencephalogram (EEG), pupillary response and gaze distance. We first selected 20 video clips with extrinsic emotional
content from movies and online resources. Then EEG responses and eye gaze data were recorded from 24 participants while watching
emotional video clips. Ground truth was defined based on the median arousal and valence scores given to clips in a preliminary study
using an online questionnaire. Based on the participants’ responses, three classes for each dimension were defined. The arousal
classes were calm, medium aroused and activated and the valence classes were unpleasant, neutral and pleasant. One of the three
affective labels of either valence or arousal was determined by classification of bodily responses. A one-participant-out cross validation
was employed to investigate the classification performance in a user-independent approach. The best classification accuracy of 68.5%
for three labels of valence and 76.4% for three labels of arousal were obtained using a modality fusion strategy and a support vector
machine. The results over a population of 24 participants demonstrate that user-independent emotion recognition can outperform
individual self-reports for arousal assessments and do not underperform for valence assessments.

Index Terms—Emotion recognition, EEG, Pupillary reflex, Pattern classification, Affective computing.
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1 INTRODUCTION

EMOTIONS play an important role in viewers’ content
selection and consumption. With the rapid expan-

sion of digital multimedia content, alternative methods
to the existing explicit tagging are needed to enrich the
pool of tagged content. When a user watches video
clips or listens to music, he/she may experience cer-
tain feelings and emotions [1], [2], [3] which manifest
through bodily and physiological cues, e.g., pupil dila-
tion and contraction, facial expressions, e.g., frowning,
and changes in vocal features, e.g., laughter.

In order to translate user’s bodily and behavioral
reactions to emotions, reliable emotion assessment tech-
niques are required. Emotion assessment is a challenging
task; even users are not always able to express their
emotion with words and the emotion self-reporting error
is not negligible. This makes it difficult to define a
ground truth. Affective self-reports might be held in
doubt because users cannot always remember all the
different emotions they had felt during watching a video,
and/or might misrepresent their feelings due to self
presentation, e.g., a user wants to show he is coura-
geous whereas in reality he was scared [4]. The emotion
recognition system provides us with an alternative that
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reduces the effort of deciding on the right label and
on defining the right questions or methods to assess
emotions explicitly.

One of the most accepted and well-known theories
which explains the process of emotional experience is
appraisal theory. According to this theory, cognitive
judgment or appraisal of situation is a key factor in
the emergence of emotions [5], [6], [7]. According to
Orthoney, Clore and Collins (OCC) [6] emotions are
experienced with the following scenario. First, there is
a perception of an event, object or an action. Then,
there will be an evaluation of events, objects or actions
according to personal wishes or norms. Finally, the
perception and evaluation result in a specific emotion.
Considering this scenario for an emotional experience
in response to multimedia content, emotions arise first
through sympathy with the presented emotions in the
content. During appraisal process for an emotional ex-
perience in response to multimedia content, a viewer
examines events, situations and objects with respect to
their novelty, pleasantness, goal, attainability, copability,
and compatibility with his/her norms. Then, viewer’s
perception induces specific emotions which changes the
viewer’s physiological responses, motor actions, and
feelings [8].

Scherer [9] categorized emotions into utilitarian and
aesthetic emotions. Emotional responses to videos are a
mixture of both utilitarian and aesthetic emotions with
an emphasize on the later one. Existence of aesthetic
emotional responses discourages simply using six well-
known basic emotions in the context of emotion under-
standing of videos.

Digital Object Indentifier 10.1109/TAC.2011.37 1949-3045/11/$26.00 ©  2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANS. AFFECTIVE COMPUTING 2

1.1 Background

Emotional responses to multimedia content have been
studied from three perspectives. There has been a re-
search trend towards estimating emotions from multi-
media content [10], [11], [12]. On the other hand, rec-
ognizing emotions induced by videos has been studied
in the affective computing community [13], [14], [15],
[3], [16]. The emotion recognition has been also used
in applications such as detecting topical relevance, or
summarizing videos [17], [13], [18]. This paper presents
an emotion recognition method using EEG signals and
eye gaze data in response to videos using users’ bodily
responses.

Hanjalic and Xu [10] introduced “personalized con-
tent delivery” as a valuable tool in affective indexing
and retrieval systems. In order to represent affect in
video, they first selected video and audio content based
features based on their relation to the valence-arousal
space that was defined as an affect model. Irie et al.
[19] proposed a latent topic model by defining affective
audio-visual words in the content of movies to de-
tect emotions in movie scenes. They extracted emotion-
category-specific audio-visual features named affective
audio-visual words. These higher level features were
used to classify movie scenes using a latent topic driving
model. This model takes into account temporal informa-
tion which is the effect of the emotion from precedent
scene to improve affect classification. The probability of
emotional changes between consecutive scenes was also
used in [20] to improve emotional classification of movie
scenes using content features.

Emotional characteristics of videos have also im-
proved music and image recommendation. Shan et al.
[12] used affective characterization using content analy-
sis to improve film music recommendation. Tkalčič et al.
showed how affective information can improve image
recommendation [11]. In their image recommendation
scenario, affective scores of images from the international
affective picture system (IAPS) [21] were used as fea-
tures for an image recommender. They conducted an
experiment with 52 participants to study the effect of
using affective scores. The image recommender using
affective scores showed a significant improvement in the
performance of their image recommendation system.

Joho et al. [17], [13] developed a video summarization
tool using facial expressions. A probabilistic emotion
recognition based on facial expressions was employed
to detect emotions of 10 participants watching eight
video clips. The participants were asked to mark the
highlights of the video with an annotation tool after the
experiments. The expression change rate between differ-
ent emotional expressions and the “pronounce level” or
amount of expression were used as features to detect
personal highlights in the videos. The pronounce levels
they used was ranging from highly expressive emotions,
surprise and happiness, to no expression or neutral. They
have also extracted two affective content-based features

which were audio energy and visual change rate from
videos to create an affective curve in the same way as
the affective highlighting method proposed by Hanjalic
[10]

There has been long standing research on emotion
assessment from physiological signals [1], [22], [23], [24],
[14], [25]. Amongst these studies, few of them achieved
notable results using video stimuli. Lisetti and Nasoz
used physiological response to recognize emotion in
response to movie scenes [14]. The movie scenes elicited
six emotions, namely sadness, amusement, fear, anger,
frustration and surprise. They achieved a high recogni-
tion rate of 84% for the recognition of these six emotions.
However the classification was based on the analysis of
the signals in response to pre-selected segments in the
shown video known to be related to highly emotional
events.

