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ABSTRACT

Non-negative Matrix Factorization (NMF) is among the most
popular subspace methods, widely used in a variety of image
processing problems. To achieve an efficient decomposition
of the provided data to its discriminant parts, thus enhancing
classification performance, we regard that data inside each
class form clusters and use criteria inspired by Clustering
based Discriminant Analysis. The proposed method com-
bines these discriminant criteria as constraints in the NMF
decomposition cost function in order to address the problem
of finding discriminant projections that enhance class sepa-
rability in the reduced dimensional projection space. The de-
veloped algorithm has been applied to the facial expression
recognition problem and experimental results verified that it
successfully identified discriminant facial parts, thus enhanc-
ing recognition performance.

1. INTRODUCTION

NMF [12], is an unsupervised matrix decomposition algo-
rithm that requires both the data matrix being decomposed
and the yielding factors to contain non negative elements.
The non negativity constraint imposed in the NMF decom-
position implies that the original data are reconstructed using
only additive and no subtractive combinations of the yield-
ing basic elements. This limitation distinguishes NMF from
many other traditional dimensionality reduction algorithms,
such as, Principal Component Analysis (PCA) [10], Inde-
pendent Component Analysis (ICA) [6] or Singular Value
Decomposition (SVD) [9].

Recently, numerous specialized NMF-based algorithms
have been proposed applied in various problems in diverse
fields. These algorithms are developed based on modifying
the NMF decomposition cost function by incorporating addi-
tional penalty terms in order to fulfill specific requirements,
arising in each application domain. A supervised NMF learn-
ing method that aims to extract discriminant facial parts is
the Discriminant NMF (DNMF) algorithm proposed in [15].
DNMF incorporates Fisher’s criterion in the NMF factor-
ization and achieves a more efficient decomposition of the
provided data to its discriminant parts, thus enhancing sep-
arability between classes compared with conventional NMF.
However, the incorporation of Linear Discriminant Analy-
sis (LDA) [8] inside DNMF poses two certain deficiencies.
Firstly, LDA assumes that the sample vectors of each class
are generated from underlying multivariate Normal distribu-
tions of common covariance matrix but with different means.
Secondly, since LDA assumes that each class is represented
by a single cluster, the problem of nonlinearly separable
classes can not be solved. However, this problem can be
tackled if we consider that each class is partitioned into a

set of disjoint clusters and perform a discriminant analysis
aiming at clusters separation. Unfortunately, in real world
applications, data usually do not correspond to compact sets.
This is also a common case in the facial expression recog-
nition problem, since there is no unique way that people ex-
press certain emotions and moreover, there are confounding
factors such as pose, texture and lighting variations, that sig-
nificantly degrade the performance of NMF-based methods
[2].

To remedy the aforementioned limitations, we relax the
assumption that each class is expected to consist of a sin-
gle compact cluster and regard that data inside each class
form various clusters, where each one is approximated by a
Gaussian distribution. Consequently, we approximate the un-
derlying distribution of each class as a mixture of Gaussians
and imply criteria inspired by the Clustering based Discrimi-
nant Analysis (CDA) introduced in [5]. Moreover, we extend
the NMF algorithm modifying its decomposition by embed-
ding appropriate discriminant constraints and reformulate the
cost function that drives the optimization process. With this
extension we expect the resulting discriminant projections,
from one hand, to pose robustness in illumination changes
and variations in expression and on the other hand, to en-
hance class separability in the reduced dimensional space. To
solve the resulting optimization problem, we develop multi-
plicative update rules that consider not only samples class
origin but also clusters formation inside each class.

The rest of the paper is organized as follows. A brief
review of the NMF algorithm is given in Section 2. Sec-
tion 3, introduces the proposed method which incorporates
subclass discriminant constraints in the NMF decomposition
framework and also, draws the proposed multiplicative up-
date rules. Section 4, describes the conducted experiments
that verify the efficiency of our algorithm on the facial ex-
pression recognition problem. Finally, concluding remarks
are drawn in Section 5.

2. BRIEF REVIEW OF NMF

In this section we briefly present the NMF decomposition
concept. In the following, without loosing generality, we will
assume that the decomposed data are facial images. Obvi-
ously, the techniques that will be described can be applied to
any kind of non negative data.

