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ABSTRACT

Although tremendous strides have been made in uncontrolled face detection, accu-
rate face detection with a low computation cost remains an open challenge. In this
paper, we point out that computation distribution and scale augmentation are the
keys to detecting small faces from low-resolution images. Motivated by these ob-
servations, we introduce two simple but effective methods: (1) Computation Re-
distribution (CR), which reallocates the computation between the backbone, neck
and head of the model; and (2) Sample Redistribution (SR), which augments train-
ing samples for the most needed stages. The proposed Sample and Computation
Redistribution for Face Detection (SCRFD) is implemented by a random search
in a meticulously designed search space. Extensive experiments conducted on
WIDER FACE demonstrate the state-of-the-art accuracy-efficiency trade-off for
the proposed SCRFD family across a wide range of compute regimes. In particular,
SCRFD-34GF outperforms the best competitor, TinaFace, by 4.78% (AP at hard
set) while being more than 3× faster on GPUs with VGA-resolution images. Code
is available at: https://github.com/deepinsight/insightface/
tree/master/detection/scrfd.

1 INTRODUCTION

Face detection is a long-standing problem in computer vision with many applications, such as face
alignment (Bulat & Tzimiropoulos, 2017; Deng et al., 2019b), face reconstruction (Feng et al.,
2018; Gecer et al., 2021), face attribute analysis (Zhang et al., 2018; Pan et al., 2018), and face
recognition (Schroff et al., 2015; Deng et al., 2019a; 2020a). Following the pioneering work of
(Viola & Jones, 2004), numerous face detection algorithms have been designed. Among them, the
single-shot anchor-based approaches (Najibi et al., 2017; Zhang et al., 2017b; Tang et al., 2018; Li
et al., 2019; Ming et al., 2019; Deng et al., 2020b; Liu et al., 2020; Zhu et al., 2020) have recently
demonstrated very promising performance. In particular, on the most challenging face detection
dataset, WIDER FACE (Yang et al., 2016), the average precision (AP) on its hard validation set has
been boosted to 93.4% by TinaFace (Zhu et al., 2020).

Even though TinaFace (Zhu et al., 2020) achieves impressive results on unconstrained face detection,
it employs large-scale (e.g. 1, 650 pixels) testing, which consumes huge amounts of computational
resources. In addition, TinaFace design is based on a generic object detector (i.e. RetinaNet (Lin
et al., 2017b)), directly taking the classification network as the backbone, tiling dense anchors on
the multi-scale feature maps (i.e. P2 to P7 of neck), and adopting heavy head designs. Without
considering the prior of faces, the network design of TinaFace is thus redundant and sub-optimal.

One approach of optimizing such networks’ performance is computation redistribution. Since di-
rectly taking the backbone of the classification network for object detection is sub-optimal, the
recent CR-NAS (Liang et al., 2020) reallocates the computation across different resolutions to ob-
tain a more balanced Effective Receptive Field (ERF), leading to higher detection performance. In
BFbox (Liu & Tang, 2020), a face-appropriate search space is designed, based on the observation of
scale distribution gap between general object detection and face detection. In ASFD (Zhang et al.,

∗denotes equal contribution and corresponding author. InsightFace is a nonprofit Github project for 2D and
3D face analysis.
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Figure 1: (a) Cumulative face scale distribution on the WIDER FACE validation dataset (Easy ⊂
Medium ⊂ Hard). When the long edge is fixed as 640 pixels, most of the easy faces are larger than
32 × 32, and most of the medium faces are larger than 16 × 16. For the hard track, 78.93% faces
are smaller than 32× 32, 51.85% faces are smaller than 16× 16, and 13.36% faces are smaller than
8× 8. (b) Performance-computation trade-off on the WIDER FACE validation hard set for different
face detectors. Flops and APs are reported by using the VGA resolution (640× 480) during testing.
The proposed SCRFD outperforms a range of state-of-the-art open-sourced methods by using much
fewer flops.

2020a), a differential architecture search is employed to discover optimized feature enhance mod-
ules for efficient multi-scale feature fusion and context enhancement. Even though (Liu & Tang,
2020; Zhang et al., 2020a) have realized the limitation of directly applying general backbone, neck
and head settings to face detection, CR-NAS (Liang et al., 2020) only focuses the optimization on
backbone, BFbox (Liu & Tang, 2020) neglects the optimization of head, and ASFD (Zhang et al.,
2020a) only explores the best design for neck.

Another optimization approach, is the sample redistribution across different scales. Due to the ex-
tremely large scale variance of faces in real-world scenarios, different scale augmentation strategies
are employed to introduce scale adaptation into the face detector. The most widely used scale aug-
mentation approaches include random square crop (Zhang et al., 2017b; Deng et al., 2020b; Zhu
et al., 2020) and data anchor sampling (Tang et al., 2018). Nevertheless, the scale augmentation
parameters in these methods are manually designed for all different network structures. Therefore,
traditional multi-scale training in face detection is also tedious and sub-optimal.

Since VGA resolution (640 × 480) is widely used for efficient face detection on numerous mobile
phones and digital cameras, we focus on efficient face detection from low-resolution images in this
paper. In Fig 1(a), we give the cumulative face scale distribution on the WIDER FACE validation
dataset. Under the VGA resolution, most of the faces (78.93%) in WIDER FACE are smaller than
32×32 pixels. Under this specific scale distribution, both network structure and scale augmentation
need to be optimized.

