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Abstract

A novel method based on fusion of texture and shape information is proposed for facial expression and Facial Action Unit (FAU) recognition
from video sequences. Regarding facial expression recognition, a subspace method based on Discriminant Non-negative Matrix Factorization
(DNMF) is applied to the images, thus extracting the texture information. In order to extract the shape information, the system firstly extracts
the deformed Candide facial grid that corresponds to the facial expression depicted in the video sequence. A Support Vector Machine (SVM)
system designed on an Euclidean space, defined over a novel metric between grids, is used for the classification of the shape information.
Regarding FAU recognition, the texture extraction method (DNMF) is applied on the differences images of the video sequence, calculated
taking under consideration the neutral and the expressive frame. An SVM system is used for FAU classification from the shape information.
This time, the shape information consists of the grid node coordinate displacements between the neutral and the expressed facial expression
frame. The fusion of texture and shape information is performed using various approaches, among which are SVMs and Median Radial Basis
Functions (MRBFs), in order to detect the facial expression and the set of present FAUs. The accuracy achieved using the Cohn—Kanade
database is 92.3% when recognizing the seven basic facial expressions (anger, disgust, fear, happiness, sadness, surprise and neutral), and

92.1% when recognizing the 17 FAUs that are responsible for facial expression development.
© 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

During the past two decades, facial expression recognition
has attracted a significant interest in the scientific community,
as it plays a vital role in human centered interfaces. Many ap-
plications such as virtual reality, video-conferencing, user pro-
filing and customer satisfaction studies for broadcast and web
services, require efficient facial expression recognition in order
to achieve the desired results [1,2]. Therefore, the impact of fa-
cial expression recognition on the above-mentioned application
areas, is constantly growing. Several research efforts have been
performed regarding facial expression recognition. The facial
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expressions under examination were defined by psychologists
as a set of six basic facial expressions (anger, disgust, fear, hap-
piness, sadness and surprise) plus the neutral state [3]. In order
to make the recognition procedure more standardized, a set of
muscle movements known as Facial Action Units (FAUs) that
produce each facial expression, was created, thus forming the
so-called Facial Action Coding System (FACS) [4]. These FAUs
are combined in order to create the rules governing the forma-
tion of facial expressions, as proposed in [5]. A survey on the
research made concerning facial expression recognition can be
found in [6,7]. Many approaches have been reported regarding
facial expression recognition (direct or based on FAU recogni-
tion). These approaches can be distinguished in two main direc-
tions, those that use texture information (e.g. pixels intensity)
and the rest that use geometrical or shape-based information
(e.g. feature node displacements).
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The most frequently used texture features are Gabor filter
output [8—10], pixel intensities [11-16], Discrete Cosine Trans-
form (DCT) features [15] and skin color information [17-19].
Accordingly, feature extraction methods based on Principal
Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) [13,20] have been used in order to enhance the per-
formance of texture information. The classification of the tex-
ture information was performed using Neural Networks (NNs)
[7,17,21], empirical classification rules [6,17,19], Bayes or Ad-
aboost classifiers [9,10,18], Support Vectors Machines (SVMs)
[9,18,22].

The most frequently used shape features are facial features
lines [23], motion information [8,24,25], or FAUs [26]. These
features are extracted using 2D or 3D facial models [5,27,28].
The classification of the shape information was performed us-
ing NNs [17], empirical classification rules [5,17], dynamic
Bayesian networks [8,24], dynamic time warping [26], tem-
plate matching [29], Hidden Markov Models [30], manifold
embedding [31], Bayes or Adaboost algorithms [32] or SVMs
[9,33,34].

In [34], a technique for facial expression recognition has
been proposed. The method employed considers the geomet-
rical information of the Candide nodes, acquired as the co-
ordinates differences, to use them as an input to SVM sys-
tems in order to achieve facial expression classification for
the six basic facial expressions. The method in [34] had the
following limitations:

e it is based on node displacements from the neutral state in
order to recognize a basic expression, therefore, the recogni-
tion of the neutral state is necessary as a preprocessing step
applied prior to the classification method;

e texture information is not taken under consideration as only
shape information is used.