Takahashi [15] recorded EEG and peripheral phys-
iological signals from 12 participants. He then classi-
fied the responses to emotional videos into five classes
namely, joy, sadness, disgust, fear, and relax. He achieved
the accuracy of 41.7% using EEG signals. However
the feature level fusion of EEG signals and peripheral
physiological signals failed to improve the classification
accuracy.

An affective characterization for movie scenes using
peripheral physiological signals as well as multimedia
content features was proposed by Soleymani et al. [3].
Eight participants watched 64 movie scenes and self-
reported their emotions. Affective correlates between dif-
ferent physiological and content features were studied.
A linear regression trained by relevance vector machines
(RVM) was utilized to estimate each clip’s affect from
physiological and content features.

Koelstra et al. [16] recorded EEG and peripheral phys-
iological signals of six participants in response to music
videos. Participants rated their felt emotions by means of
arousal, valence and like/dislike rating rating. The emo-
tional responses of each participant was classified into
two classes of low/high arousal, low/high like/dislike,
and low/high valence. The average classification rates
varied between 55% and 58% which is slightly above
random level.

In a more recent study, Kolodyazhniy et al. [26] used
peripheral physiological signals to recognize neutral,
fear and sadness responses to movie excerpts. During
the presentation of videos to the participants, they in-
troduced startle stimuli using randomly generated white
noise sounds to boost physiological responses. Their
system was able to recognize sadness, fear and neutral
emotional states with the recognition rate of 77.5% in a
participant-independent approach.

Eye gaze and pupillary responses has been used ex-
tensively to measure attention. However, we are not
aware of research on how emotions affect eye gaze
while watching videos; therefore the eye gaze itself has
not been used for emotion recognition. The pupillary
response is the measurement of pupil diameter over
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time. Pupil can dilate or constrict in response to light,
cognitive, attentional and emotional stimuli [27], [28].
Gao et al. [29] showed the significance of using pupillary
reflex for emotion assessment after reducing the light
effect using a real-time feedback.

1.2 Potential application

Characterizing multimedia content with relevant, reli-
able and discriminating tags is vital for multimedia
information retrieval. Affective characteristics of multi-
media are important features for describing multime-
dia content and can be presented by such emotional
tags. Implicit affective tagging refers to the effortless
generation of subjective and/or emotional tags. Implicit
tagging of videos using affective information can help
recommendation and retrieval systems to improve their
performance [12], [11], [30].

Currently, social media websites encourage users to
tag their content. However, the users’ intent when tag-
ging multimedia content does not always match the in-
formation retrieval goals. A large portion of user defined
tags are either motivated by the goal of increasing the
popularity and reputation of a user in an online commu-
nity or based on individual and egoistic judgments [31].
Implicit tagging does not interrupt users while listening
or watching a video. Moreover, in presence of a reliable
implicit tagging measurement method, determined tags
carry less irrelevant and inaccurate information.

Users do not evaluate media content on the same
criteria. Some might tag multimedia content with words
to express their emotion while others might use tags
to describe the content. For example, a picture receive
different tags based on the objects in the image, the
camera by which the picture was taken or the emotion
a user felt looking at the picture. Scherer defines this by
intrinsic and extrinsic appraisal [9]. Intrinsic appraisal
is independent from the current goals and values of the
viewer while extrinsic or transactional appraisal leads to
feeling emotions in response to the stimuli. For example,
the content’s intrinsic emotion of a picture with a smiling
face is happiness whereas this person might be a hatred
figure to the viewer and the extrinsic appraisal leads to
unpleasant emotions. What we want to detect is the later
one that is the emotion felt by the viewer.

The goal of implicit affective tagging is thus to monitor
the reactions of a person in response to a particular
multimedia content and automatically recognize the cor-
responding tag. These responses can be used to reliably
generate affective tags. A scheme of implicit tagging
scenario versus explicit tagging is shown in Fig. 1.

In the proposed implicit tagging scenario, multimedia
content will be tagged based on the bodily reactions
of users recorded by a physiological acquisition device
and an eye gaze tracker. The reactions can be used
both to find tags common to a population and to de-
velop a personal profile possibly in combination with
user preferences and browsing history. With the recently
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Fig. 1. Implicit affective tagging vs. explicit tagging
scenarios. The analysis of the bodily responses replace
the direct interaction between user and the computer.
Therefore, user do not have to be distracted for tagging
the content.

marketed physiological devices such as Neurosky1, and
Emotiv helmet2, physiological interfaces are likely going
to be the emerging human computer interfaces of the
future.

1.3 Research questions

Although individual differences are always present in
emotional reactions, there usually also exists one more
common affective response in a population to a multi-
media content. For example the scenes from a drama
movie induce sadness in most of the people. For a
dramatic scene, sadness can be considered the popular or
frequently felt emotion. In this paper, we investigate and
show the feasibility and comparable performance of a
user-independent emotion recognition to detect the dom-
inant or commonly selected affective tags. The implicit
tagging application limited our choices for modalities to
cues which are measurable while participants are sitting
and are mostly in passive mode. The research questions
that this paper investigates are:

1) Is it possible to design an accurate and user-
independent classification protocol to recognize
emotions from pupillary reflex, EEG signals and
other bodily responses in response to video con-
tent?

2) Can non-verbal affective cues replace affective self-
report with comparable emotion recognition per-
formance and no requisite of direct user inputs?

The rest of the paper is organized as follows. The
emotion model, video dataset, experimental protocol and
physiological dataset classification are discussed in Sec-
tion 2. Section 3 presents and discusses the experimental
results and compares their performance to self-reports.
The current methods’ open issues and future work are
discussed in Section 4. The paper is concluded in Section
5.