In this work, we present a meticulously designed methodology of search space optimization, that
addresses both the redistribution between the backbone, neck and head, and the sample redistribution
between the most needed scales. As the structure of a face detector determines the distribution of
computation and is the key in determining its accuracy and efficiency, we first discover principles
of computation distribution under different flop regimes. Inspired by (Radosavovic et al., 2020),
we control the degrees of freedom and reduce the search space. More specifically, we randomly
sample model architectures with different configurations on backbone (stem and four stages), neck
and head. Based on the statistics of these models, we compute the empirical bootstrap (Efron &
Tibshirani, 1994) and estimate the likely range in which the best models fall. To further decrease
the complexity of the search space, we divide the computation ratio estimation for backbone and the
whole detector into two steps. To handle extreme scale variations in face detection, we also design
a search-able zoom-in and zoom-out space, specified by discrete scales and binary probabilities.
In experiments, the proposed computation redistribution and sample redistribution yield significant
and consistent improvement on various compute regimes, even surpassing a range of state-of-the-art
face detectors by using much fewer flops as shown in Fig. 1(b).

To sum up, this paper makes following contributions:
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• We have proposed a simplified search space, as well as a two-step search strategy for compu-
tation redistribution across different components (backbone, neck and head) of a face detec-
tor. The proposed computation redistribution method can easily boost detection performance
through random search.

• We have designed a search-able zoom-in and zoom-out space for face-specific scale augmen-
tation, which automatically redistributes more training samples for shallow stages, enhancing
the detection performance on small faces.

• Extensive experiments conducted on WIDER FACE demonstrate the significantly improved ac-
curacy and efficiency trade-off of the proposed SCRFD across a wide range of compute regimes.

2 RELATED WORK

Face Detection. To deal with extreme variations (e.g. scale, pose, illumination and occlusion) in
face detection (Yang et al., 2016), most of the recent single-shot face detectors focus on improving
the anchor sampling/matching or feature enhancement. SSH (Najibi et al., 2017) builds detection
modules on different feature maps with a rich receptive field. S3FD (Zhang et al., 2017b) introduces
an anchor compensation strategy by offsetting anchors for outer faces. PyramidBox (Tang et al.,
2018) formulates a data-anchor-sampling strategy to increase the proportion of small faces in the
training data. DSFD (Li et al., 2019) introduces small faces supervision signals on the backbone,
which implicitly boosts the performance of pyramid features. Group sampling (Ming et al., 2019)
emphasizes the importance of the ratio for matched and unmatched anchors. RetinaFace (Deng et al.,
2020b) employs deform-able context modules and additional landmark annotations to improve the
performance of face detection. HAMBox (Liu et al., 2020) finds that many unmatched anchors in
the training phase also have strong localization ability and proposes an online high-quality anchor
mining strategy to assign high-quality anchors for outer faces. BFbox (Liu & Tang, 2020) employs
a single-path one-shot search method (Guo et al., 2019) to jointly optimize the backbone and neck
for face detector. ASFD (Zhang et al., 2020a) explores a differential architecture search to discover
optimized feature enhance modules for efficient multi-scale feature fusion and context enhancement.
All these methods are either designed by expert experience or partially optimized on backbone,
neck and head. By contrast, we search for computation redistribution across different components
(backbone, neck and head) of a face detector across a wide range of compute regimes.

Neural Architecture Search. Given a fixed search space of possible networks, Neural Architecture
Search (NAS) automatically finds a good model within the search space. DetNAS (Chen et al.,
2019b) adopts the evolution algorithm for the backbone search to boost object detection on COCO
(Lin et al., 2014). By contrast, CR-NAS (Liang et al., 2020) reallocates the computation across
different stages within the backbone to improve object detection. NAS-FPN (Ghiasi et al., 2019)
uses reinforcement learning to search the proper FPN for general object detection. As there is an
obvious distribution gap between COCO (Lin et al., 2014) and WIDER FACE (Yang et al., 2016),
the experience in the above methods is not directly applicable for face detection but gives us an
inspiration that the backbone, neck and head can be optimized to enhance the performance of face
detection. Inspired by RegNet (Radosavovic et al., 2020), we optimize the computation distribution
on backbone, neck and head based on the statistics from a group of random sampled models. We
successfully reduce the search space and find the stable computation distribution under a particular
complex regime, which significantly improves the model’s performance.

3 METHODOLOGY

To efficiently and accurately detect small faces from low-resolution images (e.g. VGA 640 × 480),
we propose two methodologies that, when combined, outperform the state-of-the-art. In Sec. 3.1,
we explore the computation redistribution across different stages of backbone, as well as different
components (i.e. backbone, neck and head) of the whole detector, given a pre-defined computa-
tion budget. Then, in Sec. 3.2, we investigate the redistribution of positive training samples across
different scales of feature maps by searching optimized scale augmentations.
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Figure 2: Computation redistribution among the backbone, neck and head. The backbone search
space contains four stages, each stage having two parameters: the block number di and block width
wi. The neck search space only includes the channel number n. The head is shared for the three-scale
of feature maps (Ni), and the search space consists of the block number m and channel number h.
3.1 COMPUTATION REDISTRIBUTION

As illustrated in Fig. 2, we apply our search method on a network consisting of (1) RetinaNet (Lin
et al., 2017a), with ResNet (He et al., 2016) as the backbone, (2) Path Aggregation Feature Pyramid
Network (PAFPN) (Liu et al., 2018) as the neck, and (3) stacked 3 × 3 convolutional layers for the
head. Despite the generally simple structure, the total number of possible network configurations of
the search space becomes unwieldy. Therefore, we attempt to simplify the tremendous search space
and arrive at a low-dimensional design space, consisting of simple and effective networks.

3.1.1 SEARCH SPACE DESIGN

Inspired by RegNet (Radosavovic et al., 2020), we explore the structures of face detectors, assuming
fixed standard network blocks (i.e., basic residual or bottleneck blocks with a fixed bottleneck ratio
of 4). In our case, the structure of a face detector includes:

• the backbone stem, three 3× 3 convolutional layers with w1 output channels (He et al., 2019a).
• the backbone body, four stages (i.e. C2, C3, C4 and C5) operating at progressively reduced

resolution, with each stage consisting of a sequence of identical blocks. For each stage i, the
degrees of freedom include the number of blocks di (i.e. network depth) and the block width
wi (i.e. number of channels).