The basic idea of NMF is to approximate a facial image
by a linear combination of basic elements the so called basis
images, that correspond to facial parts. The non negativity
constraints imply that the combinations of the multiple basis
images are practically additions of ideally non-overlapping
facial parts that attempt to reconstruct accurately the com-
plete facial image. Let I be a facial image database com-
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prised of L images belonging to n different classes and X ∈
RF×L+ is the data matrix whose columns are F-dimensional
feature vectors obtained by scanning row-wise each facial
image in the database. Thus xi, j is the i-th element of the j-th

column vector x j. NMF considers factorizations of the form:

X≈ ZH (1)

where Z ∈ RF×M+ is a matrix containing the basis images,

while matrix H ∈ RM×L+ contains the coefficients of the lin-
ear combinations of the basis images required to reconstruct
each original facial image in the database. Thus the j-th fa-
cial image, represented by vector x j, can be approximated

after the NMF decomposition by the factorization x j ≈Zh j,

where h j denotes the j-th weight column of matrix H. Un-

doubtedly, useful factorizations for real world applications
appear when the linear subspace transformation projects data
from the original F-dimensional space to a M-dimensional
subspace withM≪ F .

To measure the cost of the decomposition in (1), one pop-
ular approach is to use the Kullback-Leibler (KL) divergence
metric which is a special case of Bregman distances [1].
However, using this metric to measure the decomposition er-
ror in (1) poses some certain deficiencies. More precisely,
the decomposition cost is not well defined at any point of
the bounded region, since the natural logarithm function in-
volved in the KL divergence evaluation is undefined for zero
arguments. This fact introduces the limitation to require both
elements xi, j and [ZH]i, j to be strictly positive and conse-

quently, no zero values are allowed.
To overcome this deficiency we use the square of the

Frobenius norm in order to measure the NMF decomposition
error. The Frobenius norm measures the Euclidean distance
between two matrices A and B as:

||A−B||F =

√
∑
i, j

(
Ai, j−Bi, j

)2
. (2)

Thus the cost of the decomposition in (1) can be measured as
the sum of the square Euclidean distances between all images
in the database and their respective reconstructed versions,
obtained from the factorization. Consequently, the cost func-
tion O(X||ZH) that defines the approximation error of fac-
torizing X into ZH is evaluated as:

O(X||ZH) = ||X−ZH||2F =
L

∑
j=1

F

∑
i=1

(
xi, j− [ZH]i, j

)2

=
L

∑
j=1

F

∑
i=1

(
xi, j−

M

∑
k=1

zi,khk, j

)2

(3)

where ||.||F is the Frobenius norm. Thus the NMF algorithm
factorizes the data matrix X into ZH, by solving the follow-
ing optimization problem:

min
Z,H

O(X||ZH) (4)

subject to: zi,k ≥ 0 ,hk, j ≥ 0, ∀i, j,k.

Using an appropriately designed auxiliary function, it
has been shown in [13] that the following multiplicative up-
date rules update hk, j and zi,k, yielding the desired factors,

while guarantee a non increasing behavior of the cost func-
tion O(X||ZH) defined in (3). The update rule for the t-th

iteration for h(t)
k, j

is given by:

h(t)
k, j

= h(t−1)
k, j

[Z(t−1)T
X]k, j

[Z(t−1)TZ(t−1)H(t−1)]k, j
, (5)

while for z(t)
i,k
the update rule is given by:

z(t)
i,k

= z(t−1)
i,k

[XH
(t)T ]i,k

[Z(t−1)H(t)H(t)T ]i,k
. (6)

3. PROPOSED METHOD

In this section we present the imposed clustering based dis-
criminant criteria and demonstrate how these are incorpo-
rated in the NMF decomposition cost function creating the
proposed Subclass Discriminant NMF (SDNMF) optimiza-
tion problem. Next, we derive the proposed multiplicative
update rules that solve SDNMF.

3.1 Clustering based discriminant analysis

Similarly to LDA, CDA seeks to determine a transformation
matrix such that when applied on the initial input data the
resulting transformed samples form classes in the projection
subspace that are better separated. To do so, CDA assumes
that data inside classes do not correspond to compact sets,
but each class is partitioned into one or more clusters and
attempts to discriminate classes while at the same time min-
imizes the scatter within every cluster.