In the current paper, a novel method for video-based facial ex-
pression and FAU recognition is proposed that exploits both the
texture and shape information. The recognized facial expres-
sions are the seven basic ones (anger, disgust, fear, happiness,
sadness, surprise and neutral), while the recognized FAUs are
the ones contained in the rules proposed in [5] (FAUs 1, 2, 4,
5,6,7,9,10, 12, 15, 16, 17, 20, 23, 24, 25 and 26). The fea-
tures of the facial texture are obtained by applying a subspace
representation method based on a discriminant extension of the
Non-negative Matrix Factorization (NMF) algorithm [35] (the
so-called DNMF algorithm [36]) on the images derived from
the video sequence. In the case of facial expression recognition,
the DNMF algorithm is applied directly on the expressive facial
images, while in the case of FAU recognition, it is applied on
the differences images. The differences images are calculated
by subtracting the neutral frame of the video sequence from the
fully expressed one. The differences images are used instead of
the original facial expression images, due to the fact that they
emphasize the facial regions in motion and reduce the variance
related to the identity specific aspects of the facial image [37].
We should note that the differences images are only used in
the FAU recognition process and not in the facial expression

recognition one. In the case of FAU recognition, the neutral
state is not taken under consideration, as no FAUs are present
in it. Thus, the calculation of the differences images is, in that
case, feasible. The neutral state can be found by using the re-
sults of the proposed facial expression recognition process, in
order to derive the differences images.

The recognition of facial expressions and FAUs when using
only either texture or shape information has certain drawbacks.
When only texture is used, misclassification cases appear due
to the lack of shape information in some specific facial expres-
sions. For example, anger and fear differences images are not
significantly different, implying that they cannot be discrimi-
nated well using only texture information. Such a problem can
be solved with the introduction of shape information. On the
other hand, when only shape information is used, subtle fa-
cial movements lead to facial expression misclassifications. For
example, the mouth/lip movement can lead to a wrong facial
expression recognition when either fear or happiness is rec-
ognized. By introducing texture information, these facial ex-
pressions are better separated. Thus, the fusion of texture and
shape information is expected to provide superior results. Var-
ious methods were used to achieve the fusion of the two in-
dependent sources of information. The method that provided
the best results was the Median Radial Basis Function (MRBF)
NNs and thus it will be the only one described below.

The use of the DNMEF algorithm for facial expression recog-
nition has been motivated by the fact that it can achieve a dis-
criminant decomposition of faces, as noted in [36]. In the frontal
face verification problem [36], the DNMF method achieves a
decomposition of the facial images, whose basis images repre-
sent salient facial features, such as eyes, eyebrows or mouth.
We believe that the preservation of these salient features in the
learning process of DNMF is caused by the class information
taken into account by the algorithm, since these features are of
great importance for facial identity verification. We also believe
that the extension of the DNMF algorithm to facial expressions
and FAU recognition problem is well motivated, since the al-
gorithm is capable of decomposing the images into facial parts
that play a vital role to facial expression and FAU recognition
[38,39]. In the facial expression recognition problem, the class
is composed of the images that belong to the same facial ex-
pression. Hence, there is a correlation between the features dis-
covered by DNMF algorithm and the facial expression classifi-
cation framework. This is indeed shown in Section 6, where it
is demonstrated that the DNMF basis images are salient facial
parts that preserve discriminant information for every facial ex-
pression, like smile, lowered eyebrows, etc., in contrast to the
NMF basis images that do not display spacial locality of such
high quality and local-NMF (LNMF) basis images [40] that do
not correspond directly to facial parts, even though they have
better spacial localization than the equivalent basis images of
NMF algorithm.

In the case of facial expression recognition, the shape in-
formation is calculated extracting the deformed Candide facial
grid that corresponds to the facial expression depicted in the
video sequence [34]. A space is created (via multidimensional
scaling [41-43]) taking under consideration the distances cal-
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Fig. 1. Differences images between neutral pose and fully expressive one. They are split into facial regions containing the most expressive difference information.

culated for every node to node correspondence between the
training and testing grids. An SVM system is then used for the
classification of the extracted shape information. In the case of
FAU recognition, the shape information is extracted by calcu-
lating the Candide node displacements between the neutral and
the expressive frame [34] that forms the facial expression. The
FAU classification is obtained using a bank of two-class SVM
systems. For facial expression recognition, both the texture and
shape information extraction subsystems have as output the fa-
cial expression class whose center has the least distance from
the test sample expression under examination. For FAU recog-
nition, the set of FAUs that are adequate for facial expression
representation are detected [5]. The experiments performed us-
ing the Cohn—Kanade database indicate a recognition accuracy
of 92.3% when recognizing the seven basic facial expressions
and 92.1% when recognizing the 17 basic FAUs. The FAU
recognition is almost 10% better than the corresponding FAU
recognition rate achieved when this set of FAUs and the Can-
dide grid were used in [34].
Summarizing, the contributions of this study are:

e The extension of the DNMF algorithm presented in [36] for
facial expressions and FAU recognition.