• the neck, a multi-scale feature aggregation module by a top-down path and a bottom-up path
with n channels (Liu et al., 2018).

• the head, with hi channels of m blocks to predict face scores and regress face boxes.
The search space can be initially designed as follows. As the channel number of the stem is equal
to the block width of the first residual block in C2, the degree of freedom of the stem w1 can be
merged into w2. In addition, we employ a shared head design for three-scale of feature maps and
fix the channel number for all 3 × 3 convolutional layers within the heads. Therefore, we reduce
the degrees of freedom to three within our neck and head design: (1) output channel number n for
neck, (2) output channel number h for head, and (3) the number of 3 × 3 convolutional layers m.
We perform uniform sampling of n ≤ 256, h ≤ 256, and m ≤ 6 (both n and h are divisible by 8).

The backbone search space has 8 degrees of freedom as there are 4 stages and each stage i has 2
parameters: the number of blocks di and block width wi. Following RegNet (Radosavovic et al.,
2020), we perform uniform sampling of di ≤ 24 and wi ≤ 512 (wi is divisible by 8). As state-of-
the-art backbones have increasing widths (Radosavovic et al., 2020), we also constrain the search
space, according to the principle of wi+1 ≥ wi.

3.1.2 ESTIMATION METRIC

Based on above simplifications, our search space becomes more compact and efficient. We repeat
the random sampling in our search space until we obtain 320 models in our target complexity regime,
and train each model on the WIDER FACE (Yang et al., 2016) training set for 80 epochs. Then, we
test the Average Precision (AP) of each model on the validation set. Based on these 320 pairs of
model statistics (xi, APi), where xi is the computation ratio of a particular component and APi the
corresponding performance, we can compute the empirical bootstrap (Efron & Tibshirani, 1994) to
estimate the likely range in which the best models fall. More specifically, we repeatedly sample with
replacement 25% of the pairs for 103 times and select the pair with maximum AP in each sampling.
Afterwards, we compute the 95% confidence interval for the maximum value and the median gives
the most likely best computation ratio.
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(e) C5 ∼ (1%, 16%)

Figure 3: Computation redistribution on the backbone (stem, C2, C3, C4 and C5) with fixed neck
and head under the constraint of 2.5 GFlops. For each component within the backbone, the range of
computation ratio in which the best models may fall is estimated by the empirical bootstrap.
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(a) Backbone ∼ (67%, 88%)
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(b) Neck ∼ (1%, 7%)
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(c) Head ∼ (10%, 26%)

(d) Architecture Sketches
Figure 4: Computation redistribution and architecture sketches under the constraint of 2.5 GFlops.
The computation distribution of CRFD-2.5GF within backbone follows Fig. 3. In (d), the yellow
rectangles in C2 to C5 represents the basic residual block. The width of rectangles corresponds to
the computation cost. After computation redistribution, more computations are allocated to shallow
stages (i.e. C2 and C3).

3.1.3 TWO-STEP SEARCH

To further decrease the complexity of search space, we divide our network structure search into
the following two steps: (1) CRFD1: search the computational distribution for the backbone only,
while fixing the settings of the neck and head to the default configuration, and (2) CRFD2: search
the computational distribution over the whole face detector (i.e. backbone, neck and head), with
the computational distribution within the backbone, following the optimized CRFD1. By optimizing
in both manners, we achieve the final optimized network design for the computation-constrained
face detection. In the example below, we constrain CRFD to 2.5 GFlops (CRFD-2.5GF), in order to
illustrate our two-step searching strategy.

Computation redistribution on backbone. For CRFD1-2.5GF, we fix the output channel of the
neck at 32 and use two stacked 3 × 3 convolutions with 96 output channels. As the neck and
head configurations do not change in the whole search process of CRFD1, we can easily find the
best computation distribution of the backbone. As described in Fig. 3, we show the distribution of
320 model APs (on the WIDER FACE hard validation set) versus the computation ratio over each
component (i.e. stem, C2, C3, C4 and C5) of backbone. After applying an empirical bootstrap (Efron
& Tibshirani, 1994), a clear trend emerges, showing that the backbone computation is reallocated to
the shallow stages (i.e. C2 and C3).

Computation redistribution on backbone, neck and head. In this step, we only keep the ran-
domly generated network configurations whose backbone settings follow the computation distribu-
tion from CRFD1 as shown in Fig. 3. In this case, there are another three degrees of freedom (i.e.
output channel number n for neck, output channel number h for head, and the number m of 3 × 3
convolutional layers in head). We repeat the random sampling in our search space, until we obtain
320 qualifying models in our target complexity regime (i.e. 2.5 GFlops). As evident in Fig. 4, most
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Figure 5: Computation redistribution and the searched network structures under different compu-
tation constraints. Network diagram legends in the second row contain all information required to
implement the CRFD models that we have optimized the computation across stages and components.
of the computation is allocated in the backbone, with the head following and the neck having the
lowest computation ratio. Fig. 4(d) also depicts the comparison between the hand-crafted model
architecture and the computation redistributed network, under the constraint of 2.5 GFlops.