In detail, CDA exploits the Fisher-Rao’s criterion mod-
ified such as the between and within cluster scatter matri-
ces are evaluated considering except of samples class labels
their respective cluster origins. To formulate the CDA crite-
ria in the n-class facial image database I, let us denote the
number of clusters composing the r-th class by Cr, the to-
tal number of formed clusters in the database by C, where
C = ∑ni Ci, and the number of facial images belonging to the
θ -th cluster of the r-th class by N(r)(θ). Let us also define the

mean vector for the θ -th cluster of the r-th class bym
(r)(θ) =

[m(r)(θ)
1

. . .m(r)(θ)
F

]T which is evaluated over the N(r)(θ) fa-

cial images, while vector x
(r)(θ)
ρ = [x(r)(θ)

ρ,1
. . .x(r)(θ)

ρ,F
]T corre-

sponds to the feature vector of the ρ-th facial image of the
θ -th cluster of the r-th class. Using the above notations we
can define the within cluster scatter matrix Sw as:

Sw =
n

∑
r=1

Cr

∑
θ=1

N
(r)(θ)

∑
ρ=1

(
x

(r)(θ)
ρ −m

(r)(θ)
)(

x
(r)(θ)
ρ −m

(r)(θ)
)T

(7)
and the between cluster scatter matrix Sb as:

Sb=
n

∑
i=1

n

∑
r,r 6=i

Ci

∑
j=1

Cr

∑
θ=1

(
m

(i)( j)−m
(r)(θ)

)(
m

(i)( j)−m
(r)(θ)

)T
.

(8)
Since NMF projects the initial data to a lower dimen-

sional subspace using the pseudo-inverse Z
† = (ZTZ)−1ZT

we desire to perform this projection in a discriminant man-
ner and enhance class separability in the projection subspace.
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To do so, we apply CDA inspired criteria in order to deter-
mine the optimum projection. Thus, we desire the projected
facial images to the lower dimensional subspace to maxi-
mize the CDA criterion which we formulate evaluating the
within and between cluster scatter matrices in the projection
subspace. More precisely, the within cluster scatter matrix
Σw when operates on the projected samples in the lower di-
mensional subspace is transformed with respect to its previ-

ous form as: Σw =
(
Z
†
)T

SwZ
†, while the between cluster

scatter matrix as: Σb =
(
Z
†
)T

SbZ
†. Let us define the pro-

jected ρ-th facial image by theM-dimensional feature vector

h
(r)(θ)
ρ = [h(r)(θ)

ρ,1
. . .h(r)(θ)

ρ,M
]T resulting by applying the trans-

formation h
(r)(θ)
ρ = Z

†
x

(r)(θ)
ρ . Using the above notations we

can evaluate the within cluster scatter matrix Σw in the pro-
jection subspace as:

Σw =
n

∑
r=1

Cr

∑
θ=1

N
(r)(θ)

∑
ρ=1

(
h

(r)(θ)
ρ −m̃

(r)(θ)
)(

h
(r)(θ)
ρ −m̃

(r)(θ)
)T

(9)
and the between cluster scatter matrix Σb as:

Σb=
n

∑
i=1

n

∑
r,r 6=i

Ci

∑
j=1

Cr

∑
θ=1

(
m̃

(i)( j)−m̃
(r)(θ)

)(
m̃

(i)( j)−m̃
(r)(θ)

)T

(10)
where theM-dimensional mean vectors m̃ are evaluated over
the projected samples and m̃

(i)( j) denotes the mean vec-
tor evaluated over the projected samples composing the j-th
cluster of the i-th class.

Matrix Σw represents the scatter of the projected sample
vector coefficients around their cluster mean. It is rational
to desire after the projection, the dispersion of those samples
that belong to the same cluster of a class to be as small as pos-
sible, since this would denote a high concentration of these
samples around their cluster mean and consequently more
compact clusters formation. In order to measure the sam-
ples dispersion inside clusters we compute the trace of the
within cluster scatter matrix Σw. Furthermore, matrix Σb
defines the scatter of the mean vectors between all clusters
that belong to different classes. To separate clusters belong-
ing to different classes we desire to maximize the difference
between the means of every cluster of a certain class to ev-
ery cluster of each other class. Therefore, the trace of Σb is
desired to be as large as possible.

3.2 Subclass Discriminant Non-negative Matrix Factor-
ization Algorithm

In order to incorporate clustering based discriminant con-
straints derived from CDA in the NMF decomposition, we re-
formulate the NMF cost function adding appropriate penalty
terms. Since we desire in the projection subspace the trace
of matrixΣw to be as small as possible and at the same time,
the trace ofΣb to be as large as possible, the cost function of
the SDNMF algorithm is formulated as:

OSDNMF(X||ZH) =
1

2
||X−ZH||2F +

α

2
Tr[Σw]−

β

2
Tr[Σb]

(11)
where α and β are positive constants, Tr[.] denotes the trace
operator, while 1

2
is used to simplify subsequent derivations.

