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Figure 1. We introduce ID2Albedo, a high-quality, unbiased albedo reconstruction method. ID2Albedo maps the facial identity features to
the latent space of the albedo generator and uses novel visual-textual cues to constrain albedo attributes. Our approach can alleviate the
illumination/albedo ambiguity and generate high-fidelity albedo maps for realistic rendering. Images are all from FFHQ [30] dataset.

Abstract

Recent 3D face reconstruction methods have made sig-
nificant advances in geometry prediction, yet further cos-
metic improvements are limited by lagged albedo because
inferring albedo from appearance is an ill-posed problem.
Although some existing methods consider prior knowledge
from illumination to improve albedo estimation, they still
produce a light-skin bias due to racially biased albedo mod-
els and limited light constraints. In this paper, we recon-
sider the relationship between albedo and face attributes
and propose a ID2Albedo to directly estimate albedo with-
out constraining illumination. Our key insight is that in-
trinsic semantic attributes such as race, skin color, and age
can be used to constrain the albedo map. We first introduce
visual-textual cues and design a semantic loss to supervise
facial albedo estimation. Specifically, we pre-define text la-
bels such as race, skin color, age, and wrinkles. Then, we
employ the text-image model (CLIP) to compute the simi-
larity between the text and the input image, and assign a
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pseudo-label to each facial image. We constrain generated
albedos in the training phase to have the same attributes
as the inputs. In addition, we train a high-quality, unbi-
ased facial albedo generator and utilize the semantic loss
to learn the mapping from illumination-robust identity fea-
tures to the albedo latent codes. Finally, our ID2Albedo is
trained in a self-supervised way and outperforms state-of-
the-art albedo estimation methods in terms of accuracy and
fidelity. It is worth mentioning that our approach has excel-
lent generalizability and fairness, especially on in-the-wild
data.

1. Introduction

3D face reconstruction is one of the fundamental prob-
lems in computer vision and graphics. It aims to estimate
realistic 3D face shapes and appearances from 2D images,
given only multi-view or single-view images. 3D face re-
construction plays a vital role in numerous vision appli-
cations, such as face manipulation [52], speech-driven fa-
cial animation [51], and video conferencing [56]. Since the
pioneering work of 3D Morphable Model (3DMM) [54],
monocular face reconstruction methods have made remark-
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able progress due to their high speed and geometric accu-
racy. To enable more realistic applications such as avatar
creation, interactive AR/VR, etc., fine-grained albedo re-
construction attracts a lot of attention [16].

Inferring albedo from pixels is an ill-posed problem,
and existing methods attempt to achieve approximate re-
sults. The primary approaches are 1) creating a texture
model to restrict the albedo space [24, 41, 49], and 2) in-
troducing additional lighting constraints to reduce ambigu-
ity [1,12,17]. Despite these constraints, most current albedo
reconstruction methods continue to bias light-colored albe-
dos, unfair to people of different ages and races. The main
reasons behind the biased albedo estimation include 1) bi-
ased albedo models and 2) limited lighting constraints. To
address the above issues, TRUST [16] rebuilt a balanced
albedo model, estimated the environment light from the
scene and used this prior to decrease the ambiguity between
light and albedo. Given the difficulty of the illumination
estimation for both face and scene, the albedo estimation
method proposed in TRUST [16] is still vulnerable under
complex scenarios and complicated facial appearance vari-
ations.

Since the facial albedo is a property of individual faces
that should be consistent even when the lighting changes,
could we design an illumination-robust albedo estimation
method like the face recognition model [10] and the face
attribute analysis model [28]? In this work, we provide
an affirmative answer by proposing a novel ID2Albedo
method. We first train a high-resolution albedo generator
as the current PCA-based albedo model [49] fails in re-
constructing high-frequency facial details. Given hundred-
level training data, high-resolution Generative Adversar-
ial Networks (GANs) [31] are not easy to train. To this
end, we replace the single large discriminator with four
smaller discriminators, which are applied to the feature
pyramids [36] produced by a fixed ImageNet model. Based
on our high-resolution albedo generator, we further utilize
the illumination-robust identity features [10] to predict the
latent codes to reconstruct albedo maps, ensuring the gen-
eralization ability on in-the-wild data.