3.2 SAMPLE REDISTRIBUTION

As face detection features large scale variations (from several pixels to thousand pixels), there exist
two widely used scale augmentation strategies, random square crop (Zhang et al., 2017b; Deng et al.,
2020b; Zhu et al., 2020) and data anchor sampling (Tang et al., 2018). In the random square crop
strategy, square patches are cropped from the original image with a random size between [0.3, 1] of
the short edge and then resized into 640 × 640 to generate larger training faces. By contrast, data
anchor sampling strategy aims to generate more small scale faces by down-sampling the original
image, bringing a large amount of padded area. Even though both random square crop and data
anchor sampling can achieve promising results on the WIDER FACE dataset, the scale augmentation
parameters are manually designed for all different network structures. Therefore, the training sample
distribution on the feature pyramids can be sub-optimal for a particular network structure.

To handle extreme scale variations in face detection, we also design a search-able zoom-in and
zoom-out space, specified by the scale si and probability pi. The scale si represents the zooming
ratio, sampled from a discrete set S = {smin, smin + 0.1, · · · , smax − 0.1, smax}. For a particular
training image in each iteration, square patches are cropped from the original images with a zooming
ratio si of the short edge of the original images. If the square patch is larger than the original image,
average RGB values will fill the missing pixels. To shrink the scale search space, we employ a binary
probability set pi ∈ {0, 1}. Under this setting, the probability-based scale search is simplified into a
discrete scale sampling from a fixed set. As the interval of the discrete scale set is only 0.1, adjacent
scales will have the probability of 1.0 to approximate a higher probability around a particular scale.
In this paper, we employ random search under the estimation metric of AP on WIDER FACE to
construct the best scale augmentation set. More specifically, we set smin = 0.1 and smax = 3.0.
Then, we randomly select 8 to 20 discrete scale values to construct each scale augmentation set and
train CRFD models under 320 different scale augmentation sets. Finally, the scale augmentation set
with the highest detection performance is selected for optimized scale augmentation.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training. For the scale augmentation, square patches are cropped from the original images with
a random size from a pre-defined scale set, and then these patches are resized to 640 × 640 for
training. Besides scale augmentation, the training data are also augmented by color distortion and
random horizontal flipping, with a probability of 0.5. For the anchor setting, we tile anchors of
{16, 32}, {64, 128}, and {256, 512} on the feature maps of stride 8, 16, and 32, respectively. The
anchor ratio is set as 1.0. In this paper, we employ Adaptive Training Sample Selection (ATSS)
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Table 1: Ablation experiments of SCRFD-2.5GF (i.e. CR@two-steps+SR) on the WIDER FACE
validation subset. “CR” and “SR” denote the proposed computation and sample redistribution, re-
spectively. Results are reported on the single-scale VGA resolution.

Method Scale Augmentation Set Easy Medium Hard
ResNet-2.5GF [0.3, 1.0] 91.87 89.49 67.32
BFBox-2.5GF (Liu & Tang, 2020) [0.3, 1.0] 92.22 90.19 69.41
Evolutionary-2.5GF [0.3, 1.0] 92.30 90.21 69.62
CR@backbone [0.3, 1.0] 92.32 90.25 69.78
CR@detector [0.3, 1.0] 92.61 90.74 70.98
CR@two-steps (CRFD-2.5GF) [0.3, 1.0] 92.66 90.72 71.37
ResNet-2.5GF [0.3,2.0] 93.21 91.11 74.47
ResNet-2.5GF SR 93.17 91.14 74.93
CR@two-steps [0.3,2.0] 93.78 92.16 77.87
CR@two-steps (SCRFD-2.5GF) SR 93.76 92.17 78.35

(Zhang et al., 2020b) for positive anchor matching. In the detection head, weight sharing and Group
Normalization (Wu & He, 2018) are used. The losses of classification and regression branches are
Generalized Focal Loss (GFL) (Li et al., 2020) and DIoU loss (Zheng et al., 2020), respectively.

Our experiments are implemented in PyTorch, based on the open-source MMDetection (Chen et al.,
2019a). We adopt the SGD optimizer (momentum 0.9, weight decay 5e-4) with a batch size of 8×8
and train on eight Tesla V100. The learning rate is linearly warmed up to 0.015 within the first 3
epochs. During network search, the learning rate is multiplied by 0.1 at the 55-th, and 68-th epochs.
The learning process terminates on the 80-th epoch. For training of both baselines and searched
configurations, the learning rate decays by a factor of 10 at the 440-th and 544-th epochs, and the
learning process terminates at the 640-th epoch. All the models are trained from scratch without any
pre-training.

Testing. For fair comparisons with other methods, we employ three testing strategies, including
single-scale VGA resolution (640 × 480), single-scale original resolution, and multi-scale testing.
The results of DSFD (Li et al., 2019), RetinaFace (Deng et al., 2020b), TinaFace (Zhu et al., 2020),
Faceboxes (Zhang et al., 2017a), libfacedetection (Feng et al., 2021) and LFFD (He et al., 2019b)
are reported by testing the released models, while the HAMBox (Liu et al., 2020) and BFBox (Liu
& Tang, 2020) models are shared from the author.

4.2 ABLATION STUDY

In Tab. 1, we present the performance of models on the WIDER FACE dataset by gradually includ-
ing the proposed computation and sample redistribution methods. Our manually-designed baseline
model, ResNet-2.5GF, gets APs of 91.87%, 89.49%, and 67.32% under three validation scenarios.