e The introduction of a novel classification framework for fa-
cial grids that involves the definition of a new Euclidean
space, based on metric multidimensional scaling, and its ap-
plication to the Candide grids for facial expression recog-
nition. This framework constitutes the recognition of seven
facial expression feasible unlike [34] where the neutral state
could not be recognized.

e The combination of texture and shape information for facial
expression and FAU recognition.

The proposed method is different to the method in [34]
since:

e Facial expression recognition involves seven facial expres-
sions, the six basic ones (anger, disgust, fear, happiness, sad-
ness and surprise) plus the neutral state. In [34], only the
recognition of the six basic facial expressions is feasible
since the knowledge of the neutral state is mandatory. In the
proposed system, the whole Candide grids are used instead
of the nodes coordinates differences that were used in [34].

e A novel classification framework for grids that is comprised
of two parts, an initial Euclidean embedding and a following
multiclass SVM system, is proposed.

e Texture information is also used and its results are fused
with shape information results to achieve better classification
rates.

The rest of the paper is organized as follows: The systems used
for facial expression and FAU recognition are outlined in Sec-
tion 2. The DNMF algorithms for facial expression and FAU
recognition are described in Section 3. The method used for
shape information extraction is presented in Section 4. The pro-
cedure followed in order to achieve the fusion of the extracted
texture and shape information, is described in Section 5. The
database used for the experiments and some observations re-
garding the results are described in Section 6.1. The recog-
nition accuracy rates achieved for facial expression and FAU
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Fig. 3. System architecture for facial expression recognition in facial videos.

recognition are presented in Sections 6.2 and 6.3, respectively.
Conclusions are drawn in Section 7.

2. System description

The system is composed of three subsystems: texture infor-
mation extraction, shape information extraction and their fusion
for final classification. A facial expression image database is
created for the experiments. Regarding facial expression recog-
nition, for each image sequence the fully expressive image from
every video sequence is taken under consideration. In the case
of FAU recognition, the difference images (see Fig. 1), created
by subtracting the neutral image intensity values from the cor-
responding values of the fully expressive images, are used for
the texture information extraction subsystem. The differences
images are used instead of the original facial expression im-
ages, due to the fact that they emphasize the facial regions in
motion and reduce the variance related to the identity specific
aspects of the facial image for FAU recognition [37]. The same
image sequences are also used as input to the shape extraction
information subsystem.

The grid tracking system used was the one described in [44].
An example of the Candide grids for every facial expression
can be seen in Fig. 2.

In the case of facial expression recognition, the extracted
information is used as an input to the information processing
subsystem that includes an Euclidean embedding. Finally, the
information classification subsystem consists of a seven-class
SVM system that classifies the embedded deformed grid into
one of the seven facial expression classes under examination.
The subsystem used for facial expression recognition is shown
in Fig. 3.

For facial expression recognition, the output information
from both the texture and shape classifiers consists of the dis-
tances of the test video sample from the winning class. These
distances are fed to the fusion subsystem to provide the final
classification result, i.e., the facial expression class the video
sequence belongs to.

Facial expressions can also be described as combinations of
FAUS, as proposed in [5]. As can be seen from the rules (Table
1),the FAUs 1,2,4,5,6,7,9, 10, 12, 15, 16, 17, 20, 23, 24,25
and 26 are necessary for fully describing all facial expressions
(see Fig. 4). Therefore, we concentrate on the detection of these
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Fig. 4. Set of FAUs to be recognized and the corresponding part of the facial grid.

Table 1
The FAU to facial expressions rules as proposed in [5]

Expression FAU coded description [5]
Anger 4 4+ 7+ (((23 or 24) with or not 17)
or (16 4+ (25 or 26)) or (10 4+ 16+
(25 or 26))) with or not 2
Disgust ((10 with or not 17) or (9 with or not 17)) 4+ (25 or 26)

Fear (I4+4)+(5+7) + 20+ (25 or 26)

Happiness 64 12 4 164 (25 or 26)
Sadness 144+ (6 or 7) +15+ 174 (25 or 26)
Surprise (1 +2)+ (5 without 7) 426

17 FAUs. The operators +, or in Table 1 refer to the logical
AND, OR operations, respectively.

When FAU recognition is attempted, the extracted informa-
tion obtained from the grid tracking system is used to calculate
the Candide nodes differences between the neutral and fully
expressive frame. The nodes differences are used as an input to
a bank of 17 two-class SVM systems, each one corresponding
to a FAU to be detected. Each SVM system is able to recog-
nize if the FAU under examination is present or absent in the
video sequence being examined. The subsystem used for FAU
recognition is shown in Fig. 5.