Given the fact that facial albedo is related to facial at-
tributes (e.g. ethnicity, age, and skin color), we consider ex-
ploring attribute constraints during albedo estimation. For
example, African albedos are primarily dark, while Cau-
casian albedos are mostly light. However, race alone is in-
sufficient because the albedo of different individuals within
a race varies due to age, skin color, and other factors. There-
fore, we attempt to use diverse facial attribute priors to
constrain the albedo estimation. Considering that few face
datasets contain diverse semantic labels and manual anno-
tation is time-consuming, we utilize a recent state-of-the-art
visual-textual model, CLIP [42], to provide semantic cues
for individual faces. Specifically, we predefine diverse texts

from various perspectives, including race, skin tones, age,
wrinkles, etc., and then compute the corresponding seman-
tic attribute labels by embedded image features. Based on
the pseudo attribute labels, we propose a novel semantic
loss to compare the attribute differences between the recon-
structed face and the original input face. The entire pipeline
is self-supervised by a differentiable rendering framework.
To verify the effectiveness of the proposed albedo recon-
struction approach, we conduct exhaustive evaluations on
the FAIR benchmark and real-world images. The results
show that our method consistently achieves competitive per-
formance compared to state-of-the-art methods, especially
under various lighting conditions.

In summary, our contributions are summarized as fol-
lows:

• We first train a high-resolution, expressive, and nonlin-
ear face albedo generator. Then, we construct a power-
ful face albedo predictor, named ID2Albedo, by utiliz-
ing the face identification features from a pre-trained
face recognition network.

• We employ visual-textual cues in the face reconstruc-
tion framework to overcome the illumination/albedo
ambiguity problem by constraining facial semantic at-
tributes.

• The proposed method improves the accuracy and fair-
ness of facial albedo estimation, achieving state-of-
the-art performance on the FAIR benchmark.

2. Related Work
Face and head reconstruction from monocular RGB,

RGB-D, or multi-view data are well-explored in computer
vision and computer graphics, and can be divided into
optimization-based [1,3,4,46,53] and regression-based ap-
proaches [5, 12, 17, 23, 32, 48, 50]. More details are de-
scribed in [14, 61]. Albedo reconstruction is a component
of 3D face appearance reconstruction, which is an inverse
rendering problem. The following focuses on work related
to albedo reconstruction via monocular faces.
Albedo Modeling. Current monocular face reconstruction
methods mainly rely on statistical facial models such as
3DMM, which consists of a geometric space for shape re-
construction and an appearance space for albedo reconstruc-
tion. Please see [14] for more information. The widely
used Basel Face Model (BFM) [41] was developed from
about 200 European subjects. However, this imbalanced
data can lead to a strongly biased appearance space, failing
to rebuild dark skin tones appropriately. Smith et al. [49]
were concerned about this problem. AlbedoMM created
an albedo model from varied light-stage data and simul-
taneously modeled the diffuse and specular albedo models
to increase the diversity of the appearance space. Based
on AlbedoMM, the recent TRUST [16] discovered that the
present albedo model still has the problem of imbalance be-
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tween different human races. They made a racial-balanced
albedo model, which is more balanced for people of differ-
ent races and skin tones.

In addition to the PCA-based approaches mentioned
above, GAN-based models are prominent. Deng et al. [8]
trained a generative adversarial network to reconstruct tex-
tures from a single image. Gecer et al. [21, 22] trained
a powerful texture GAN based on 10K texture data, dra-
matically improving texture realism. However, their re-
constructed textures are baked with lighting information,
whereas our albedo is the consequence of texture de-
lighting. Lattas et al. [34, 35] trained an Image-to-Image
Translation network with light-stage data to synthesize dif-
fuse/specular albedo from high-quality textures. However,
the training data restricts the generalization capacity when
confronted with people of different races. Our approach
combines both benefits and achieves a high-quality, racially
balanced albedo generator.
Disambiguating Appearance and Lighting. Recovering
reliable illumination and albedo from image appearance
species is an ill-posed problem [43]. Although the appear-
ance prior has constrained the albedo variation, it does not
completely eliminate the ambiguity problem. The usual
idea is to find stronger prior knowledge to constrain both.
Hu et al. [26] normalized the symmetry of albedo. Aldrian
et al. [1] regularized light by imposing a “gray world” con-
straint that constrains light to be monochromatic, and sub-
sequent work such as [12, 17] used a similar regularization
approach for approximate decomposition. Egger et al. [13]
took into account the existence of a certain distribution of
illumination and directly learned a statistical prior for the
SH coefficients. TRUST [16] extends the range of light es-
timation by decomposing light into face light and ambient
light and using ambient light consistency to constrain light
estimation. Unlike previous regularization approaches, we
introduce an open-world visual-textual model that provides
rich semantic attribute labeling for various faces, and then
directly constrains the albedo to accomplish a successful de-
composition.
Text-Driven Generation and Manipulation. Our method
is comparable to image manipulation techniques controlled
through text descriptions encoded in CLIP [42]. CLIP
learned a joint embedding space for images and text. Style-
CLIP [40] leveraged pre-trained StyleGAN [30, 31] for
CLIP-guided image modification. VQGAN-CLIP [15] em-
ployed CLIP for text-guided image generation. In the styl-
ization domain, Gal et al. [20] used CLIP to fine-tune a pre-
trained StyleGAN for images. Based on a textual question,
Text2Mesh [38] predicted color and geometry details for
a specified template mesh. In an implicitly differentiable
rendering framework, TANGO [6] employed CLIP to im-
prove the physical attributes of objects for more realistic
stylization. In the area of generation, Sanghi et al. [45] uti-