Computation redistribution. After separately employing the proposed computation redistribution
on the backbone and the whole detector, the AP on the hard set improves to 69.78% and 70.98%.
This indicates that (1) the network structure directly inherited from the classification task is sub-
optimal for the face detection task, and (2) joint computation reallocation on the backbone, neck
and head outperforms computation optimization applied only on the backbone. Furthermore, the
proposed two-step computation redistribution strategy achieves AP of 71.37%, surpassing one-step
computation reallocation on the whole detector by 0.39%. As we shrink the whole search space by
the proposed two-step strategy and our random model sampling number is fixed at 320, the two-
step method is possible to find better network configurations from the large search space. In Tab.
1, we also compare our method with the single path one-shot NAS method (BFBox (Liu & Tang,
2020)) and the evolutionary search method (Appendix A.2), under the constraint of 2.5 GFlops. BF-
Box aims to design a face-appropriate search space by combing some excellent block designs, such
as bottleneck block, densenet block and shufflenet block. However, such a combination generates a
complex and redundant search space, which inevitably involves a vast body of low-performance can-
didate architectures. The evolutionary approach iteratively adopts mutations and crossover to grad-
ually generate better architecture candidates from the randomly initialized search space, which also
contains a large number of under-performing architectures. By contrast, CRFD-2.5GF utilizes an
empirical bootstrap to estimate the optimized computation distribution of the best-performing archi-
tecture candidates, which directly eliminates the low-quality architectures from the initialized search
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Table 2: Accuracy and efficiency of different methods on the WIDER FACE validation set. #Params
and #Flops denote the number of parameters and multiply-adds. “Infer” refers to network inference
latency on NVIDIA 2080TI.

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
DSFD@VGA ResNet152 94.29 91.47 71.39 120.06 259.55 55.6

DSFD@Multi-Scale ResNet152 96.6 95.7 90.4 120.06 15928.5 -
RetinaFace@VGA ResNet50 94.92 91.90 64.17 29.50 37.59 21.7

RetinaFace@Multi-Scale ResNet50 96.7 96.1 91.4 29.50 4585.98 -
BFBox@VGA - 94.2 92.1 70.4 28.6 39.4 22.4

BFBox@Multi-Scale - 96.5 95.7 91.7 28.6 4732.8 -
HAMBox@VGA ResNet50 95.27 93.76 76.75 30.24 43.28 25.9

HAMBox@Multi-Scale ResNet50 97.0 96.4 93.3 30.24 5246.23 -
TinaFace@VGA ResNet50 95.61 94.25 81.43 37.98 172.95 38.9

TinaFace@Multi-Scale ResNet50 97.0 96.3 93.4 37.98 42333.64 -
ResNet-34GF@VGA ResNet50 95.64 94.22 84.02 24.81 34.16 11.8
CRFD-34GF@VGA Bottleneck Res 96.06 94.92 85.29 9.80 34.13 11.7

SCRFD-34GF@VGA Bottleneck Res 96.05 94.96 86.21 9.80 34.13 11.7
SCRFD-34GF@Multi-Scale Bottleneck Res 97.20 96.58 93.53 9.80 2098.98 -

ResNet-10GF@VGA ResNet34x0.5 94.69 92.90 80.42 6.85 10.18 6.3
CRFD-10GF@VGA Basic Res 95.16 93.87 83.05 3.86 9.98 4.9

SCRFD-10GF@VGA Basic Res 95.14 93.96 83.43 3.86 9.98 4.9
SCRFD-10GF@Multi-Scale Basic Res 95.93 94.95 90.81 3.86 614.14 -

ResNet-2.5GF@VGA ResNet34x0.25 93.21 91.11 74.47 1.62 2.57 5.4
CRFD-2.5GF@VGA Basic Res 93.78 92.16 77.87 0.67 2.53 4.2

SCRFD-2.5GF@VGA Basic Res 93.76 92.17 78.35 0.67 2.53 4.2
SCRFD-2.5GF@Multi-Scale Basic Res 95.21 94.44 89.92 0.67 155.69 -

space. Therefore, CRFD-2.5GF can obviously outperform the BFBox and evolutionary method by
1.96% and 1.75% on the hard track.

Sample redistribution. For scale augmentation, we first manually extend the default scale set
{0.3, 0.45, 0.6, 0.8, 1.0} by adding larger scales {1.2, 1.4, 1.6, 1.8, 2.0}. By adding this hand-crafted
sample redistribution, the hard set APs significantly increase by 7.15% for the baseline and 6.5%
for the proposed CRFD, indicating the benefit from allocating more training samples on the feature
map of stride 8. By employing the optimized scale augmentation from searching, the hard set AP
further increases by 0.48% for the proposed CRFD. For SCRFD-2.5GF, the best scale augmenta-
tion set searched is {0.5, 0.7, 0.8, 1.0, 1.1, 1.2, 1.4, 1.5, 1.8, 2.0, 2.3, 2.6}. As we can see from these
discrete scales, faces around the original scale are preferred for training, along with an appropriate
probability and ratio of zooming-out.

4.3 COMPUTATION REDISTRIBUTION ACROSS DIFFERENT COMPUTE REGIMES

Besides the complexity constraint of 2.5 GFlops, we also utilize the same two-step computation
redistribution method to explore the network structure optimization for higher compute regimes
(e.g. 10 GFlops and 34 GFlops) and lower compute regimes (e.g. 0.5 GFlops and 1.0 GFlops). In
Fig. 5, we show the computation redistribution and the optimized network structures under different
computation constraints.

Our final architectures have almost the same flops as the baseline networks. From these redistri-
bution results, we can draw the following conclusions: (1) more computation is allocated in the
backbone and the computation on the neck and head is compressed; (2) more capacity is reallocated
in shallow stages due to the specific scale distribution on WIDER FACE; (3) for the high compute
regime (e.g. 34 GFlops), the explored structure utilizes the bottleneck residual block and we observe
significant depth scaling, instead of width scaling in shallow stages. Scaling the width is subject
to over-fitting due to the larger increase in parameters (Bello et al., 2021). By contrast, scaling the
depth, especially in the earlier layers, introduces fewer parameters compared to scaling the width;
(4) for the mobile regime (0.5 GFlops), allocating the limited capacity in the deep stage (e.g. C5) for
the discriminative features captured in the deep stage, can benefit the shallow small face detection
by the top-down neck pathway.
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Table 3: Accuracy and efficiency of different light-weight models on the WIDER FACE validation
set. #Params and #Flops denote the number of parameters and multiply-adds. “Infer” refers to
network inference latency on NVIDIA 2080TI.

