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ABSTRACT

This paper proposes a new feature descriptor, local normal
binary patterns (LNBPs), which is exploited for detection of
facial action units (AUs). After LNBPs have been employed
to form descriptor vectors, which capture the detailed shape
of the action, feature selection is performed via a Gentle-
Boost (GB) algorithm, and support vector machines (SVMs)
are trained to detect each AU. This process was tested on the
Bosphorus database, alongside the same test using 3D local
binary pattern (3DLBP) descriptors which apply the LBP op-
erator to the depth map of the face. LNBP descriptors were
demonstrated to outperform 3DLBPs in detection of many in-
dividual AUs. Finally, feature fusion was used to combine the
benefits of the 3DLBPs and each of the LNBP descriptors,
with the best result achieving a mean ROC AuC of 96.35.

Index Terms— local normal binary patterns, facial ac-
tion units, expressions, 3D facial geometry, support vector
machines.

1. INTRODUCTION

Recognition of facial expressions is a challenging problem,
as the face is capable of complex motions, and the range of
possible expressions is extremely wide. For this reason, de-
tection of facial action units (AUs) from the Facial Action
Coding System has become a widely studied area of research.
AUs are the building blocks of expressions, and so allow for
complex analysis of the full range of expressions, while be-
ing finite in number, thus allowing a comprehensive detection
system to be produced.

The use of 3D facial geometry data and extracted 3D fea-
tures for expression recognition has so far not been heav-
ily studied. Images and videos of this kind allow a greater
amount of information to be captured (2D and 3D), includ-
ing out-of-plane movement which 2D cannot record, whilst
also removing the problems of illumination and pose inherent
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to 2D data. For this reason some work has begun to employ
3D facial geometry data for facial expression recognition, for
example [1]. 3D facial geometries have also started to be em-
ployed for facial AU detection, for example in [2] which uses
curvature images as 2D representations of the 3D data for fea-
ture extraction.

Local Binary Patterns (LBPs) are a technique that have
been widely applied to the problem of facial expression recog-
nition [3]. Variants on LBPs have also been proposed: lo-
cal gradient orientation binary patterns (LGOBPs) [4], local
phase quantisers (LPQ)[5], and local Gabor binary patterns
(LGBPs) [6]. LBPs, LPQs and LGBPs have also been ex-
tended to the dynamic problem in the form of LBP-TOP [7],
LPQ-TOP [8] and V-LGBPs [9]. Some works have also be-
gun to apply descriptors of these kind to the 3D problem
by proposing the 3DLBP, the traditional LBP descriptor ap-
plied to the depth map of a facial mesh [10] and the Multi-
resolution Extended Local Binary Pattern (MELBPs) [11].

This paper proposes a new type of feature descriptor, lo-
cal normal binary patterns (LNBPs), that can be applied to
3D meshes to encode the shape of the mesh at every point.
We propose two novel LNBP feature descriptors for use on
3D facial geometries. These descriptors are tested alongside
the 3DLBP feature descriptor, which is the traditional LBP
applied to the depth map of the 3D facial geometries as com-
parison. In addition the benefits of the different descriptors
are harnessed by combining them through feature fusion.

2. METHODOLOGY

In this section we describe the new LNBP feature descrip-
tors, and the full method employed for facial action unit (AU)
detection. In the preprocessing stage, the 3D facial geome-
tries from the Bosphorus database [12] are first aligned via
an affine transformation calculated from six of the provided
facial feature points.

2.1. 3D Local Binary Patterns

3D Local Binary Patterns (3DLBPs) were proposed for use
in facial expression recognition of 3D meshes in [10]. They
exploit a 2D representation of the 3D information, the depth
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Figure 1: 3DLBP and LNBPOA operation using eight sur-
rounding points. Figs. (a)-(c) show the 3DLBP operation,
and Figs. (d)-(e) show the LNBPOA operation.

map interpolated onto a regular grid, in order to encode the
local shape around each point in the mesh. A neighbourhood
is defined as a circle around each pixel with a radius r and
number of points P spaced at regular angles around the circle.
The central pixel value is then used as a threshold to assign
binary bits to the pixels in the neighbourhood, thus producing
a binary number for that pixel. This operation is shown in
Figs. 1a-1c, and examples of a 3D facial mesh, depth map
and resulting 3DLBP image for AU28 can be seen in Figs.
2a, 2b and 2c respectively.

2.2. Local Normal Binary Patterns

Local Normal Binary Patterns (LNBPs) employ the normals
of the triangular polygons that form the 3D face mesh to en-
code the shape of the mesh at each point. This is equivalent to
encoding the gradient of a 2D intensity image, and provides
a richer source of information about the shape of the facial
mesh than depth alone. Two novel feature descriptors are pro-
posed in this paper, LNBPOA and LNBPTA, both of which
use the difference in the angles between normals to produce
a binary number that encodes the shape of the neighbourhood
around the central point, vc.