lized CLIP for unconditional 3D voxel generation. CLIP-
Draw [19] produced 2D vector graphics for drawing styles
using textual instruction. Jetchev et al. [27] optimized the
parameters of SMPL mannequins using CLIP to generate
digital creatures. Unlike the approaches discussed above,
our textual cues are fixed during training and do not require
any text input during inference. We regard CLIP as a pow-
erful semantic attribute annotator that allows us to restrict
the albedo directly.

3. Methods
This work aims at reconstructing high-quality, unbiased

albedo maps from in-the-wild face images. To this end, we
first train a high-resolution face albedo generator (Sec. 3.1)
and design an albedo estimation method based on a pre-
trained face recognition model (Sec. 3.2). To reduce the
ambiguity of albedo estimation, we explore the seman-
tic facial attribute constraints through visual-textual cues
(Sec. 3.3). As illustrated in Fig. 2, our method is trained in
a self-supervised learning way by combining other losses to
achieve good decomposition between the illumination and
albedo (Sec. 3.4).

3.1. High-Resolution Albedo Generator

The biggest challenge behind building an expressive face
albedo model is the deficiency of large-scale and high-
quality albedo maps collected from diverse identities. In
AlbedoMM [49], a novel lightstage capture system is pro-
posed for acquiring albedo maps that fully factor out the
effects of illumination. However, they have only captured
a dataset of 50 individuals (13 females) and their partici-
pants range in age from 18 to 67, covering skin types I-V
of the Fitzpatrick scale [18]. Based on the limited albedo
training data, a morphable face albedo model [49] is built
by Principal Component Analysis (PCA). The linear basis
in PCA, even though remarkable in representing the basic
characteristics of the facial albedo, fails in reconstructing
high-frequency facial details (e.g. wrinkles and pores). Re-
cently, Generative Adversarial Networks (GANs) [31] have
shown excellent ability in capturing image details. Specifi-
cally, GANs aim to optimize the following minimax objec-
tive

min
G

max
D

(
Ex[logD(x)] + Ez[log(1−D(G(z)))]

)
, (1)

where G is the image generator and D is the image discrim-
inator. The generator G maps the latent vectors z sampled
from a normal distribution Pz to the generated images G(z).
The discriminator D then aims to discriminate real images
x ∼ Px from generated images G(z) ∼ Pz .

In this paper, we purchase 142 high-quality albedo maps
from the 3D Scan Store to build our high-resolution albedo

https://www.3dscanstore.com/
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Figure 2. Overview of the proposed method ID2Albedo. We address realistic albedo estimates by tackling the light/albedo ambiguity using
visual-textual cues. Given a facial input image, we first infer facial geometry by an off-the-shelf face model and extract the identity feature
by a pre-trained ArcFace model. We then map the facial identity features to our pre-trained albedo generator latent space to achieve high-
quality albedo maps. Combining the face shape, albedo maps are wrapped to image space and rendered using the predicted illumination
(SH) coefficients. Besides, we pre-define several facial attribute cues and label each input image by CLIP visual-textual similarity. Finally,
our rendered images are supervised by various text-based facial attributes and image-level losses in an end-to-end differentiable way.

