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Abstract
Prediction-based fusion is a recently proposed audiovisual
fusion approach which outperforms feature-level fusion on
laughter-vs-speech discrimination. One set of predictive
models is trained per class which learns the audio-to-visual
and visual-to-audio feature mapping together with the time
evolution of audio and visual features. Classification of a new
input is performed via prediction. All the class predictors
produce a prediction of the expected audio / visual features and
their prediction errors are combined for each class. The model
which best describes the audiovisual feature relationship, i.e.,
results in the lowest prediction error, provides its label to the
input. In all the previous works, a single set of predictors was
trained on the entire training set for each class. In this work,
we investigate the use of multiple sets of predictors per class.
The main idea is that since models are trained on clusters of
data, they will be more specialised and they will produce lower
prediction errors which can in turn enhance the classification
performance. We experimented with subject-based clustering
and clustering based on different types of laughter, voiced
and unvoiced. Results are presented on laughter-vs-speech
discrimination on a cross-database experiment using the AMI
and MAHNOB databases. The use of multiple sets of models
results in a significant performance increase with the latter
clustering approach achieving the best performance. Overall,
an increase of over 4% and 10% is observed for F1 speech and
laughter, respectively, for both datasets.
Index Terms: Prediction-based fusion, Audiovisual fusion,
Nonlinguistic Information Processing

1. Introduction
Audiovisual fusion has recently attracted a lot of attention and
has been successfully applied to several problems like speech
recognition [1, 2, 3], affect recognition [4] and laughter recog-
nition [5, 6]. However, the optimal fusion type remains an open
issue and largely depends on the problem. The most common
types of audiovisual fusion are feature-level fusion, where the
audio and visual features are concatenated and fed to a classi-
fier, and decision-level fusion, where each modality is modeled
independently and the decisions of the classifiers are combined.
A new type of audiovisual fusion has been recently presented,
prediction-based fusion [7], [8], [9], [10] which consistently
outperforms feature-level fusion for laughter-vs-speech classi-
fication and non-linguistic vocalisation classification.

Prediction-based fusion is based on the idea that the
relationship between audio and visual features is different in
each class. This is achieved by explicitly modelling the spatial
relationship between audio and visual features using predictive

models which learn the audio-to-visual and visual-to-audio
feature mapping for each class. Similarly, we model the tem-
poral evolution of the audio and visual feature using predictors
which learn the relationship between past and future values
for audio and visual features for each class. It is expected that
during testing the models which correspond to the actual class
will produce a better prediction than all the other models since
they have learned the audiovisual relationship for that class.
Classification is performed by combining all the prediction
errors per class and selecting the model that produces the
lowest error. In other words, a frame or a sequence is labeled
based on the model which best describes the audiovisual
feature relationship. It does not matter if the prediction is good
or bad, just that it is better than the other models prediction.

In all the previous studies [7, 8, 9, 10] a single set of predic-
tors was trained on the entire dataset for each class, i.e., laughter
or speech. One drawback of this approach is that if the exam-
ples vary a lot within each class then the performance may de-
grade since a single set of predictors will try to model the high
class variability. In this study we aim to solve this problem by
training multiple sets of predictors for each class. Some sort of
time series clustering should be first performed in each class in
order to create homogeneous clusters of laughter and speech.
Then, predictors for each cluster can be trained. The main idea
is that the predictors trained per cluster will be more specialised
and therefore will more accurately model the audiovisual fea-
ture relationship. As a consequence, it is expected that they will
produce lower prediction errors which in turn will lead to better
classificaton performance.

Time series clustering is a challenging task especially when
the time series have different lengths [11]. In this work, we take
advantage of the natural clustering embedded in the data and
we create clusters based on subjects and on different laughter
types. In the former case, predictive models are trained per class
for each subject separately. In the latter case, laughter is divided
into voiced and unvoiced according to [12], and separate models
are trained for each type using examples from all subjects.

In this study we aim to discriminate laughter and speech,
since both events are audiovisual in nature. We perform cross-
database experiments where the SAL dataset is used for training
and validation and the AMI and MAHNOB datasets are used for
testing. The use of multiple sets of models is beneficial outper-
forming the use of a single set of predictors for both clustering
approaches. In particular, an increase of over 4% in the F1 mea-
sure for speech is observed for both datasets and both clustering
approaches. Similarly, an increase of over 10% is observed for
F1 laughter.
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Figure 1: Example of a laughter episode, from the AMI dataset,
with illustrated facial point tracking results.
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Figure 2: Example of a laughter episode, from the SAL dataset,
with illustrated facial point tracking results.