1. http://www.neurosky.com/
2. http://www.emotiv.com/
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2 MATERIAL AND METHODS
2.1 Emotional model
Although the most straightforward way to represent an
emotion is to use discrete labels such as fear, and joy,
label-based representations have some disadvantages.
The main one being that labels are not cross-lingual:
emotions do not have exact translations in different
languages, e.g., “disgust” does not have an exact trans-
lation in Polish [32]. Psychologists therefore often rep-
resent emotions or feelings in an n-dimensional space
(generally 2- or 3-dimensional). The most famous such
space, which is used in the present study and origi-
nates from cognitive theory, is the 2D valence-arousal
or pleasure-arousal space [33]. The valence scale ranges
from unpleasant to pleasant. The arousal scale ranges
from passive to active or excited.

2.2 Preliminary study
In the preliminary study 21 commercially produced
movies were first segmented into their scenes. Scenes
longer than two minutes were divided into shorter two
minutes long excerpts. From these excerpts, 155 emo-
tional video clips containing full or part of movie scenes
were manually selected. The 155 selected videos were
shown to more than 50 participants; each video clip
received 10 annotations in average [34]. The preliminary
study was conducted utilizing an online affective anno-
tation system in which the participants were able to use
a web interface to report their emotions in response to
the videos played by a web-based video player (see Fig.
2). In case of using videos from online repositories, the
full length videos were used in the dataset.

In the preliminary study the participants were thus
asked to self-assess their emotion by reporting the felt
arousal (ranging from calm to excited/activated) and
valence (ranging from unpleasant to pleasant) on nine
points scale as well as emotional keywords. 14 video
clips were chosen based on the preliminary study from
the clips which received the highest number of emotional
keyword tags in different emotion categories which are
listed in the Table 1. Videos were selected to cover differ-
ent emotional responses (see Fig. 3). Three other popular
video clips from online resources were added to this set
(two for joy/happiness and one for disgust). Three past
weather forecast reports (retrieved from youtube.com)
were also used as neutral emotion clips. The videos from
online resources were added to the dataset to enable us
to distribute some of the emotional video samples with
the recorded multi-modal dataset described below. Table
1 gives the emotional labels, titles, and sources of the
emotional video clips.

The median arousal and valence was used to deter-
mine ground truth labels with the following procedure.
First, the values assessed by the online questionnaire
were centered and then three equal length intervals were
defined on the assessment range (arousal, valence ∈
[1, 9]). The labels assigned to all videos are given in Table

1. The distribution of online self emotions for the selected
videos is shown in Fig. 3.

Fig. 2. A snapshot of the online affective annotation
system. Arousal and valence were assessed using SAM
manikins. Participants were able to give their emotional
tag using a drop down menu.
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Fig. 3. Stimulus videos are shown in the valence-arousal
plane. The center of the ellipses represents the mean
arousal and valence and the horizontal and vertical radius
represents the standard deviation of the online assess-
ments. The clip codes are printed at the center of each
ellipse.

Ultimately, 20 videos were selected to be shown which
were between 34.9s to 117s long (M = 81.4s, SD =
22.5s). Psychologists recommended videos from one to
ten minutes long for elicitation of a single emotion [35],
[2]. Here, the video clips were kept as short as possible
to avoid multiple emotions or habituation to the stimuli
while keeping them long enough to observe the effect.

2.3 Experiment Protocol and Setup
A multi-modal recording setup was arranged to record
facial videos, audio and vocal expressions, eye gaze,
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TABLE 1
The video clips are listed the with their sources. The

emotion labels are: calm (Cal.), medium aroused (Med.),
activated (Act.), unpleasant (Unp.), neutral valence

(Neu.), Pleasant (Pls.).

Code
Emotion
Labels

Video clips sources

1 Act., Unp. Hannibal
2 Act., Unp. The Pianist
3 Med., Pls. Mr. Bean’s holiday
4 Act., Neu. Ear worm (blip.tv)
5 Med., Neu. Kill Bill VOL I
6 Med., Pls. Love actually
7 Med., Pls. Mr. Bean’s holiday
8 Cal., Pls. The thin red line
9 Med., Neu. The shining
10 Med., Pls. Love actually
11 Act., Unp. The shining
12 Med., Unp. Gangs of New York
13 Act., Unp. Silent hill
14 Med., Unp. The thin red line
15 Cal., Neu. AccuWeather New York weather report

(youtube.com)
16 Act., Unp. American history X
17 Cal., Neu. AccuWeather Detroit weather report

(youtube.com)
18 Act., Pls. Funny cats (youtube.com)
19 Cal., Neu. AccuWeather Dallas weather report

(youtube.com)
20 Act., Pls. Funny (blip.tv)

and physiological signals simultaneously (see Fig. 4).
The experiment was controlled by the Tobii studio soft-
ware (http://www.tobii.com). In order to synchronize
different modalities, device generated time stamps were
recorded along with audio and physiological signals.
These time stamps consisted of time series with square
shaped periodic signal (60Hz) representing the moments
when the cameras’ shutters were open to capture each
frame. The synchronization method and hardware setup
details are given in Lichtenauer et al. [36].

The Biosemi active II system3 with active electrodes
was used for physiological signals acquisition. Physio-
logical signals including ECG, EEG (32 channels), gal-
vanic skin response (GSR), respiration amplitude, and
skin temperature were recorded while the videos were
shown to the participants. Peripheral physiological sig-
nals, facial videos and vocal expressions modalities were
not employed in this paper; therefore all the results of
this paper are only based on EEG signals, pupillary
response and gaze distance recorded by eye gaze tracker.
However, the classification protocol presented in this
paper can be applied to a wide variety of modalities
and is not limited to the utilized modalities.

3. http://www.biosemi.com

Participants were asked to report their felt emotions by
indicating their felt arousal and valence on a nine points
scale. To simplify the interface a keyboard was provided
with only nine numerical keys and the participant could
answer each question by pressing one of the nine.

30 participants with different cultural and education
backgrounds volunteered to participate in response to
a campus wide call for volunteers at Imperial College,
London. Out of the 30 young healthy adult participants,
17 were female and 13 were male; ages varied between
19 to 40 years old (M = 26.06, SD = 4.39). Participants
had different educational background from undergrad-
uate students to post-docs with different English profi-
ciency from intermediate to native speakers. The data
recorded from six participants were not analyzed due to
technical problems, poor signal quality and unfinished
data collection. Hence, the analysis results of this pa-
per are only based on the responses recorded from 24
participants. The results in the Section 3 of this paper
are only based on Eye gaze data and EEG signals. This
database is freely available to the academic community,
and is easily accessible through a web-interface4.