As with LBPs, we define a circular neighbourhood around
each point, specified by a radius r and P points regularly
spaced around the circle. The unit normal, np, at each point,
vp, in the neighbourhood is found, along with that at the cen-
tral point, nc, through x-y interpolation of the given points in
the mesh. The LNBPOA then calculates the scalar product
of the two normals, and assigns a one or zero depending on
whether this is higher or lower than the scalar product of the
central normal with a vector that defined to be a given thresh-
old angle, ψ, from the central normal, nt. This then produces

(a) 3D face mesh (b) Interpolated depth
map

(c) 3DLBP image

(d) LNBPOA image (e) LNBP a
TA image (f) LNBP e

TA image

Figure 2: Examples of images produced by the 3DLBP
and LNBP feature descriptors for subject bs008 performing
AU28.

a p-bit binary number for neighbourhood around each point
in the grid. Alternatively, the LNBPTA calculates the dif-
ference in the two angles of the normals, the azimuth and the
elevation, and assigns bits depending on how these compare
to ψa and ψe respectively.

The LNBPOA is calculated as follows:

LNBPOA(vc) =
P−1∑
p=0

2pt(〈nc,np〉, 〈nc,nt〉) (1)

where 〈nc,nt〉 = cos(ψ) and

t(x, τ) =
{

1 if x < τ
0 otherwise

(2)

The two LNBPTA components are calculated as follows:

LNBP a
TA(vc) =

P−1∑
p=0

2pt(cos(|θc − θp|), cos(ψa)) (3)

LNBP e
TA(vc) =

P−1∑
p=0

2pt(cos(|φc − φp|), cos(ψe)) (4)

where θ = arctan( y
x ) is the azimuth angle, and φ =

arctan( z
x ) is the elevation angle, of a normal n = xi + yj +

zk.
The process of applying the LNBPOA feature descriptor

is shown in Figs 1d-1f, and the LNBPOA image and the two
LNBPTA images can be seen in Figs. 2d, 2e and 2f respec-
tively. In these experiments 8 was used as the value of r and



Figure 3: Construction of the feature vector by concatenation
of histograms from each block in the image.

P , and π
12 was used for ψ, ψa and ψe. Different values of ψ

were experimented with, and this value was found to gener-
ally give the best results.

2.3. Feature Vectors, Selection and Classification

Feature vectors are formed for each of the above descriptors
through the use of histograms. First, the x-y plane of the
mesh is divided into 10x10 equally-sized square blocks, and
for each of these a histogram is formed from the calculated
binary numbers. These histograms are then concatenated into
one large feature vector. This process can be seen in Fig.
3. In the case of the LNBPTA descriptor, a 2D histogram
is formed from the two binary numbers produced, one from
each angle. These histograms are patched together into a 2D
image, and the result is then flattened into a 1D feature vector
suitable for use with the SVMs. 60 bins were used to produce
the 1D 3DLBP and LNBPOA feature descriptors, while
900 bins were employed to produce the 2D LNBPTA feature
descriptor. In addition to exploiting the feature vector from a
single descriptor, the benefits of the different descriptors were
combined through feature fusion. This was achieved through
concatenation of the two histogram feature vectors, thus al-
lowing the classifier to choose features from either descriptor
image.

Feature selection is performed in order to reduce the di-
mensionality of the feature vectors before classification. Gen-
tleBoost, a modified version of the AdaBoost algorithm, is
used for this purpose. To avoid overfitting, our strategy is to
run the selection algorithm repeatedly, removing previously
chosen features at each stage, until the number of features
selected exceeds the number of examples in the training set,
or until fewer than 5 features are being chosen at each stage
by the algorithm. This means that generally the number of
features chosen will be about the same as the number of ex-
amples in the training set. SVM classifiers are trained for
detection of each AU. These classifiers employed the his-
togram intersection kernel. Parameter optimisation was first
performed using 5-fold cross-validation on a validation set
which is taken as one third of the full training data, and then
the SVMs are trained on the remaing two thirds.

3. EXPERIMENTAL RESULTS

We conducted experiments using the AU examples from the
Bosphorus database [12], which consist of 3D facial data col-
lected by asking 105 subjects to perform 24 of the facial AUs
plus low intensity examples of AU12. In these experiments,
all 24 AUs were employed for training and testing, with only
the low intensity AU12 examples not included. As most sub-
jects performed only a subset of the AUs, the subject order of
the dataset was randomised before training and testing, to en-
sure that the AUs were more evenly distributed amongst the
folds. 10-fold cross-validation was employed for training and
testing the system. For training purposes, balanced sets were
created for each AU by taking equal numbers of positive and
negative examples, selecting the the negative examples ran-
domly from the remaining AUs. Testing sets contained all
of the positive and negative examples from the dataset. The
ROC area under the curve (AuC) was calculated for each AU
to assess the comparative performance of each feature type.