2. Databases
For the purpose of this study we used three datasets corre-
sponding to 3 different scenarios as explained below. Examples
for each dataset are shown in Fig. 1, 2 and 3.

AMI: In the AMI Meeting Corpus [13] people show a huge
variety of spontaneous expressions. We only used the close-up
video recordings of the subject’s face (720 x 576, 25 frames
per second) and the related individual headset audio recordings
(16kHz). Although there is a personal microphone for each
subject there is background noise present from the other
subjects. The camera is fixed and since people are involved in a
discussion they tend to move their head a lot and they are rarely
in frontal pose. The language used in the meetings is English,
with speakers being mostly non-native speakers. For our ex-
periments we used seven meetings (IB4001 to IB4011) and the
relevant recordings of ten participants, 8 males and 2 females.
SAL: In the SAL dataset [14] the subjects interact with 4 differ-
ent agents that have different personalities and the audiovisual
response of the subjects while interacting is recorded. For our
experiments we used 15 subjects, 8 males and 7 females, out
of which 10 are used for training and 5 for validation. We used
the close-up video recordings of the subjects’ face (720 x 576
for 12 subjects and 352 x 288 for 3 subjects, 25 frames per
sec) and the related audio recording (48kHz for 12 subjects and
44.1kHz for 3 subjects). Most of the time the subjects have
frontal pose and head movements are small. The language used
in the meetings is English, with all speakers being native.
MAHNOB: In the MAHNOB database [15], [16], laughter
was elicited by showing funny videos to subjects. In total there
are 22 subjects, 12 males and 10 females, and a large variety
of laughter types is present. The camera is fixed therefore
subjects are mostly in frontal pose. Two audio streams are
available, one from the camera microphone and one from the
lapel microphone. In this study, we only used the camera
microphone since the audio signal is noisier and poses a more
challenging problem.

All laughter and speech episodes used in this study were
pre-segmented based on audio. This means that the start and
end point of a laughter episode is defined for the audio signal
and then the corresponding video frames are extracted. For the
AMI [13] and MAHNOB [15] datasets laughter episodes were
selected based on the annotations provided and for the SAL
dataset we manually annotated laughter episodes. Details of
the four datasets are given in Table 1.

3. Features
Audio Features: Cepstral features, such as Mel Frequency
Cepstral Coefficients (MFCCs), have been widely used in
speech recognition and have also been successfully used for
laughter detection [17]. In addition, it has been shown that
cepstral coefficients are more correlated to visual features than

Table 1: Description of the datasets.

AMI
Type No. Episodes / Total Duration Mean / Std

No. Subjects (sec) (sec)
Laughter 124 / 10 145.4 1.17 / 0.7
Speech 154 / 10 285.9 1.86 / 1.1

SAL - Training
Laughter 57 / 10 80.6 1.4 / 0.8
Speech 96 / 10 204.3 2.1 / 0.8

SAL - Validation
Laughter 37 / 5 50.3 1.4 / 0.7
Speech 81 / 5 159.3 2.0 / 0.8

MAHNOB
Laughter 554 / 22 863.7 1.56 / 2.2
Speech 845 / 22 2430.9 2.88 / 2.3

prosodic features [18]. Therefore we only use MFCCs for our
experiments. Although it is common to use 12 MFCCs for
speech recognition we only use the first 6 MFCCs, given the
findings in [17], where 6 and 12 MFCCs resulted in the same
performance for laughter detection. These 6 audio features are
computed every 10ms over a window of 40ms, i.e. the frame
rate is 100 frames per second (fps).
Visual Features: Changes in facial expressions are captured by
tracking 20 facial points. These points are the corners of the
eyebrows (2 points), the eyes (4 points), the nose (3 points), the
mouth (4 points) and the chin (1 point) [19] as shown in Fig.
1, 2 and 3. For each video segment containing K frames, we
obtain a set of K vectors containing 2D coordinates of the 20
points. Using a Point Distribution Model (PDM), by applying
principal component analysis to the matrix of these K vectors,
head movement can be decoupled from facial expression. Using
the approach proposed in [20], the facial expression movements
are encoded by the projection of the tracking points coordinates
to the N principal components (PCs) of the PDM which corre-
spond to facial expressions. In this study we build a PDM based
on the SAL dataset, so our shape features are the projection of
the 20 points to the 3 PCs which were found to correspond to
facial expressions (PCs 5 to 7). These 3 visual features, called
shape parameters, are extracted at the video frame rate, i.e., 25
fps. Further details of the feature extraction procedure can be
found in [20].