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
RetinaFace@VGA MobileNet0.25 87.78 81.16 47.32 0.44 0.802 7.9

RetinaFace@Original MobileNet0.25 89.58 87.11 69.12 0.44 2.358 -
RetinaFace@Multi-Scale MobileNet0.25 91.4 89.2 82.5 0.44 49.28 -

FaceBoxes@VGA - 76.17 57.17 24.18 1.01 0.275 2.5
FaceBoxes@Original - 84.5 77.7 40.4 1.01 0.809 -

FaceBoxes@Multi-Scale - 85.9 81.6 55.7 1.01 16.93 -
libfacedetection@Original - 85.6 84.2 72.7 2.33 3.25 -

LFFD@Original - 91.0 88.0 77.8 2.15 27.20 -
MobileNet-1.0GF@VGA MobileNet0.25 91.66 89.28 70.46 0.63 1.024 4.9

CRFD-1.0GF@VGA Depth-wise Conv 92.38 90.57 74.80 0.64 0.982 4.1
SCRFD-1.0GF@VGA Depth-wise Conv 92.36 90.58 76.03 0.64 0.982 4.1

SCRFD-1.0GF@Original Depth-wise Conv 91.89 89.96 84.70 0.64 2.89 -
SCRFD-1.0GF@Multi-Scale Depth-wise Conv 93.87 92.99 88.74 0.64 60.39 -

MobileNet-0.5GF@VGA MobileNet0.25 90.38 87.05 66.68 0.37 0.507 3.7
CRFD-0.5GF@VGA Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6

SCRFD-0.5GF@VGA Depth-wise Conv 90.80 88.43 68.82 0.57 0.508 3.6
SCRFD-0.5GF@Original Depth-wise Conv 90.35 88.21 81.46 0.57 1.49 -

SCRFD-0.5GF@Multi-Scale Depth-wise Conv 92.71 91.45 86.23 0.57 31.24 -

4.4 ACCURACY AND EFFICIENCY COMPARISONS ON WIDER FACE

As shown in Tab. 2 and Tab. 3, we compared the proposed SCRFD with other state-of-the-art face
detection algorithms (e.g. DSFD (Li et al., 2019), RetinaFace (Deng et al., 2020b), BFBox (Liu &
Tang, 2020), HAMBox (Liu et al., 2020) and TinaFace (Zhu et al., 2020)) as well as light-weight
face methods (e.g. Faceboxes (Zhang et al., 2017a), libfacedetection (Feng et al., 2021) and LFFD
(He et al., 2019b)). Overall, all of the proposed SCRFD models provide considerable improvements
compared to the hand-crafted baseline models (e.g. ResNet-2.5GF and MobileNet-0.5GF), by op-
timizing the network structure as well as the scale augmentation, across a wide range of compute
regimes.

When we fix the testing scale at 640 as in Tab. 2, the proposed SCRFD-34GF outperforms all these
state-of-the-art methods on the three subsets, especially for the hard track, which contains a large
number of tiny faces. More specifically, SCRFD-34GF surpasses TinaFace by 4.78% while being
more than 3× faster on GPUs. In addition, the computation cost of SCRFD-34GF is only around
20% of TinaFace. As SCRFD-34GF scales the depth in the earlier layers, it also introduces fewer
parameters, resulting in a much smaller model size (9.80M ). Compared to the hand-crafted base-
line (ResNet-34GF), the proposed computation redistribution and sample redistribution improve the
AP by 1.27% and 0.92%, indicating the superiority of SCRFD over manual designs. Compared to
the single path one-shot NAS method, SCRFD-34GF outperforms BFBox by 15.81%, while using a
more compact model size. As the search space of BFBox is complex, there exists a large number
of low-performance architectures. In addition, BFBox only searches the backbone and neck without
considering the optimization on the head. For multi-scale testing, SCRFD-34GF slightly outper-
forms TinaFace but consumes much less computation. For the low-compute regimes in Tab. 3,
SCRFD-0.5GF significantly outperforms RetinaFace-MobileNet0.25 by 21.19% on the hard AP,
while consuming only 63.34% computation and 45.57% inference time under the VGA resolution.
When the evaluation is conducted on the original image, SCRFD-0.5GF surpasses LFFD by 3.6%
on the hard AP, while consuming only 5.5% flops.

5 CONCLUSIONS

In this work, we present a sample and computation redistribution paradigm for efficient face de-
tection. Our results show significantly improved accuracy and efficiency trade-off by the proposed
SCRFD across a wide range of compute regimes, when compared to the current state-of-the-art.

Acknowledgements. We would like to thank Hui Ni from Tencent for preparing the mobile demo
of SCRFD https://github.com/nihui/ncnn-android-scrfd. Stefanos Zafeiriou
acknowledges support from the EPSRC Fellowship DEFORM (EP/S010203/1), FACER2VM
(EP/N007743/1) and a Google Faculty Fellowship.
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A APPENDIX

A.1 TINAFACE REVISITED

Based on RetinaNet (Lin et al., 2017a), TinaFace (Zhu et al., 2020) employs ResNet-50 (He et al.,
2016) as backbone, and Feature Pyramid Network (FPN) (Lin et al., 2017a) as neck to construct
the feature extractor. For the head design, TinaFace first uses a feature enhancement module on
each feature pyramid to learn surrounding context through different receptive fields in the inception
block (Szegedy et al., 2015). Then, four consecutive 3 × 3 convolutional layers are appended on
each feature pyramid. Focal loss (Lin et al., 2017b) is used for the classification branch, DIoU loss
(Zheng et al., 2020) for the box regression branch and cross-entropy loss for the IoU prediction
branch.