Alternatively, the SDNMF cost function can be written using
matrices trace form as follows:

OSDNMF(X||ZH) =
1

2
Tr
[
(X−ZH)(X−ZH)T

]
+

+
α

2
Tr[Σw]−

β

2
Tr[Σb] =

1

2
Tr[XX

T ]−Tr[ZHX
T ]+

+
1

2
Tr[ZHH

T
Z
T ] +

α

2
Tr[Σw]−

β

2
Tr[Σb] (12)

where we have applied the matrix properties Tr[AB] =
Tr[BA], Tr[A] = Tr[AT ] and ||A||2F = Tr[AA

T ]
Consequently, the new minimization problem is formu-

lated as:

min
Z,H

OSDNMF(X||ZH) (13)

subject to: zi,k ≥ 0 ,hk, j ≥ 0, ∀i, j,k.

which requires the minimization of (11) subject to the non-
negativity constraints applied on the elements of both the
weights matrix H and the basis images matrix Z.

In order to solve the optimization problem in (13), we
follow a similar approach as that in [13]. It should be noted
that as in every NMF-based optimization problem the objec-
tive function in (11) is convex either in Z or in H, but non-
convex in both variables. Therefore, we do not expect the
optimization process of the SDNMF algorithm to reach the
global minimum. Instead, the proposed iterative optimiza-
tion algorithm can be used to find a local minimum. To do
so, the proposed process successively optimizes either vari-
able Z or H keeping the other fixed.

3.3 Update Rules Derivation for the Optimization of the
SDNMF Problem

In order to solve the constrained optimization problem in
(13) we introduce Lagrange multipliers u ∈ RF×M+ = [ui,k]

and v ∈ RM×L+ = [v j,k] each one associated with each non-

negativity constraint for zi,k ≥ 0 and hk, j ≥ 0, respectively.

Consequently, we formulate the Lagrangian function L as
follows:

L =
1

2
Tr[XX

T ]−Tr[ZHX
T ]+

1

2
Tr[ZHH

T
Z
T ]+

+
α

2
Tr[Σw]−

β

2
Tr[Σb]+∑

i,k

ui,kzi,k+∑
j,k

v j,kh j,k =

=
1

2
Tr[XX

T ]−Tr[ZHX
T ]+

1

2
Tr[ZHH

T
Z
T ]+

+
α

2
Tr[Σw]−

β

2
Tr[Σb]+Tr[uZ

T ]+Tr[vH
T ]. (14)

The optimization problem in equation (13) is equivalent to
the minimization of the Lagrangian function argmin

Z,H

L. To

minimize L, we first obtain its partial derivatives with respect
to zi,k and hk, j and set them equal to zero:

[ZTZH]k, j− [ZTX]k, j+
α

2

∂Tr[Σw]

∂hk, j
−

β

2

∂Tr[Σb]

∂hk, j
+vk, j = 0

[
ZHH

T
]
i,k
− [XH

T ]i,k+ui,k = 0. (15)
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According to KKT conditions [7] it is valid that ui,kzi,k =

0 and also vk, jhk, j = 0. Consequently, we obtain the follow-

ing equalities:
(

∂L

∂hk, j

)
hk, j = 0⇔ [ZTZH]k, jhk, j− [ZTX]k, jhk, j +

+α
(
hk, j− m̃

(r)(θ)
k

)
hk, j−

β

N(r)(θ)

m̃(r)(θ)
k

(C−Cr)hk, j +

+
β

N(r)(θ)

n

∑
q,q 6=r

Cq

∑
g=1

m̃(q)(g)
k

hk, j = 0 (16)

(
∂L

∂ zi,k

)
zi,k = 0⇔ [ZHH

T ]i,kzi,k− [XH
T ]i,kzi,k = 0. (17)

Solving equation (16) for hk, j we derive the proposed multi-

plicative update rule:

h(t)
k, j

= h(t−1)
k, j

[Z(t−1)T
X]k, j+

β
N

(r)(θ)
m̃(r)(θ)
k

(C−Cr)

[Z(t−1)T
Z

(t−1)
H

(t−1)]k, j+A
(18)

where A is defined as:

A= α
(
h(t−1)
k, j

− m̃(r)(θ)
k

)
+

β

N(r)(θ)

n

∑
q,q 6=r

Cq

∑
g=1

m̃(q)(g)
k

.