model. Even though GANs can effectively model the distri-
bution of a given training dataset, using hundred-level train-
ing data is not easy to train an expressive generative model.
To this end, we consider compressing the training parame-
ters of the GANs to avoid over-fitting and facilitate model
training on the tiny image dataset (i.e. 142 facial albedo
maps). As we target on high-resolution albedo generation
(i.e. 1024 × 1024), the generator G can not be easily com-
pressed. However, the discriminator D, which takes the in-
put images at the resolution of 10242, can be compressed.
More specifically, we take advantage of a pre-trained Im-
ageNet model F , extract multi-level feature maps (e.g.
5122, 2562, 1282, 642) from both real images x and gener-
ated images G(z), and apply four independent discrimina-
tors {D2,D3,D4,D5} to the feature pyramid [36]. Instead
of training one large discriminator on the 1024 × 1024 im-
ages, we simplify the training by introducing four smaller
discriminators in a subspace spanned by the fixed ImageNet
model F . In this way, the parameter number significantly
drops from 23.1M [31] to 10.3M. The proposed subspace-
based GAN training can thus be formulated as follows,

min
G

max
D

∑
p∈P

(
Ex[logDp(Fp(x))]

+ Ez[log(1−Dp(Fp(G(z))))]
)
,

(2)

where p indicates different feature levels and F is a pre-
trained fixed ImageNet model mapping high-resolution im-
ages into four-scale feature pyramids. Since albedo maps
are pixel-aligned across the whole data, we only employ
flip augmentation during training without random cropping
or translation. By optimizing Eq. 2, we obtain a high-

resolution albedo generator, G : R256 → R1024×1024×3.

3.2. Albedo Estimation via Identity Feature

In this paper, we target on high-resolution albedo es-
timation from “in-the-wild” face images captured under
arbitrary poses, lighting conditions, and even occlusions.
To this end, we choose an encode-decoder framework to
consistently predict high-quality albedo. Specifically, we
use a state-of-the-art face recognition network Φ (i.e. Ar-
cFace [10]) to predict robust identity features and train a
lightweight mapping network M to fine-tune the identity
features, which are finally interpreted by our high-quality
albedo decoder G. That is:

z = M(Φ(I)), (3)

where I is the input 2D face image and z ∈ R256 is the
latent vector for the proposed albedo decoder.

The identity embedding network Φ is a ResNet-100
model trained on the large-scale WebFace dataset [59, 60]
under the ArcFace loss [10, 11]. The pre-trained ArcFace
model is able to extract face identity features that are ro-
bust to illumination, rotation, and occlusion. Therefore, the
proposed albedo estimation can easily handle these face ap-
pearance variations in the wild. The lightweight mapping
network M consists of three MLP layers with leaky ReLU
as the activation function and a final linear output layer. Af-
ter training, the mapping network M modifies the feature
distribution of the original identity features to match the la-
tent space of our albedo generator.
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3.3. Albedo Disambiguation by Visual-Textual Cues

Assuming that the face is a Lambertian surface, the ren-
dered face image can be computed by

R = A⊙ S, (4)

where R stands for the final rendered image, A and S rep-
resent the wrapped face albedo and the shading image, re-
spectively. ⊙ denotes the hadamard product. When there
is a parallel estimation of both albedo and illumination, the
ambiguity between albedo and illumination happens. For
example, an African face image can be decomposed into
both dark skin and bright illumination or light skin and dim
illumination.

To alleviate this problem, we explore the face attribute
priors (e.g. ethnicity, age, skin color, and gender) to reduce
ambiguity during albedo estimation. For instance, the facial
albedo of an African person is likely to be dark, while the
facial albedo of a Caucasian person is likely to be light. Be-
sides, different ages also affect the shade of albedo. How-
ever, existing face datasets lack fine-grained facial attribute
labels (e.g. skin color), and accurate manual annotations
can be expensive. In addition, the multi-attribute estima-
tion may involve many independent models, such as the race
model, the age model, and the skin color model.