Fig. 4. The experimental setup. 6 video cameras were
recording facial expressions during the experiment. The
modified keyboard is visible in front of the participant.

Fig. 5. Each trial started by a 15s neutral clip and contin-
ued by playing one emotional clip. The self-assessment
was done at the end of each trial. There were 20 trials in
each session of experiment.

4. http://mahnob-db.eu
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The participants were informed about the experiment
and their rights with a verbal introduction, by email
and through a consent form. Participants were trained
about the interface before the experiment and during
the setup time. The participants were also introduced to
the meaning of arousal, valence in the self-assessment
procedure, and to the nature of the video content.

In emotional-affective experiments the bias from the
emotional state needs to be removed. For this purpose
before each emotional video a short neutral clip ran-
domly selected from the clips provided by the Stanford
psychophysiology laboratory [2] was shown to the par-
ticipants.

Each trial started with a short neutral clip. After
watching the short neutral clip, one of the 20 video clips
was played. Video clips were played from the dataset
in random order. After watching the video clip, the
participant filled in the self-assessment form which ap-
peared automatically. In total, the time interval between
the start of a trial and the end of the self-reporting
phase was approximately two and half minutes. This
interval included playing the neutral clip, playing the
emotional clip, performing the self-assessment. Running
of the whole protocol took in average 50 minutes in
addition to 30 minutes setup time (see Fig. 5).

2.4 Preprocessing and Feature Extraction
2.4.1 EEG signals
Psychological studies regarding the relations between
emotions and the brain are uncovering the strong im-
plication of cognitive processes in emotions [37], [38].
As a result, the EEG signals carry valuable information
about the participants’ felt emotions.

Electroencephalogram signals were recorded with a
1024Hz sampling rate and later downsampled to 256Hz
to reduce the memory and processing costs. EEG signals
were recorded using active AgCl electrodes placed ac-
cording to the international 10-20 system. The layout of
EEG electrodes on the cap are shown in Fig. 6. The un-
wanted artifacts, trend and noise were reduced prior to
extracting the features from EEG data by pre-processing
the signals. Drift and noise reduction were done by
applying a 4-45Hz band-pass filter. Other artifacts such
as muscular activity was kept at minimum level by
instructing the participants to minimize their movements
while videos were playing. Biosemi active electrodes
record EEG signals referenced to common mode sense
electrode (CMS) as a part of its feedback loop. In order
to gain the full common-mode rejection ratio (CMRR) at
50Hz, EEG signals should be re-referenced to another
reference. EEG signals were thus re-referenced to the
average reference to maximize signal to noise ratio.

The spectral power of EEG signals in different bands
was found to be correlated with emotions [39], [40], [25].
Power spectral density (PSD) from different bands were
computed using fast Fourier transform (FFT) and Welch
algorithm [41]. In this method, the signal is split into

TABLE 2
This table list all the features extracted from eye gaze

data and EEG signals.

Eye gaze data
Extracted features

Pupil diameter standard deviation, spectral power in the fol-
lowing bands: ]0, 0.2]Hz, ]0.2, 0.4]Hz, ]0.4,
0,6]Hz and ]0.6, 1]Hz

Gaze distance approach time ratio, avoidance time ratio, ap-
proach rate

Eye blinking blink depth, blinking rate, length of the longest
blink, time spent with eyes closed

EEG theta, slow alpha, alpha, beta, and gamma PSD
for each electrode. The spectral power asymme-
try between 14 pairs of electrodes in the four
bands of alpha, beta, theta and gamma.

overlapping segments and the PSD is estimated by aver-
aging the periodograms. The averaging of periodograms
results in smoother power spectrum. The PSD of each
electrode’s EEG signals was estimated using 15s long
windows with 50% overlapping.

The logarithms of the PSD from theta (4Hz < f <
8Hz), slow alpha (8Hz < f < 10Hz), alpha (8Hz < f <
12Hz), beta (12Hz < f < 30Hz) and gamma (30Hz < f )
bands were extracted from all 32 electrodes as features.
In addition to power spectral features, the difference
between the spectral power of all the 14 symmetrical
pairs on the right and left hemisphere was extracted to
measure the possible asymmetry in the brain activities
due to the valence of an emotional stimuli [42], [39]. The
asymmetry features were extracted from all mentioned
bands except slow alpha. The total number of EEG
features of a trial for 32 electrodes is 14×4+32×5 = 216
features. A list of extracted EEG features is given in Table
2.

Fig. 6. The EEG cap layout for 32 EEG in addition to
two reference electrodes. Retrieved from Biosemi website
(http://www.biosemi.com).
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2.4.2 Eye gaze data

The X120 Tobii5 eye gaze tracker provides the position
of the projected eye gaze on the screen, the pupil diam-
eter, the moments when the eyes were closed and the
instantaneous distance of the participant’s eyes to the
gaze tracker device positioned below the screen. The eye
gaze data was sampled at 60Hz. The blinking moments
are also extractable from eye gaze data. The eye gaze
itself is highly dependent on the content and therefore it
was not used directly for emotion recognition. However,
pupil diameter has been shown to change in different
emotional states [27], [28].

A linear interpolation was used to replace the missing
pupil diameter samples due to eye blinking. Then the
average diameter of right and left eye pupil was used as
the pupil diameter time series. The major cause of pupil
diameter variation comes from lighting; therefore the
participants’ responses to the same video (stimuli) in the
controlled lighting environment follow similar patterns.
There are different parametric models for pupillary light
reflex [43], [44]. However, these parametric models are
not error free and calculating their numerous parameters
is rather difficult without specific light reflex experiment.
It has been shown that the pupillary light reflex magni-
tude changes with age and between different people [43].
Most of the participants in our experiment were young,
in their twenties; therefore the aging effect assumed to
be negligible. The difference between the magnitudes
can be reduced by normalizing the pupil diameter time
series. Consequently we extracted the light reflex using a
non-parametric estimation from the data. This common
lighting reflex pattern was estimated for each video
using principal component analysis (PCA).