3.1. Single Descriptor Results

The result achieved when using each of the feature descrip-
tors alone can be seen in the first three columns of Table
1 show the ROC AuC achieved for each of the AUs, with
each of the 3DLBP and LNBP descriptors. These results
demonstrate that on average all three descriptors achieve
similar scores, with the LNBP descriptors achieving 95.17
(LNBPOA) and 95.05 (LNBPTA), just slightly lower than
3DLBP with 95.21. However, more interesting are the indi-
vidual AU scores. Whilst for some AUs all three descriptors
performed similarly, there are many for which the results
varied significantly. The 3DLBP performs better than either
LNBP descriptor for AUs 44, 9, 10, 16, 22, 23, 25, 27, and
34. However, there are a large number of AUs for which one
or both of the LNBP descriptors outperforms the 3DLBP :
AUs 1, 4, 12, 12L, 12R, 14, 15, 17, and 20.

3.2. Feature Fusion Results

The ROC AuC achieved when the 3DLBP descriptor and
each of the two LNBP descriptors were combined through
feature fusion can be seen in the last two columns of Table
1. Due to the complementary nature of the single descriptor
results, this was expected to result in a higher overall average
performance, which is reflected by the improvement seen in
the mean scores of 96.35 and 95.54 for LBP+LNBPOA

and LBP+LNBPTA respectively, with a significant in-
crease seen in the former case. However, looking at the
individual AU scores, we can also see that for some AUs the
result of combining two descriptors exceeds the maximum
performance achieved with only one descriptor. For example,
the results for AUs 2, 4, 15, 17, 24, 25 and 28 show that
the AuC scores are higher when using LBP+LNBPOA

than those achieved by either of the feature descriptors alone,



AU 3DLBP BP1 BP2 BP3 BP4
1 92.60 96.37 92.80 96.68 91.05
2 97.93 97.94 97.43 98.74 98.43
4 95.81 96.05 96.58 97.58 96.86
43 99.35 99.24 99.65 99.34 99.73
44 95.14 88.79 90.38 94.83 94.12
9 98.23 96.80 97.69 97.21 97.92
10 97.86 96.87 95.74 97.85 97.70
12 95.58 96.37 96.32 96.58 95.96

12L 95.93 98.86 97.00 97.49 97.37
12R 97.72 99.38 97.21 97.69 97.40
14 91.38 92.88 92.13 93.39 91.39
15 84.95 90.15 87.00 91.05 83.61
16 96.74 93.46 95.14 96.36 96.68
17 93.39 95.53 95.03 96.37 94.68
18 96.83 96.19 96.82 97.37 97.25
20 90.22 92.94 92.71 93.41 92.51
22 99.36 97.95 98.30 99.31 99.32
23 94.60 90.82 93.08 94.20 95.11
24 88.90 89.06 88.15 90.27 89.63
25 93.37 92.52 92.42 94.91 94.82
26 93.00 93.39 95.32 94.37 95.08
27 99.45 97.90 99.07 99.38 99.38
28 97.59 97.70 97.08 98.58 97.95
34 99.01 97.01 98.02 99.43 99.11
µ 95.21 95.17 95.05 96.35 95.54
σ 0.54 0.82 0.45 0.52 0.46

Table 1: ROC AuC achieved with different features. BP1 -
LNBPOA, BP2 - LNBPTA, BP3 - 3DLBP+LNBPOA,
BP4 - 3DLBP+LNBPTA. µ - Mean AuC score across
AUs, σ - Standard deviation of mean AuC over 10 folds.

which suggests that they are each allowing for different ex-
amples within these classes to be distinguished. For AUs 4
and 15 a significant improvement is seen over the 3DLBP
result in this case. AUs 23 and 25 also demonstrate this extra
improvement when the 3DLBP and LNBPTA descriptors
are combined, with a significant improvement over 3DLBPs
in the case of the latter AU. However, overall it would ap-
pear that the best results are achieved when the 3DLBP and
LNBPOA feature descriptors are combined. Finally, we can
compare the best result achieved with that of the work in [2],
which uses curvature images with Gabor features to achieve
a maximum ROC AuC score of 96.3 on AUs in this database,
hence our fusion feature type compares well.

4. CONCLUSIONS

In this paper we proposed a new type of image feature de-
scriptor, LNBPs, for use in encoding 3D facial geometry
data for facial expression analysis. These descriptors were
employed with GB feature selection and SVM classifica-

tion in order to perform facial AU detection. The perfor-
mance was compared to that achieved through use of the
3DLBP descriptor, and found to outperform this in the
case of several AUs. The tests were then repeated with the
two types of descriptors combined through feature fusion, and
showed an overall improvement, particularly in the case of the
LNBPOA when combined with the 3DLBP . This suggests
that the LNBP descriptors are able to encode shape infor-
mation which is complementary to that encoded by 3DLBPs
alone, and thus are beneficial for 3D facial AU detection.
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