In this paper, we take advantage of the vision-language
model, i.e. a pre-trained CLIP [42] network, to introduce
a flexible attribute constraint for albedo disambiguation.
Specifically, we first pre-define multiple face attributes, e.g.
race, age, skin color, gender, and wrinkles. Then, for each
facial attribute, we design a group of query texts. For exam-
ple, we have “Caucasian”, “Asian”, “Indian” and “African”
for the attribute of race, and “baby”, “young”, “adult” and
“old” for the attribute of age. Afterward, we employ the
text encoder of the CLIP model to calculate the feature of
these query texts. For any training face image, we can ob-
tain multi-dimensional attribute labels by (1) comparing the
image features predicted through the CLIP image encoder
with all of these text features, and (2) selecting the maxi-
mum cosine similarity score as the corresponding attribute
label. During the training phase, we can obtain the attribute
predictions of the rendered face in the same way by using
the CLIP image encoder. To constrain the attribute of the
generated albedo, we employ a semantic attribute loss,

Lsem =

N∑
i=1

∥Li − L∗
i ∥2 , (5)

where Li is the predicted attribute similarity, L∗
i is the

pseudo-label of input image attribute, N is the number of
attributes we want to constrain. The attribute discrepancy
between the input image and the rendered image can be
back-propagated through the fixed CLIP image encoder and
the differentiable renderer to update the parameters of the
albedo estimation network.

3.4. Overall Loss

We first train the albedo generator G on the 142 high-
resolution albedo maps (Sec. 3.1) and then train the
ID2Albedo pipeline (Fig. 2) on the in-the-wild 2D face
dataset. Given a training image I, we compute the identity
feature by the ArcFace model [10], project it into the latent
space of G by the mapping network M, and then generate
high-quality albedo. Meanwhile, we define an illumination
network Fillumination and employ an off-the-shelf shape
network [12] to predicte facial illumination, shape, camera
pose(Details in Sec. 4.1). Combining above predictions, we
can warp the albedo to image space and render the face IR.
Apart from the semantic attribute loss (Eq. 5), we also em-
ploy the following photometric loss, identity loss, and per-
ceptual loss.
The photometric loss is calculated as

Lphoto = Mmask · ∥I− IR∥1, (6)

where Mmask is the face skin mask calculated by the off-
the-shelf face parsing model [37].
The identity loss is the cosine identity distance between the
input image and the rendered face:

Lid = 1− Φ(I),Φ(IR)

∥Φ(I)∥2 · ∥Φ(IR)∥2
, (7)

where Φ is the pre-trained ArcFace model.
The perceptual loss [58] is defined as follows:

Lper =
∑
l

∥ωl ⊙ (Fl(I)−Fl(IR))∥22 , (8)

where l denotes the different level of a pre-trained VGG
model F , and ωl is the scaling factor.
The overall objective function is then defined by combining
the above losses:

Ltotal =λ1Lphoto + λ2Lid + λ3Lper + λ4Lsem, (9)

where the balance hyper-parameters λ1, λ2, λ3, and λ4 are
set as 2.0, 0.2, 1.0, and 0.5, respectively.

4. Experiments
In this section, we evaluate our albedo reconstruction

algorithm in terms of unbiasedness and quality. We first
give the implementation details (Sec. 4.1). We participate
in the FAIR benchmark and compare our ID2Albedo with
the state-of-the-art albedo reconstruction methods (Sec 4.2).
Then, our method is tested on the in-the-wild data to ensure
unbiasedness under harsh lighting, various poses, and dark
skin tones (Sec. 4.3). Finally, we conduct ablation studies
on the albedo generator, albedo encoder, and visual-textual
cues to validate the efficacy of our method (Sec. 4.4).
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Input GANFit INORig MGCNet Deep3D CEST DECA TRUST Ours GT-Albedo

Figure 3. Comparison on the FAIR benchmark [16]. Please note that we don’t have any FAIR benchmark albedo ground truth, so we
choose the input same as TRUST. From left to right: input image, GANFIT [21], INORig [2], MGCNet [48], Deep3D [12], CEST [57],
DECA [17], TRUST [16], ours and ground-truth albedo rendering.

Method Avg. ITA ↓ Bias ↓ Score ↓ MAE ↓ ITA per skin type ↓
I II III IV V VI

Deep3D [12] 22.57 24.44 47.02 27.98 8.92 9.08 8.15 10.90 28.48 69.90
GANFIT [21] 62.29 31.81 94.11 63.31 94.80 87.83 76.25 65.05 38.24 11.59
MGCNet [48] 21.41 17.58 38.99 25.17 19.98 12.76 8.53 9.21 22.66 55.34
DECA [17] 28.74 29.24 57.98 38.17 9.34 11.66 11.58 16.69 39.10 84.06
INORig [2] 27.68 28.18 55.86 33.20 23.25 11.88 4.86 9.75 35.78 80.54
CEST [57] 35.18 12.14 47.32 29.92 50.98 38.77 29.22 23.62 21.92 46.57
TRUST [16] (BFM) 16.19 15.33 31.52 21.82 12.44 6.48 5.69 9.47 16.67 46.37
TRUST [16] (AlbedoMM) 17.72 15.28 33.00 19.48 15.50 10.48 8.42 7.86 15.96 48.11
TRUST [16] (BalancedAlb) 13.87 2.79 16.67 18.41 11.90 11.87 11.20 13.92 16.15 18.21
Ours (ID2Albedo) 12.07 4.91 16.98 23.33 18.30 9.13 5.83 9.46 19.09 10.59