If Y is the M ×Np matrix containing the centered and
normalized pupillary responses to the same video from
Np participants and M samples, then Y consists of three
components:

Y = X + Z + E (1)

X is the lighting response which is the strongest effect in
the signal. Z is the parasympathetic emotional and atten-
tional response and E is the noise originated from mea-
surement. These three components are originated from
independent sources and the decorrelating characteristic
of principal component analysis (PCA) is able to separate
these three. First, Y was decomposed using principal
component analysis (PCA) into Np components. The first
principal component is assumed to be a close estimation
of the lighting reflex. The normalized principal compo-
nent was then removed from normalized time series.
Then the remaining residual part includes Z + E.

Y = UDV T (2)

Ap = UD (3)

5. http://www.tobii.com

Sp = V T (4)

Y1 = Ap1Sp1 (5)

YR = Y − Y1 (6)

If we decompose Y using singular value decomposi-
tion (SVD) U is a matrix with eigen vectors of Y Y T as its
column. D is a diagonal matrix whose diagonal values
are the eigen values of Y Y T . Finally the columns of V
are the eigen vectors of Y TY (see Equation 2). From the
principal components of Y , Ap we can reconstruct the
first principal component or the light reflex pattern Y1

(see Equation 3). To remove the light reflex component,
Y1, from all the time series, it is enough to subtract
it from the original data (see Equation 5 and 6). YR

is the residual part which contains the emotional and
attentional pattern in addition to the noise.

After removing the linear trend, the power spectrum
of the pupil diameter variation was computed. Standard
deviation and spectral features were extracted from the
pupil diameter. The Hippus effect is the small oscilla-
tions of eye pupil diameter between 0.05 to 0.3Hz and
with the amplitude of 1 mm [43], [45]. Hippus effect
has been shown to be present when one is relaxed or
passive. In the presence of mental activity the effect will
disappear. The Hippus effect is extracted by the first two
power spectral features which are covering up to 0.4 Hz.
The rate of eye blinking is shown to be correlated with
anxiety [46]. From the eye blinks, the eye blinking rate,
the average and maximum blink duration were extracted
as features. In addition to the eye blinking features the
amount of time the participants spent with his/her eyes
closed was also used as a feature to detect possible eye
closing due to unpleasant emotions.

Although the participants were asked not to move
during the experiment, there were small head move-
ments which manifested itself in the distance between
participants’ eyes and the eye gaze tracker. The distance
of the participant to the screen and its changes provide
valuable information about the participants’ posture. The
total change in the distance of the user to the gaze
tracker, gaze distance, was calculated to measure the
possible approach and avoid phenomena. The amount
of time the participant spent per trial getting close or far
from the screen was computed as well. These features
were named approach and avoidance ratio to represent
the amount of time participant spent getting close or
going far from the screen. The frequency of the partic-
ipants’ movement towards the screen during each trial,
approach rate, was also extracted. Ultimately 12 features
were extracted from the eye gaze data. A summary of
all extracted features is given in Table 2.
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2.4.3 Feature normalization
All the extracted features were numerical. To reduce the
between participant differences, it is necessary to nor-
malize the features. Maximum-Minimum normalization
was applied on each feature of the features set separately
on each participant’s signals. In this normalization the
minimum value for any given feature is subtracted from
the same feature of a participant and the results were
divided by the difference between the maximum and
minimum values.

2.5 Emotion Classification
With the proposed inter-participant emotion recognition,
the goal is to find the emotional class with the high-
est agreement within a population. The most popular
emotional class or tag can satisfy a larger population
of viewers in a video retrieval scenario. For each video
from the dataset, the ground truth was thus defined by
computing the median of arousal and valence scores
given on a nine point scale. The median values were
then categorized into three classes with equal intervals.
According to this definition, we can name these classes
calm, medium aroused, and activated for arousal and
unpleasant, neutral, and pleasant for valence.

A SVM classifier with RBF kernel was employed to
classify the samples using features from each of the two
modalities. Prior to classification, a feature selection was
used to select discriminative features as follows. First,
a one way ANOVA test was done on only the training
set for each feature with the class as the independent
variable. Then any feature for which the ANOVA test
was not significant (p > 0.05) was rejected. This feature
selection criterion was hence re-calculated for each cross
validation’s iteration. A leave-one-participant-out cross
validation technique was used to validate the user-
independent classification performance. At each step of
cross validation, the samples of one participant were
taken out as test set and the classifier was trained on
the samples from the rest of the participants. This cross
validation was employed to imitate the effect of intro-
ducing a new user to our emotion recognition system.
This process was repeated for all participants’ data.

2.5.1 Modality fusion strategy
Classification in different modalities can be fused at both
feature level and decision level. We applied these two
fusion strategies and reported their results. With the
feature level fusion, the feature vectors from different
modalities were concatenated to form a larger feature
vector. The feature selection and classification methods
were then applied to the new feature set. However with
the decision level fusion, classification was performed on
each modality separately and the classification outcomes
were fused to generate the fusion results. In [15] feature
level fusion of EEG and peripheral physiological signals
did not improve the single modality results. On the other
hand, Chanel et al. [25] showed how a fusion strategy

improved the emotion recognition accuracy by fusing
the results from EEG and peripheral features at decision
level. Our results (see Section 3) shows how in contrary
to feature level fusion (FLF), decision level fusion (DLF)
significantly outperforms the best single modality for
arousal classification and do not underperform for va-
lence classification.

In addition to the superior classification performance
obtained by multi-modal strategy, in the absence of one
of the modalities due to temporary problems or artifacts,
the system can still continue working as single modality
emotion detection. The adaptability of the system to
remove and add new modalities can be achieved without
re-training the classifiers using the DLF. The adaptability
and scalability of the DLF strategy gives it another
advantage over FLF.

Here we used two modalities which are EEG and
eye gaze data. The results of the classification over two
modalities were fused to obtain the multi-modal fusion
results. If the classifiers provide confidence measures on
their decisions, combining decisions of classifiers can be
done using a summation rule. The confidence measure
summation fusion was used due to its simplicity and its
proved performance for emotion recognition according
to [25]. Other decision combination methods including
product of confidence measures, decision template fu-
sion, Dempster-Shafer, Bayesian belief integration [47],
weighted sum and weighted product [48] did not give
superior results.