4. Prediction-based Fusion
The prediction-based fusion framework consists of cross-modal
and intra-modal predictors for each class c, where c is either
laughter (L) or speech (S). The cross-modal predictors model
the relationship between the audio (Ac) and visual (V c) features
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Figure 3: Example of tracking a laughter episode from the
MAHNOB database.

of class c with two regressors, fc
A→V and fc

V →A, respectively.
The first (second) predictor takes as input the audio (visual) fea-
tures and predicts the corresponding visual (audio) features at
the same frame t as shown in the following equations:

fc
A→V (Ac[t− kc

AV, t]) = V̂ c
A→V [t] ≈ V c[t] (1)

fc
V →A(V

c[t− kc
VA, t]) = Âc

V →A[t] ≈ Ac[t] (2)

In eq. 1 and 2, the size of the windows kc
AV and kc

V A de-
pends on the mapping type and the modelled class.

The intra-modal predictors model the relationship between
past and future audio and visual features in each class c with
two regressors fc

A→A and fc
V →V . The first (second) predictor

takes as input the past audio (visual) features and predicts the
corresponding audio (visual) features at frame t as follows:

fc
A→A(A

c[t− kc
AA, t− 1]) = Âc

A→A[t] ≈ Ac[t] (3)

fc
V →V (V c[t− kc

VV, t− 1]) = V̂ c
V →V [t] ≈ V c[t] (4)

In eq. 3 and 4, the size of the windows kc
AA and kc

VV

depends on the mapping type and the modelled class.
Once training is complete and the predictors fc are learnt,

they can be used for classification. When a new sequence is
available, the audio and visual features are computed, which are
fed to all predictors defined by eq. 1 - 4 resulting in 4 prediction
errors per frame for each class c. The prediction error measure
we use is the mean squared error (MSE). The total error for each
predictor is computed by summing the errors across all frames,
N , resulting in 4 prediction errors per sequence for each class.
The errors for the 4 predictors of class c are computed using eq.
5 to 8.

ecA→V =

N∑
i=1

MSE(V̂ c
A→V [i], V [i]) (5)

ecV →A =

N∑
i=1

MSE(Âc
V →A[i], A[i]) (6)

ecA→A =

N∑
i=1

MSE(Âc
A→A[i], A[i]) (7)

ecV →V =

N∑
i=1

MSE(V̂ c
V →V [i], V [i]) (8)

Then the two cross-modal prediction models (eq. 5, 6) are
combined in order to take into account the bidirectional rela-
tionship of audio and visual features as shown in eq. 9 subject
to constraint in eq. 10.

ecCP = wc
AV × ecA→V + wc

VA × ecV →A (9)

wc
AV + wc

VA = 1 (10)

where ecCP is the total cross-modal prediction error and wc
AV

and wc
VA are the weights of the cross-modal prediction compo-

nents.
Similarly, the two temporal evolution models (eq. 7, eq. 8)

are combined in order to take into account past-to-future rela-
tionship between audio and visual features as shown in eq. 11
subject to constraint in eq. 12.

ecIP = wc
AA × ecA→A + wc

VV × ecV →V (11)

wc
AA + wc

VV = 1 (12)

where ecIP is the total intra-modal prediction error and wc
AA and

wc
VV are the weights of the intra-model prediction components.

Finally, the prediction errors of the two components are
combined as shown in eq. 13, subject to constraint in eq. 14,
in order to merge information from the two prediction-based
models.

ec = wc
CP × ecCP + wc

IP × ecIP (13)

wc
CP + wc

IP = 1 (14)

where ec is the total prediction error and wc
CP and wc

IP are the
weights for the cross-modal prediction and intra-model predic-
tion fusion components, respectively.

It is important to point out that all predictors are class-
specific, since they learn the audiovisual features relationships
for laughter and speech separately. The key idea is that the
class-specific predictors which correspond to the true class of
a new input sequence will produce a better estimation of the au-
dio/visual features than models corresponding to other classes,
since they have been trained on the audiovisual features of the
target class.

4.1. Single-Model Fusion

In single-model prediction-based fusion 4 predictors (eq. 1 -
4) are trained for each class, laughter and speech, using the en-
tire training set and their prediction errors are combined. A
label is assigned to the input sequence based on the two errors
from eq. 13, one for laughter (eL) and one for speech (eS). In
other words, the class-specific model that best explains the au-
diovisual feature relationship, i.e., leads to the lowest prediction
error, labels the new sequence accordingly, as shown in eq. 15.