Table 1. Comparison to state-of-the-arts on the FAIR benchmark [16]. We utilize the FAIR official metrics, such as average ITA error, bias
score (standard deviation), the total score (avg. ITA+Bias), mean average error, and average ITA score per skin type in degrees (I: very
light, VI: very dark). Our method achieves accurate skin color predictions, especially on very dark skin.

Methods M-SSIM↑ LPIPS↓ FID↓ ID↑
Deep3D [12] 0.73 0.1933 74.41 0.712
DECA [17] 0.61 0.2089 98.13 0.585
TRUST [16] 0.64 0.2112 97.37 0.603

Ours 0.87 0.1549 45.56 0.867

Table 2. Comparisons of our method with other albedo recon-
struction methods on FFHQ, e.g., Deep3D [12], DECA [17], and
TRUST [16]. Given the absence of GT albedo, we compare the
rendered image to the original image.

4.1. Implementation Details
All our implementations are based on PyTorch [39] and

NVIDIA V100 cards. For the albedo generator, we em-
ploy adaptive discriminator augmentation as in [31]. We
use Adam [33] as our optimizer with a learning rate of 1e-
4, a batch size of 32, and a total number of iterations of

500K.

For ID2Albedo, we use the differentiable rasterizer from
Pytorch3D [44] for rendering. We freeze the parameters of
the geometry estimation network [12] and ArcFace [9, 10],
and train the illumination network Fillumination and the
mapping network M. The pre-trained shape network [12] is
based on the BFM [41] model and regresses the face identity
α ∈ R80, expression β ∈ R64, rotation r ∈ R3, translation
vector t ∈ R3, respectively. We use spherical harmonics
(SH) to approximate the illumination model. The illumina-
tion encoder uses the pre-trained Resnet-50 [25] as initial-
ization and predicts 27 illumination coefficients. The map-
ping network M uses a fully connected architecture with
random initialization. The input image size is 224 × 224
and the size of the albedo map is 1024 × 1024. We train it
using Adam with a batch size of 8, an initial learning rate
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Figure 4. Comparisons on in-the-wild images. Input images are all from FFHQ [30]. From top to bottom: inputs, ours and TRUST [16]
rendered and albedo images, DECA [17] and Deep3D [12] albedo images. We achieve the most realistic rendered results.

of 2e-5, and a total number of iterations of 50K. All the
training process is on the SFHQ dataset [7], a high-quality
synthetic dataset without data privacy concerns.

4.2. FAIR Benchmark Results

FAIR Benchmark [16] is constructed using 206 high-
quality 3D head scans, and the Individual Typology Angle
(ITA) score is recommended to classify skin tones into 6
categories. The ITA score is calculated as follows:

ITA(L∗, b∗) =
180

π
× arctan(

L∗ − 50

b∗
), (10)

where L∗ and b∗ represent the lightness and yellow/blue
components of the CIE L*a*b* color space, respectively.
Furthermore, the bias score computes the standard devia-
tion of the per-group ITA error, and the total score is the
average of the top two scores.

Following TRUST [16], we perform a qualitative and
quantitative evaluation on the FAIR benchmark, shown in
Fig. 3 and Tab. 1, respectively. In Fig. 3, a common problem
with current methods is a strong bias [2,21] towards specific
skin types, or albedo models that limit the modeling of ap-
propriate skin tone types [12, 48]. Both TRUST [16] and

our method perform albedo estimation very well. Thanks
to a powerful albedo generator, our method produces more
realistic results. Numerically, our algorithm obtains the best
results in ITA average score and very dark skin types, and
is almost equal to TRUST in the overall score. In contrast,
the rest of the algorithms are biased toward different skin
types. Our method has a slightly higher error in type 1 and
type 5 skin for different skin types since training data hardly
includes the white skin tones. The network prefers to in-
terpret the very light albedo as white skin tones in type 2
due to the uneven distribution of skin tones in training data.
The same is true for type 5 light black skin. TRUST [16]
achieves a minimal bias score because of semi-supervised
learning. Overall, our algorithm makes good progress in
ITA and achieves state-of-the-art, shown in Tab. 1.