In this paper, the probabilistic outputs of classifiers are
used as a measure of confidence. The sum rule is thus
defined as follows for a given trial:

ga =

∑
q∈Q

Pq(ωa|xi)

K∑
a=1

∑
q∈Q

Pq(ωa|xi)

=
∑

q∈Q

1

|Q|Pq(ωa|xi) (7)

In Equation 7, ga is the summed confidence interval
for affect class ωa . Q is the ensemble of the classifiers
chosen for fusion, |Q| the number of such classifiers
and Pq(ωa|xi) is the posterior probability of having class
ωa the sample is xi according to classifier q. The final
choice is done by selecting the class ωa with the highest
ga. It can be observed that ga can also be viewed as a
confidence measure on the class, ωa, given by the fusion
of classifiers.

There are two problems employing SVM classifiers in
this fusion scheme. First, they are intrinsically only two-
class classifiers and secondly, their output is uncalibrated
so that it is not directly usable as a confidence value
in the case one wants to combine outputs of different
classifiers or modalities. To tackle the first problem, the
one versus all approach is used where one classifier
is trained for each class (N classifier to train) and the
final choice is done by majority voting. For the second
problem, Platt [49] proposes to model the probability
of being in one of the two classes knowing the output
value of the SVM by using a sigmoid fit, while Wu et al.
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[50] proposes a solution to extend this idea to multiple
classes. In this study we used the MATLAB libSVM
implementation [51] of the Platt and Wu algorithms to
obtain the posterior probabilities, Pq(ωa|xi).

3 EXPERIMENTAL RESULTS
The experiments were performed in a laboratory envi-
ronment with controlled temperature and illumination;
24 participants viewed 20 video clips each. 467 samples
were gathered over a potential dataset of 24× 20 = 480
samples; the 13 missing ones were unavailable due to
technical difficulties.
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Fig. 7. From top to bottom: on the first plot there is an
example of pupil diameter measures from three different
participants in response to one video. The second plot
shows the first principal component extracted by PCA
from the time series shown in the first plot (the lighting
effect). The bottom plot shows the pupil diameter of the
blue signal in the first plot after reducing the lighting effect.

For the pupillary responses to each video the most
significant component was extracted using PCA and
then removed from the pupillary time series. In the
example given in Fig. 7, examples of the pupillary
responses, extracted pupillary lighting reflex and the
residual component after removing the light reflex are
given. The normalized variance or eigen-values of the
first component were found to be significantly larger
than the rest of the components. The first principal
component carried in average more than 50% of the
variance in the data.

In order to study the discrimination abilities of the eye
gaze data features, a one way analysis of variance test
was performed on the features. The difference between
the mean of features in different arousal or valence cate-
gories was found significant (p < 0.05). The significance
of one way ANOVA shows that there is at least a signif-
icant difference between the means of the samples from
two classes out of three. The box plots of four features
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Fig. 8. Box plots of four different gaze data features
in three emotional conditions. (a) Eye blinking rate for
arousal classification (b) Approach time ratio for valence
classification (c) Blink depth, average blink time, for va-
lence classification (d) STD of pupil diameter for valence
classification. One way ANOVA results showed a signifi-
cant difference beween features mean of different classes
(p < 0.05)

namely, eye blinking rate, approach rate, maximum blink
length, and standard deviation of pupillary responses
are shown in Fig. 8. In average eye blinking rate was
higher in calmer videos (see Fig. 8(a)). The amount of
time participants spent getting closer to the screen is
lower for the pleasant category. This shows that they had
a tendency to seat more upright while watching more
pleasant videos (see Fig. 8(b)). On the other hand, the
maximum blink length or depth is higher for unpleasant
videos. This is due to the fact that participants kept
their eyes closed for some moments while watching
unpleasant videos (see Fig. 8(c)). Pupillary response’s
standard deviation is also shown to be higher during
neutral scenes (see Fig. 8(d)).

To find the best discriminative EEG features, the linear
discrimination criterion was calculated. This parameter
is the the between class variance divided by within
class variance for any given feature (see Table 3). For
arousal classification, PSD in alpha bands of occipital
electrodes was found to be the most discriminant fea-
tures. In contrary for valence beta and gamma bands of
temporal electrodes are more informative. The between
class to within class variance ratios are higher for the best
arousal EEG features. The higher linear discrimination
criterion for best arousal features explains the superior
classification rate for arousal dimension (see Table 4).

Regarding the self-reports, we computed the aver-
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TABLE 3
10 best EEG features for arousal and valence

classification based on linear discrimination criterion.
The between class variance to within class variance

ratios, σ2
bw/σ

2
wn are also given.

Arousal classification Valence classification

Band Electrode/s σ2
bw/σ2

wn Band Electrode/s σ2
bw/σ2

wn

Slow α PO4 0.18 β T8 0.08
α PO4 0.17 γ T8 0.08
θ PO4 0.16 β T7 0.07
Slow α PO3 0.15 γ T7 0.06
θ Oz 0.14 γ P8 0.05
Slow α O2 0.14 γ P7 0.05
Slow α Oz 0.14 θ Fp1 0.04
θ O2 0.13 β CP6 0.04
θ FC6 0.13 β P8 0.04
α PO3 0.13 β P7 0.04

age pair-wise Cohen’s kappa for keyword based an-
notations. A fair multi-rater agreement was found on
emotional keywords (9 keywords) with κ = 0.32. The
correlation between arousal and valence ratings between
participants was also computed. The correlation be-
tween arousal and valence ratings given by different
participants on nine points scales were mean(ρ) =
0.45, SD(ρ) = 0.25 and mean(ρ) = 0.73, SD(ρ) = 0.12
respectively. Therefore, there was a higher inter-rater
agreement on valence comparing to arousal.

3.1 Emotion Recognition Feasibility
Referring to the first research question, the results have
shown that it is possible to accurately recognize emo-
tions with a user-independent approach. The classifi-
cation accuracy measures are summarized in Table 4.
The traditional F-score which combines precision and
recall by their harmonic mean was also computed for
each emotion category to give an overall evaluation of
classification performance (Equation 8). The F1 score
varies between zero and one. The random level is 0.5 for
binary classification and balanced classes; values closest
to 1 indicate a better performance.