To detect tiny faces, TinaFace tiles anchors of three different scales, over each level of the FPN
(i.e. {24/3, 25/3, 26/3} × {4, 8, 16, 32, 64, 128}, from level P2 to P7). The aspect ratio is set as
1.3. During training, square patches are cropped from the original image and resized to 640× 640,
using a scaling factor randomly sampled from [0.3, 0.45, 0.6, 0.8, 1.0], multiplied by the length of
the original image’s short edge. During testing, TinaFace employs single scale testing, when the
short and long edges of the image do not surpass [1100, 1650]. Otherwise, it employs with short
edge scaling at [500, 800, 1100, 1400, 1700], shift with directions [(0, 0), (0, 1), (1, 0), (1, 1)] and
horizontal flip.

As shown in Fig. 6(a) and Tab. 4, we compare the performance of TinaFace under different testing
scales. For the multi-scale testing, TinaFace achieves an impressive AP of 93.4%, which is the
current best performance on the WIDER FACE leader-board. For large single-scale testing (1650),
the AP slightly drops at 93.0% but the computation significantly decreases to 1021.82 GFlops.
On the original scale (1024), the performance of TinaFace is still very high, obtaining an AP of
91.4% with 508.47 GFlops. Moreover, when the testing scale decreases to VGA level (640), the AP
significantly reduces to 81.4%, with the computation further decreasing at 172.95 GFlops.

In Fig. 6(b), we illustrate the computation distribution of TinaFace on the backbone, neck and head
components with a testing scale of 640. From the view of different scales of the feature pyramid,
the majority of the computational costs (about 68%) are from stride 4, as the resolution of feature
map is quite large (120×160). From the view of the different components of the face detector, most
of the computational costs (about 79%) are from the head, since the backbone structure is directly
borrowed from the ImageNet classification task (Deng et al., 2009), without any modification.

Even though TinaFace achieves state-of-the-art performance on tiny face detection, the heavy com-
putational cost renders it unsuitable for real-time applications.

A.2 DETAILS OF EVOLUTIONARY BASELINE

To compare the proposed SCRFD with the other network search methods in Tab. 1, we design the
evolutionary baseline (Real et al., 2019) as follows:

1. A population of networks P are randomly initialized. We set |P| = 50.

2. Each network architecture from P is trained on the WIDER FACE training data and then
the APs on the WIDER FACE validation dataset are tested.

3. Architectures with top performance are selected from P as parents P . To generate child
networks C, we employ the mutation and crossover policies. Here, we set |P| = 10 and
|C| = 50.

4. Each network architecture from C is trained on the WIDER FACE training data and then
the APs on the WIDER FACE validation dataset are calculated.

5. The worst 50 individuals from the populations of P ∪C are dropped and then we get the
new evolutionary population P.

6. We repeat steps 3, 4 and 5 for 20 times, resulting in 1000 network architectures as well as
their validation APs. The architecture with the highest AP is selected as the final result.
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Figure 6: (a) Precision-recall curves of TinaFace-ResNet50 on the WIDER FACE hard validation
subset, under different testing scales. (b) Computation distribution of TinaFace on backbone, neck
and head with 640× 480 as the testing scale.

A.3 ALGORITHM OF COMPUTATION REDISTRIBUTION

In Algorithm 1, we show the details of the proposed two-step computation redistribution method.

Algorithm 1: Search algorithm for computation redistribution
Input: Constraint of computation cost Y (in GFlops); Number of random network

architectures N ; Dataset for training Dtrain and validation Dval; Evaluation metric AP .
Output: Best architecture A∗

Initialize the architecture set A = Ø
while length(A) < N do

net = RandomSampling({di, wi}) ;
/* di and wi denote block number and channel number, i = 2, 3, 4, 5. */

if net.F lops ≤ 1.02 ∗ Y And net.F lops ≥ 0.98 ∗ Y then
A.Append(net)

end
end
ParallelTrain(A, Dtrain)
CR1 = Bootstrap(A, APs) | APs = Evaluate(A, Dval)
Initialize the architecture set A = Ø
while length(A) < N do

net = RandomSampling({CR1, n,m, h}) ;
/* n,m, and h denote channel in neck, block and channel in head. */

if net.F lops ≤ 1.02 ∗ Y And net.F lops ≥ 0.98 ∗ Y then
A.Append(net)

end
end
ParallelTrain(A, Dtrain)
CR2 = Bootstrap(A, APs) | APs = Evaluate(A, Dval)
Output: Best architecture A∗ = choose top1(CR2,A).

A.4 DETAILED NETWORK CONFIGURATIONS

In Tab. 5, we give the detailed network configurations for baselines and the proposed CRFD across
different compute regimes.

A.5 STATISTICS AFTER SAMPLE REDISTRIBUTION

As illustrated in Fig. 7(a), there are more faces below the scale of 32 after the proposed automatic
scale augmentation strategy is used. Moreover, even though there will be more extremely tiny faces
(e.g. < 4 × 4) under the proposed scale augmentation, these ground-truth faces will be neglected
during training due to unsuccessful anchor matching. As shown in Fig. 7(b), positive anchors within
one epoch significantly increase at the scale of 16 and 32. With more training samples redistributed
to the small scale, the branch to detect tiny faces can be trained more adequately.
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Table 4: Performance and computation comparisons of TinaFace under different testing scales. The
average scale of original images is around 882× 1024.

Testing Scale AP #Flops(G)
Multi-scale 0.934 42333.64

1650 0.930 1021.82
Original(1024) 0.914 508.47

640 0.814 172.95

Table 5: Detailed network configurations for baselines and the proposed CRFD across different com-
pute regimes. Basic residual blocks are used in ResNet-2.5GF and ResNet-10GF, while bottleneck
residual blocks are used in ResNet-34GF. For MobileNet-1.0GF and MobileNet-0.5GF, depth-wise
convolution is used in both backbone and head.