For FAU recognition, the output information from both the
texture and shape classifiers consists of a set of activated FAU
in the examined video sequence. This set is fed to the fusion
subsystem to provide the final classification result, i.e., the set
of activated FAUs in the examined video sequence.

3. Texture information extraction and classification

In this section, the extension of DNMF for facial expression
and FAU recognition will be provided, starting by revisiting the
NMF algorithm.

3.1. Facial expression recognition using texture information

For facial expression recognition, each expressive image y €
% belongs to one of the seven basic facial expression classes
{(#1,%,,...,%7}. The facial image is scanned row-wise to
form a vector x € Rf (F is equal to rows by columns).

Let x = [x1,...,xF],q =[q1, - .-, qFr] be positive vectors
x; >0, g; >0, then the Kullback—Leibler (KL) divergence (or

relative entropy) between x and q is defined [45] as
X
KLxl@= ) j(xi 1nq—’_ +4i —x,-). M
. 1
1

NMF tries to approximate the facial expression image x by a
linear combination of the elements of h € ‘Rf such that x ~
Zh, where Z € YRiXM is a non-negative matrix, whose columns
sum to one. In order to measure the error of the approximation
x &~ Zh the K L(x||Zh) divergence can be used [35]. In order
to apply NMF, the matrix X € iRiXL = [x;, ;] should be con-
structed, where x; ; is the ith element of the jth image. In other
words, the jth column of X is the x; image. NMF aims at find-
ing two matrices Z € ﬂ?iXM =[zix]and H € ﬂ%fXL = [hx,j]
such that

X ~ ZH. )

After the NMF decomposition, the image X; can be written as
x; ~ Zh;, where h; is the jth column of H. Thus, the columns
of the matrix Z can be considered as basis images and the vector
h; as the corresponding weight vector. The h; vectors can also
be considered as the projected vectors of lower dimensionality
representing the original facial expression vector X;.

The defined cost for the decomposition (2) is the sum of all
KL divergences for all images in the database. This way the
following metric can be formed:

Dy(X||ZH) = Y KL(x;|[Zh;)
j

= Z .xl"j ln <—Xi’j )
oy Y ok Zikhij
+ Z Zikhe,j — Xi,j) 3)
k

as the measure of the cost for factoring X into ZH [35]. The
NMF factorization is the outcome of the following optimization
problem:

min Dy (X||ZH) subject to
Z.H

k=0, =20, Y zij=1, Vj. )
i

NMF has non-negative constraints on both the elements of Z
and H. These non-negativity constraints permit the additive
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Fig. 5. System architecture for FAU recognition in facial videos.

combination of multiple basis images in order to represent a
facial expression. In contrast to PCA, no basis images sub-
tractions can occur. For these reasons, the non-negativity con-
straints correspond better to the intuitive notion of combining
facial parts in order to create a complete expressive face. By
using an auxiliary function and the expectation maximization
(EM) algorithm [35], the following update rules for A ; and
Z; k guarantee a non-increasing behavior of Eq. (3):

(tf t— 1) (z 1
W) =g b i Gk X/t

, (5)
(t— 1)
lzlk
() (t— 1) (t)
Po) (z 1)2 hy le/ZlZ i 6
lk_ Z h(t) 9 ( )
,(z]z
7)== )

7N
204

where t is the iteration number. Since X; ~ Zh, a natural way
to compute the projection of X; to a lower dimensional feature
space using NMF is X; = Z'x j where Z' is the pseudo-inverse
of Z, given by Z1 = (Z7Z)~'Z".