F1 =
2× precision× recall

precision+ recall
(8)

Precision and recall can be only defined for one class;
hence, the F1 scores were calculated from the results
of one versus all classification schemes for each class
separately. As a result, the expectation of F1 scores of
a uniform random classifier are calculated and given
in Table 4. The classification rate of both three class
classifications are defined as the percentage of correctly
classified samples.

For the SVM classifier, the size of the kernel, γ, was
selected between [0.01, 10], based on the average F1 score
using a 20-fold cross validation on the training set. The
C parameter that regulates the tradeoff between error
minimization and margin maximization is empirically
set to 1. Classifications were first performed with the

TABLE 4
The classification rate and F1 scores of emotion

recognition for different modalities.

Modality
Classification rate Average F1

dimension arousal valence arousal valence
EEG 62.1% 50.5% 0.60 0.50
Eye gaze 71.1% 66.6% 0.71 0.66
Feature level fusion
(FLF)

66.4% 58.4% 0.65 0.55

Decision level fusion
(DLF)

76.4% 68.5% 0.76 0.68

Self-reports with SAM
manikins

55.7% 69.4% 0.57 0.70

Random level 33.3% 33.3% 0.36 0.40

goal of recovering the three classes with a leave-one-
participant-out cross validation scheme. Regarding the
single modality classification of arousal and valence in
three classes, we obtained 62.1% and 50.5% accuracy
from EEG signals and 71.1% and 66.6% accuracy from
eye gaze data (see Table 4). Although EEG classification
results are inferior to the eye gaze data, they are compa-
rable to the state of the art classification rates considering
the inter-participant classification scheme [52], [25].

The FLF did not improve the best single modality,
gaze data, results. However, the modality fusion strategy
using the DLF improved the best SVM classification
rate for arousal up to 76.4%. The DLF did not under-
perform for valence classification. To test the statistical
significance of the classification performance, a paired
t-test was used to compare F1 scores of the DLF on
one side and the self reports and the best single modal-
ity, eye gaze data, on the other side. The F1 scores
from each participant’s samples were compared and the
improvement over arousal classification comparing to
eye gaze data and self reports were found significant
(p < 0.01). However, the difference between the eye gaze,
DLF, and self reports F1 scores on valence classification
was not found statistically significant. The confidence
levels of the classification results from the two modalities
were added to find the class with the highest summed
confidence.

The confusion matrices for each modality show how
they performed on each emotion category (Tables 5.a -
5.j). In these confusion matrices the row represents the
classified label and each column represents the ground
truth. Only for activated category EEG classification
performed as well as gaze data modality. However, the
fusion of both with the exceptions of neutral valence
class outperformed gaze data results (see tables 5.a - 5.d
and 5.f - 5.i). The DLF outperformed the feature level
fusion for all categories except unpleasant (see tables 5.c,
5.d, 5.h, and 5.i).

The use of different stimuli and emotion classes make
it difficult to directly compare the results to similar work.
Here, we compare the obtained accuracy with the most
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TABLE 5
Confusion matrices of different classification schemes (row: classified label; column: ground truth). The numbers on
the first row and the first column of tables a, b, c, d and e represents: 1. calm, 2. medium aroused, 3. activated and
for tables f, g, h, i, and j represents: 1. unpleasant 2. neutral valence 3. pleasant. The confusion matrices relate to

classification using (a, f) EEG signals (b, g) Eye gaze data (c, h) Feature level fusion (FLF) (d, i) Decision level fusion
(DLF) (e, j) Self reports

Arousal

1 2 3
1 44 15 11
2 22 111 39
3 30 60 135

(a) EEG

1 2 3
1 60 7 9
2 10 136 40
3 26 43 136
(b) Eye gaze data

1 2 3
1 49 14 10
2 15 117 31
3 32 55 144

(c) FLF

1 2 3
1 62 6 8
2 8 146 28
3 26 34 149

(d) DLF

1 2 3
1 63 35 11
2 24 88 65
3 9 63 109

(e) Self reports

Valence

1 2 3
1 87 56 52
2 23 52 15
3 54 31 97

(f) EEG

1 2 3
1 108 46 26
2 36 77 12
3 20 16 126
(g) Eye gaze data

1 2 3
1 139 83 56
2 7 36 10
3 18 20 98

(h) FLF

1 2 3
1 115 48 22
2 27 75 12
3 22 16 130

(i) DLF

1 2 3
1 126 40 4
2 38 91 53
3 0 8 107

(j) Self reports

similar existing studies. Kolodyazhniy et al. [26] used
videos extracted from movies in a user independent
strategy to classify three classes; namely, neutral, sadness
and fear. They obtained 77.5% recognition rate from
peripheral physiological responses while introducing
random startles. Their results on three classes is almost at
the same level of our arousal classification performance.
In a gaming protocol Chanel et al. [52] achieved the
accuracy of 63% in a user-independent approach on the
recognition of three classes; namely, boredom, engage-
ment, anxiety. These three classes can be translated to
our three arousal levels. Our results are inferior to the
ones by Lisetti and Nasoz [14] on six classes. However,
we used different modalities and videos and therefore
these results are not directly comparable.

3.2 Emotion recognition and self-reports

Referring to the second research question, the agreement
between participants’ self-reports and ground truth is
shown in the confusion matrix given in Table 5.e and
Table 5.j. The columns of this table represent how the
videos of each class defined by ground truth were in-
dividually self-reported. For example, the first column
of this table represent how many of the samples which
were actually in class one were classified into different
classes.

In order to measure the agreement between individ-
ual self-reports and the ground truth, the self-reported
arousal and valence scores on nine point scale were
translated into three levels. These levels were then
treated like classified labels and the classification rate
was computed. This was done by considering that the
goal of each participant is to label a video clip by the
correct label, the most common tag. The classification
rate for individually self-reported labels was 55.7% for
arousal which is inferior to the worst classifier’s result.
Although, looking at the inter-annotation agreement,
participants found that it easier to self-report pleasant-
ness, the classification rate for valence is not significantly
lower than the self-report rate. Therefore, the accuracy

of obtained tags via classification is comparable to the
individually reported labels.