PredictedClass = argmin
c=L,S

ec (15)

4.2. Multiple-Model Fusion

In multiple-model prediction-based fusion we build specialised
predictive models trained on clusters of training data. In con-
trast to single-model prediction-based fusion, where a set of 4
predictors is trained on the entire training set for each class,
in this case we train a set of predictors for each cluster within



each class. Since time series clustering is a challenging task
especially when the time series have different lengths [11], we
decided to use two types of natural clustering that already exist
in the data.

Subject-based clustering: In this case we make the rea-
sonable assumption that the characteristics of the audiovisual
feature relationship is distinct in each subject. This means that
we can train predictors to model laughter and speech for each
subject separately. So if there are K subjects, there will be K
models for laughter and K models for speech. Classification is
performed based on the model which produces the lowest pre-
diction error as follows:

PredictedClass = argmin
c=L1,...,LK ,S1,..,SK

ec (16)

In other words, an input example is labelled as laughter if
one of the K laughter models leads to the lowest prediction
error, otherwise it is labelled as speech.

Laughter-type-based clustering: In this case, we cluster
the time series based on the laughter characteristics. A widely
accepted categorisation of laughter is between voiced and un-
voiced laughter [12]. The SAL dataset contains annotations for
voiced and unvoiced laughter, therefore two laughter predictors
are trained using data from all subjects. Similarly, one speech
predictor is trained using speech examples from all subjects.
Classification is performed as follows:

PredictedClass = argmin
c=LV ,LU ,S

ec (17)

An input example is labelled as laughter if either the un-
voiced laughter (LU ) or voiced laughter (LV ) predictor leads to
the lowest prediction error, otherwise it is labelled as speech.

5. Experimental Setup
Preprocessing: As mentioned in section 3, we used 3 visual
features and 12 audio features in our experiments. Before
training, the audio and visual features are synchronised by
upsampling the visual features, to match the frame rate of the
audio features (100fps), by linear interpolation. All the audio
and visual features are z-normalized per subject in order to
remove subject and recording variabliy .

Parameter Optimization: Neural networks are used as re-
gressors, hence the first step is the optimisation of the num-
ber of hidden neurons and the window lengths from eq. 1 to
4. We trained networks with only one hidden layer using re-
silient backpropagation. The number of hidden neurons varies
between 5 and 60 neurons. The window lengths range is from
0ms to 120ms, which is the length of the shortest vocalisa-
tion, in steps of 10ms. The combination of window length and
number of hidden neurons that leads to the lowest prediction
error over all sequences in the validation set is selected as the
optimal one. It should be noted that the parameters of each
network/predictor are optimised independently of the other net-
works.

The next step is the optimisation of the weights which is
done hierarchically. In the first layer the weights of the cross-
prediction module, wc

AV and wc
V A, and intra-prediction mod-

ule, wc
V V and wc

AA, are optimised independently of each other.
For each module a line search is performed between 0 to 1 in
steps of 0.05 and classification is based either on eq. 9 or eq.
11. The weight combination in each module resulting in the

best mean F1 measure over all classes on the validation set is
selected as the optimal.

In the second layer, the weights that combine the cross-
modal prediction, wc

CP , and intra-modal prediction, wc
IP , mod-

ules from eq. 13 are optimised. This is done in exactly the same
way as in the first layer. The only difference is that the per-
formance of the overall system is considered, i.e., classification
is performed using either eq. 15 or 16 or 17 depending on the
fusion type used.

We should also clarify that in the case of clustering based
on the laughter type only one speech model is trained. How-
ever, this is paired with both the voiced and unvoiced laughter
predictors in order to compute the weights from eq. 9, 11 and
17. This means that the same speech model is paired with the
two laughter models but using a different set of weights in each
case.

6. Results
In order to compare the performance of the methods presented
in section 4, cross database experiments between SAL, AMI
and MAHNOB were performed in order to discriminate laugh-
ter from speech. The first 10 subjects of the SAL dataset are
used for training, the last 5 subjects of SAL are used as a val-
idation set and the AMI and MAHNOB datasets are used for
testing. The SAL dataset was used for training since it is the
least diverse of all and therefore testing on the more diverse
AMI and MAHNOB datasets is the most challenging scenario.
For each experiment we use the recall and precision rates and
the F1 measure as perfomance measures.

Results on the AMI and MAHNOB datasets are shown in
Tables 2 and 3, respectively. Results of audio- and video-only
classification using neural networks are also reported for com-
pleteness. Exactly the same patterns are observed for both
datasets. The use of multiple predictive models trained per
subject for each class significantly increases recall and de-
creases precision for laughter compared to a single set of mod-
els trained per class on the entire dataset. The opposite happens
for speech, where recall decreases but precision significantly in-
creases. Overall, the F1 measure for both laughter and speech
significantly increases.