4.3. Real-World Results

To evaluate our approach’s robustness in real-world im-
ages, we qualitatively compare it with other methods on the
FFHQ dataset, as shown in Fig. 4. The results show that
our albedo achieves more realistic results while maintaining
fairness. Furthermore, we compare with TRUST in various
environments and poses on the same subject. TRUST under
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Figure 5. Comparisons on the real-world images from the same
subject. Input images are all from CFP [47] dataset.

extreme poses results in irrational estimates, as illustrated in
the third row of Fig. 5. While our method consistently gen-
erates unbiased, realistic albedo based on light-independent
identity features, even in grayscale maps. We also analyze
quantitative results in FFHQ. The results in Tab. 2 indicate
that our method achieves the best scores in all the image-
level metrics.

4.4. Ablation Study

Albedo Generator. We first verify the subspace-based
GAN. We perform a comparison with origin StyleGAN [30]
and StyleGANv2-ADA [29] on our aligned UV data. The
FID results, shown in Tab. 3, indicate our subspace-based
GAN can achieve better generation results.
ArcFace Encoder. Predicting albedo maps from real-world
images relies on robust illumination-independent facial fea-
tures. We train this module under different configurations to
assess its utility, and the results are shown in Tab. 4. We ob-
serve that finetuning of partial layers or the entire pipeline
results in large overfitting of the training data with signifi-
cantly worse results. In contrast, we start with identity fea-
tures, which can effectively perform the albedo reconstruc-
tion task.
Visual-Textual Cues. We investigate the benefits of CLIP-
based visual-textual cues. We observe that ignoring visual-
textual cues results in high skin color bias, whereas incorpo-
rating ethnographic cues results in significantly lower ITA
and bias scores. A broader range of attributes produces bet-

Methods StyleGAN [30] StyleGANv2-ADA [29] Ours

FID↓ 64.7 49.3 42.2

Table 3. Ablation study of albedo generator. Our comparison
includes StyleGAN [30] and StyleGANv2-ADA [29].

Albedo Encoder Avg. ITA ↓ Bias ↓ Score ↓
ResNet-100 [25] (Scratch) 58.46 32.59 91.05
ResNet-100 [25] (ImageNet) 31.63 15.48 47.11

ArcFace [10] (fully trainable) 41.63 19.81 61.44
ArcFace [10] (L2 + L3 + L4) 28.75 11.87 40.62
ArcFace [10] (L3 + L4) 19.52 9.46 28.98
ArcFace [10] (L4) 14.58 6.79 21.37

ArcFace [10] (Frozen)(Ours) 13.46 5.86 19.32

Table 4. Ablation study of albedo encoder. We show a compar-
ison with various alternative encoder configs, where L2, L3, L4
represents different network stages.

Configs Avg. ITA ↓ Bias ↓ Score ↓
w/o any cues 25.66 23.51 49.17

Manual labeled races 18.13 10.46 28.59
CLIP [42] cues (only races) 16.21 7.44 23.65

CLIP cues all (ours) 13.46 5.86 19.32

Table 5. Ablation study of CLIP-based cues. We compare our
method to the following alternatives: 1) no visual-textual cue, 2)
using a labeled race dataset, and 3) using CLIP racial cues.

ter results, shown in Tab. 5.
Furthermore, we attempt to use a hand-labeled ethno-

graphic dataset, RFW [55], as direct labeling training. The
results show that using manual ethnographic labels does
result in an improvement, but the limited amount of data
bounds further progress.

5. Conclusions
In this work, we propose an unbiased facial albedo re-

construction method based on the observation that intrinsic
semantic attributes such as race, skin color, and age can con-
strain the albedo map. Our model estimates the albedo map
directly from robust identity features rather than indirectly
by predicting illumination. To achieve direct estimation, we
define novel visual-textual cues as facial attributes to guide
the albedo maps regression. The experiments demonstrate
the proposed method achieves competitive performance on
the FAIR benchmark and has excellent generalizability and
fairness on real-world images. Our method can be used for
high-quality reconstruction and rendering, which opens up
new avenues for creating avatars faster and promoting the
metaverse.
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