Fig. 9. This bar chart shows the F1 score for classification
results of each class from different modalities.

Fig. 9 summarizes the comparison of different classi-
fication strategies showing the F1 scores for each cate-
gory and on average. Looking at the bars on the most
right side of the chart, only EEG results are inferior to
the explicit self-report agreements using self assessment
manikins.

4 DISCUSSION

In this section, we discuss limitations of the current
study and present the open issues. Physiological re-
sponses can vary due to non-emotional changes, such as
circadian rhythms, ambient temperature, body posture
and other psychophysiological factors such as attention
, anticipation and mental effort [53]. Emotion recogni-
tion from bodily responses is therefore confounded by
contextual factors. Moreover, like other similar studies
[26], the generalization of the results are limited by the
videos shown to the participants.

The inter-annotation agreement for arousal self-reports
is lower comparing to keyword based self-assessments.
In a real-case scenario for an explicit tagging system,
using words will be easier for an ordinary user and
leads to higher between participant agreement in com-
parison to arousal and valence reported by self assess-
ment manikins (SAM). However, emotional keywords
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are difficult to translate and might not exist with the
exact same meaning in different languages [32]. Emotion
detection can overcome those difficulties with keeping
the accuracy at the same level. In this paper, participants
were asked to explicitly choose an emotional indicator
to form the ground truth. In a real application, with the
existence of a reliable user-independent emotion recogni-
tion method, the self-reporting phase can be eliminated.

Arousal classes were in average detected with higher
accuracy using EEG signals comparing to valence labels.
This might be due to higher visual and auditory variance
of the arousal variant videos comparing to valence vari-
ant ones. Exciting scenes usually contain fast movements
and loud noises which manifest themselves both in EEG
signals and pupillary responses, whereas the difference
between pleasant and unpleasant responses can be hid-
den in the semantics. The direct bodily responses to
different stimuli can increase the variance in responses
and improve the emotion recognition results. For exam-
ple, faster changing video induces a different response
in occipital cortex activities comparing to a more static
video.

The DLF superior classification rate for arousal and
its similar performance for valence classification shows
that the proposed emotion classification can replace the
self-reporting of single participants for detecting popular
emotional tags for this dataset. These popular emotional
tags are defined by the emotions felt by the majority
of users watching the same video. After detecting emo-
tional classes, they can be stored with other metadata
attached to each video. Emotional labels can be con-
verted to scores for arousal and valence for each video.
The emotional scores can be then used, as in the image
recommendation applications [11], to improve a video
recommender’s performance. In future, the recognized
emotional labels should be added as features to a video
recommendation system to study the effect of introduc-
ing emotional labels on those systems. This effect can
be determined by assessing users’ satisfaction from a
recommendation or retrieval system with and without
emotional information. The emotion detection can be
also used indirectly as a tool to detect topical relevance
in information retrieval systems [18].

The determination of ground truth is based on the
participants’ feedback in the online preliminary exper-
iment. In order to measure the agreement between the
popular responses of the two separate populations of
the preliminary assessments and the experiments, we
computed the median valence and arousal reported
during the experiment and compared the labels based
on the recorded participants’ popular response. Only
three arousal labels out of 40 labels were changed from
activated to medium arousal or vice-versa. No valence
label has changed when comparing two populations.
This is due to valence dimension’s higher inter-annotator
agreement.

This study still has open issues that need to be con-
sidered in the future. In a real case scenario, any new

user will need to have a few minutes of signals recorded
to provide reliable values for feature normalization. The
estimation of pupillary response to lighting is an open
issue which needs more investigation. Although we
assumed that the lighting pupillary responses are similar
between participants, there will be a large difference in
case of introducing users from a different age group.
Therefore, the parameters of a reliable model for pupil-
lary reflex to lighting, such as [43], should be determined
before introducing a new user to the system. Alterna-
tively, the real time lighting effect similar to [29] can be
employed to remove the lighting effect. A larger video
set and larger number of participant can be considered
to increase the generalization of the developed emotion
classifier in response to videos.

In this paper, the length of the experimental session
limited the number of videos we could show to each
participant. The number of participants in this paper is
large and diverse enough comparing to similar studies
[1], [25]. However this population only consisted of
young students which limits the trained algorithm to
this particular group. These limitations might worsen
the results in case of introducing a new genre of video
which was not present in the current video set. To gener-
alize and train such a system, the recruited participants
should be as close as possible to the target audience of
the video retrieval or recommendation systems.

Emotions can co-occur and/or last for very short
moments. This puts using a single emotional label for a
video clip under question. In order to address this issue,
self-reporting should include the possibility to indicate
different emotions and their degree of strength. This is
possible by using questionnaires such as positive and
negative affect schedule (PANAS) [54] or Geneva emo-
tion wheel [9]. However, these emotional self-reporting
methods are more complex and make the experiment
longer. In future, multiple or co-occurring emotions
should be assessed using a more sophisticated self re-
porting tool.

5 CONCLUSIONS

This paper showed the performance of an inter-
participant emotion recognition tagging approach using
participants’ EEG signals, gaze distance and pupillary
response as affective feedbacks. The feasibility of an
approach to recognize emotion in response to videos
is shown. Although the results were based on a fairly
small video dataset due to experimental limitations the
promising accuracy can be scalable to more samples
from a larger population. The improved performance
using multi-modal fusion techniques leads to the conclu-
sion that by adding other modalities, such as facial ex-
pressions, accuracy as well as robustness should further
improve. Results from our previous studies [3] showed
that there is a significant difference between peoples’
emotional self assessments in response to videos. How-
ever, there usually exists one most popular emotional
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tag for which there is significant agreement in a popu-
lation. This “most popular emotion” has been shown to
be detectable with monitoring users’ bodily responses.
Moreover, the population tags give the retrieval system
higher chance of success in a given population. We
have shown that it is possible to design an accurate
and user-independent classification protocol to recognize
emotions from pupillary reflex, EEG signals in response
to video content. Moreover, we have shown that for
the utilized video dataset, the non-verbal affective cues
can replace affective self-report with comparable emo-
tion recognition performance and no requisite of direct
user inputs. We can thus answer positively to our two
research questions.
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