The same pattern is observed when predictive models are
trained separately on voiced and unvoiced laughter. Recall for
laughter and precision for speech increase even further whereas
precision for laughter and recall for speech are reduced to a
lesser degree. In other words what really happens when mul-
tiple models are trained on several clusters is that a signifi-
cant number of additional laughter examples is correctly classi-
fied (that is why laughter recall and speech precision increases)
whereas a small number of speech examples is misclassified
(that is why laughter precision and speech recall decrease). As
a consequence the F1 measures for both laughter and speech are
further increased. In particular, an absolute increase of 12.6%
and 4.9% is observed for F1 Laughter and Speech, respectively,
on the AMI dataset. A similar increase of 10.7% and 4.3% for
F1 Laughter and Speech, respectively, is observed on the MAH-
NOB dataset.

The significant increase in the overall performance con-
firms the assumption that training specialised sets of predic-
tors on homogeneous clusters models more accurately the au-
diovisual feature relationship. The successful use of subject-
based clustering reveals that there are differences in the audiovi-
sual feature relationship in laughter and speech across subjects
which cannot be modelled so accurately when a set of predictors



Table 2: Precision, Recall and F1 measure for laughter and speech when the single-model and multiple-model prediction-based fusion
(PF) systems are tested on the AMI dataset. The performance of a classifier trained only on the audio or visual modality is reported for
comparison purposes.

Recall Precision F1 Recall Precision F1
Laughter Laughter Laughter Speech Speech Speech

Audio-only Classifier
59.6 96.7 73.7 98.5 75.2 85.3

Video-only Classifier
48.5 75.4 58.5 86.9 67.9 76.1

Single-model PF
61.3 97.4 75.3 98.7 76.0 85.9

Multiple-model PF - Subject-based Clustering
79.0 91.6 84.9 94.2 84.8 89.2

Multiple-model PF - Laughter-type-based Clustering
80.7 94.3 87.0 96.1 86.1 90.8

Table 3: Precision, Recall and F1 measure for laughter and speech when the single-model and multiple-model prediction-based fusion
(PF) systems are tested on the MAHNOB dataset. The performance of a classifier trained only on the audio or visual modality is
reported for comparison purposes.

Recall Precision F1 Recall Precision F1
Laughter Speech Laughter Speech Laughter Speech

Audio-only Classifier
64.1 94.2 76.2 97.4 80.6 88.2

Video-only Classifier
46.3 69.4 55.0 86.4 71.3 78.0

Single-model PF
67.7 93.8 78.6 97.0 82.1 88.9

Multiple-model PF - Subject-based Clustering
81.4 84.1 82.8 89.9 88.1 89.0

Multiple-model PF - Laughter-type-based Clustering
87.7 91.0 89.3 94.3 92.1 93.2

is trained on all the subjects simultaneously. Similarly, the dif-
ferences between voiced and unvoiced laughter are significant
so the use of specialised sets of predictors is beneficial. In fact,
the better performance of the second approach implies that the
voiced and unvoiced clusters are probably more homogeneous
that the clusters based on subjects. This is not unexpected, since
all voiced laughs are quite different than unvoiced laughs even
if expressed from different subjects. On the other hand, each
subject produces both voiced and unvoiced laughs which are
clustered together in the former approach and possibly leading
to less homogeneous clusters. We should also take into account
the fact that the sets of predictors are trained on fewer examples
in the former case since there are more clusters, 20 compared to
3 in the latter case.

7. Conclusions
We have compared the standard prediction-based audiovisual
fusion where only one set of predictors is trained per class on
the entire training set to multiple-models prediction-based fu-
sion where multiple models are trained on different clusters per
class. We take advantage of the natural clustering embdedded in
the data and we used two clustering approaches, subject-based
clustering and clustering based on the laughter type, voiced or
unvoiced. In the former case, a set of predictors for laughter

and speech is trained per subject. In the latter case, 3 sets of
predictors are trained, one for voiced laughter, one for unvoiced
laughter and one for speech. Both approaches outperform the
standard single-model prediction-based fusion. This confirms
the hypothesis that when more specialised models are trained
they can model the audiovisual feature relationship more ac-
curately and in turn enhance the performance. An interesting
direction for future work is the combination of the two natu-
ral clustering approaches, where voiced and unvoiced laughter
clusters are defined within each subject. This approach has the
potential to create even more homogeneous clusters and further
enhance the performance. Finally, the use of time series cluster-
ing can reveal homogeneous clusters across subjects which can
further improve the performance of prediction-based fusion.
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