Name Conv Type Stem Backbone Depth Backbone Width Neck Head
ResNet-34GF Bottleneck Res 256 [3,4,6,3] [256,512,1024,2048] 128 [256,256]
CRFD-34GF Bottleneck Res 56 [17,16,2,8] [56,56,144,184] 128 [256,256]
ResNet-10GF Basic Res 32 [3,4,6,3] [32,64,128,256] 128 [160,160]
CRFD-10GF Basic Res 56 [3,4,2,3] [56,88,88,224] 56 [80,80,80]

ResNet-2.5GF Basic Res 16 [3,4,6,3] [16,32,64,128] 48 [96,96]
CRFD-2.5GF Basic Res 24 [3,5,3,2] [24,48,48,80] 24 [64,64]

MobileNet-1.0GF Depth-wise Conv 16 [3,3,7,3] [32,64,128,256] 64 [128,128]
CRFD-1.0GF Depth-wise Conv 48 [3,2,1,5] [48,160,216,312] 24 [96,96]

MobileNet-0.5GF Depth-wise Conv 16 [2,2,6,3] [32,64,128,256] 32 [80,80]
CRFD-0.5GF Depth-wise Conv 16 [2,3,2,6] [40,72,152,288] 16 [64,64]
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Figure 7: Ground-truth and positive anchor distribution within one epoch for the SCRFD-2.5GF
training. The baseline method employs a scale augmentation based on the hand-crafted set [0.3, 1.0]
and [0.3, 2.0], while our method uses a searched scale set for optimized scale augmentation. The
number of small faces (< 32 × 32) significantly increases after the automatic scale augmentation
strategy is used.

Table 6: Performance comparisons between different models on AFW, PASCAL, and FDDB
datasets. The proposed SCRFD is tested on the single-scale VGA resolution.

Methods AFW PASCAL FDDB
BFBox (Liu & Tang, 2020) 99.68 99.43 98.9
HAMBox (Liu et al., 2020) 99.90 99.50 99.10

SCRFD-34GF 99.945 99.597 99.25
SCRFD-10GF 99.900 99.461 99.07
SCRFD-2.5GF 99.821 98.911 99.02
SCRFD-1.0GF 99.696 98.601 98.69
SCRFD-0.5GF 98.603 98.537 98.14
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Figure 8: Precision-recall curves on AFW, PASCAL, and FDDB datasets. The proposed SCRFD is
tested on the single-scale VGA resolution.

A.6 DATASETS

WIDER FACE The WIDER FACE dataset (Yang et al., 2016) consists of 32, 203 images and
393, 703 face bounding boxes with a high degree of variability in scale, pose, expression, occlu-
sion and illumination. The WIDER FACE dataset is split into training (40%), validation (10%) and
testing (50%) subsets by randomly sampling from 61 scene categories. Based on the detection rate
of EdgeBox (Zitnick & Dollár, 2014), three levels of difficulty (i.e. Easy, Medium and Hard) are
defined by incrementally incorporating hard samples.

AFW The AFW dataset (Zhu & Ramanan, 2012) contains 205 high-resolution images with 473
faces (Mathias et al., 2014) collected from Flickr. Images in this dataset contain cluttered back-
grounds with large variations in viewpoint.

PASCAL The PASCAL face dataset (Mathias et al., 2014) is collected from the PASCAL 2012
person layout subset, includes 1, 335 labeled faces in 851 images with large facial appearance and
pose variations (e.g. large in-plane rotation).

FDDB The FDDB dataset (Jain & Learned-Miller, 2010) is a collection of labeled faces from Faces
in the Wild dataset. It contains a total of 5, 171 face annotations on 2, 845 images. The dataset incor-
porates a range of challenges, including difficult pose angles, out-of-focus faces and low-resolution.

A.7 CROSS DATASET EVALUATION AND VISUALIZATION

Besides the evaluation on the WIDER FACE (Yang et al., 2016) data set, we also conduct cross
dataset evaluation and test the proposed SCRFD models on AFW (Zhu & Ramanan, 2012), PAS-
CAL (Mathias et al., 2014) and FDDB (Jain & Learned-Miller, 2010), under the VGA resolution.
As shown in Fig 8, SCRFD-34GF achieves 99.945% AP on AFW, 99.597% AP on PASCAL, and
99.25% on FDDB, surpassing BFBox (Liu & Tang, 2020) and HAMBox (Liu et al., 2020). Even
though the face scale distributions on these three datasets are different from WIDER FACE, the
proposed SCRFD-34GF still obtains state-of-the-art performance across different datasets, showing
impressive robustness of the proposed computation and sample redistribution approaches. In ad-
dition, SCRFD-2.5GF also obtains impressive performance on different datasets with much lower
computation cost (99.821% AP on AFW, 98.911% AP on PASCAL, and 99.02% AP on FDDB).

Fig. 9 shows qualitative results generated by SCRFD-2.5GF. As can be seen, our face detector works
very well in both indoor and outdoor crowded scenes under different conditions (e.g. appearance
variations from pose, occlusion and illumination). The impressive performance across a wide range
of scales indicate that SCRFD-2.5GF has a very high recall and can detect faces accurately even
without large scale testing.
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(a) AFW

(b) PASCAL

(c) FDDB

(d) WIDER FACE

Figure 9: Qualitative results on AFW, PASCAL, FDDB and WIDER FACE datasets. The proposed
SCRFD-2.5GF is tested on the VGA resolution. Yellow rectangles show the detection results and
brightness encodes the detection confidence.
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