On the other hand, solving equation (17) for zi,k we derive

the update rule for the basis images matrix Z as:

z(t)
i,k

= z(t−1)
i,k

[XH
(t)T ]i,k

[Z(t−1)H(t)H(t)T ]i,k
. (19)

After we obtain the optimum factors, SDNMF necessi-
tates to use the pseudo-inverse Z

† = (ZTZ)−1ZT of the basis
images matrix Z, in order to extract the discriminant features
and compute the projection to the lower dimensional feature
space for an unknown test sample x j as: x́ j = Z

†
x j. How-

ever, as it has been shown in [3], ZT can be also used as an
appropriate alternative for this purpose, since the calculation
of Z

† is not only a computationally intensive task but also
may suffer from numerical instability.

We can successively update Z and H either until the ob-
jective function does not achieve any significant improve-
ment or when a predefined maximum number of iterations is
reached. Since the added discriminant factors in the SDNMF
cost function are totaly independent from the basis images
matrix Z, keeping variable H fixed and optimizing for Z re-
sults to the same optimization problem as thus optimized by
the original NMF algorithm in [13] and consequently, leads
to exactly the same update formulae. Thus, we can recall the
convergence proof of conventional NMF to show that (11) is
non-increasing under the update rules in (19). The interested
reader is referred to [13] for more details. The proposed mul-
tiplicative update rule in (18) is also guaranteed to cause a
non increasing behavior of the objective function. The inter-
ested reader is referred to [4, 14] for a detailed proof regard-
ing convergence to a local minimum of other similarly de-
rived updates. Moreover, when setting parameters α = β = 0
it is obvious that the SDNMF algorithm degenerates to the
original NMF method and the update rule in (18) reduce to
that of equation (5).

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
SDNMF method compared with the DNMF and the conven-
tional NMF algorithm on the Cohn-Kanade [11] facial ex-
pression database. Figure 1 shows example images, from the
examined dataset, depicting the six basic facial expressions
arranged in the following order: anger, fear, disgust, happi-
ness, sadness, surprise and the neutral emotional state.

Figure 1: Sample images depicting the different facial ex-
pressions from the Cohn-Kanade database.

In order to form the training and test sets, face detec-
tion was performed and the resulting Regions Of Interest
(ROIs) were manually aligned with respect to the eyes posi-
tion. Each extracted facial image was anisotropically scaled,
so as to have fixed size of 30× 40 pixels (where 30 and 40
are the columns and rows of the image, respectively) and
was converted to grayscale. Consequently, each facial im-
age was scanned row-wise so as to form a feature vector
x = [ f1 . . . f1200]

T , ( fi being the luminance of the i-th pixel)
which is used to compose the training and test sets.

Regarding the training and test sets formation, 5-fold
cross validation has been performed using the available data
samples. Apparently, the training set has been used to learn
the basis images for the low dimensional projection space,
while the test set has been used to report the facial expres-
sion recognition accuracy rates in the respective learned pro-
jection space. Training and testing have been performed by
feeding the projected discriminant facial expression repre-
sentations to a linear SVM classifier. Consequently, recog-
nition accuracy is measured as the percentage of samples in
the test set which were correctly classified. The reported av-
erage classification accuracy rate is the mean value of the
percentages of the correctly classified facial expressions in
each fold. Parameters α and β value was defined experi-
mentally. We have found that the optimal values in terms
of measured classification accuracy rates and convergence
speed where achieved when α and β were set in the inter-
val (0, 1]. Moreover, in all circumstances these parameters
should be carefully defined such as to ensure convexity of the
optimization subproblem.

Figure 2 shows the average expression recognition accu-
racy rates versus the projection subspace dimensionality. The
highest measured recognition rates achieved by each exam-
ined method, as well as, the respective subspace dimension-
ality are summarized in Table 1. As it can be seen SDNMF
outperforms both NMF and DNMF methods.

5. CONCLUSION

We proposed a novel method that addresses the general prob-
lem of finding discriminant projections that enhance class
separability in the reduced dimensional space by incorporat-
ing CDA in the NMF decomposition. To solve the SDNMF
problem, we develop a multiplicative update rule that consid-
ers not only samples class origin but also clusters formation
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Figure 2: Average facial expression recognition accuracy rate
versus the dimensionality of the projection subspace in the
Cohn-Kanade database.

Table 1: Best average expression recognition accuracy rates
in Cohn-Kanade database

Subspace
Method Accuracy Rate Dimensionality

SDNMF Cr = 2 70.36% 110
SDNMF Cr = 3 69.86% 160

DNMF 65.59% 190
NMF 64.86% 180

inside each class. We compared the performance of SDNMF
algorithm with NMF and DNMF and the experimental re-
sults verified the superiority of the proposed method in the
facial expression recognition task.
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