In order to incorporate discriminant constraints [36] in the
NMF cost function and find the discriminant facial regions that
are activated in the image for each different facial expression,

let the vector h; that corresponds to the jth column of the
matrix H be the coefficient vector for the pth facial image

of the rth facial expression class, which will be denoted as

(r) [n(r) n(r) 1T
p.M

the facial expression class r is denoted by u(r )= =1y
the mean of all classes by pp=[py; ... ] and the cardlnahty
of each facial class %, by N,, respectively. Then, the within
scatter for the coefficient vectors h; is defined by

The mean vector of the vectors y (r) for
(r) (r)]T

7 Ny
_ Z Z ('T(r) (r))(”(r) (r))T’ ®)

r=1p

whereas the between scatter matrix is defined as

7

Sp=)_ N —py(u?” — ). ©)
r=1

A modified divergence can be constructed inspired by the mini-
mization of the Fisher criterion. This is done by requiring tr[S,, ]
to be as small as possible, while tr[S;] is required to be as large
as possible. The new cost function is given by

Dy (X||ZpH) = Dy (X||ZpH) + 7 tr[Sy] — o tr[Sp], (10)

where 7 and § are positive constants. Following the same EM
approach used by NMF [35] and LNMF [40] techniques, the



1. Kotsia et al. / Pattern Recognition 41 (2008) 833-851 839

following update rules for the weight coefficients Ay ; that be-

{Zp lN/’

long to the rth facial expression class are, j € F,=
. Z;zl Ny} [36]:

For a two-class problem (like the kth FAU recognition prob-
lem), we should define the within class scatter matrix of the
training set as

h(f) _

T+ /T2 + 42y — @ +29) 1Nk 305 20 Vi /5 0 D

ki 22y — (2y +20)1/N,)

where T is given by

Ti=Q+28) | — > his| —20m —1. (12)

"L Al

The update rules for the bases Zp are the same as in NMF and
can be given by Egs. (6) and (7). The above decomposition
is a supervised NMF method that decomposes the facial ex-
pression images into parts, while enhancing class separability.
The matrix Z;) = (ZVZp)~'ZT, which is the pseudo-inverse
of Zp, is then used for extracting the discriminant features as
X = ZEX. It is interesting to note here that there is no restric-
tion on how many dimensions we may keep for x and that the
DNMEF bases are common for all the different facial expression
classes in the database, contrary to the DNMF algorithm ap-
plied for FAU recognition, where the extracted bases are class
specific.

In order to make a decision about the facial expression class
the test image belongs to, the image is projected to the lower
dimensional feature space derived from applying the DNMF
algorithm. The Euclidean distance between the projection x =
Z;)X and the center of each facial expression class m; is calcu-
lated and the image is classified to the closest facial expression
class:

IIZ (x—my)]. (13)

; Y

1 1 1
" — T

= > -

q“@/“)
2 2 2 2
+ > @ = - T, (14)
n2ea®
where p'" and p® h f the cl V)
/Lk an [Lk are the mean vectors of the classes k

and @,((2) (i.e., the presence and absence of the kth FAU), re-
spectively. The between scatter matrix is defined as

= > N - - T

n; efy(l)

+ 2 NP —we? - '
new?

1 2
= NON® D — y@) (D — 1@,

(15)
where N,gl) and N,Ez), are the cardinalities of the presence and
absence of the kth FAU classes, respectively. The DNMF cost
function to be minimized is given by

Dy(X°(|1Z5 H) = Dy (X0||Z5 H) 4 yu[SE ] — 6u[SEL,  (16)

where y and J are positive constants. Following the same EM
approach used by NMF [35] and LNMF [40] techniques, the
following update rules for the weight coefficients Ay ; that be-
long to one of the two classes (existence or absence of a FAU)
are derived from

h(l)

Ty + \/Tzz 42y —

@+ 2001/ NS 2 x5 2 n Y

kj ™=

3.1.1. FAU recognition using texture information

For FAU recognition, the differences images of each video
sequence, calculated by subtracting the neutral frame from the
expressive one, are used. Each differences image belongs to
one of the two classes representing the presence/absence of kth
FAU {??/,(cl), @,((2) }. Each differences image calculated is initially
normalized. The smallest intensity value for every image is
defined and its absolute value is added to each pixel, resulting
that way in a positive image. In both cases, the input image
is afterwards scanned row-wise to form a vector x° € ‘.Rf_ of
dimension F. As in the DNMF for facial expression recognition,

we form the matrix X° that has as columns the x° images. The

corresponding weight matrix H has as columns the vectors 11( )

for the presence of the FAU and 11? ) for its absence.

NG ) (17)
212y = 2y +20)1/N;)
where 7> is given by
1
=27 +20) | — Z b | — 200 — 1. (18)

ko sl

The update rules for the bases Z]B are the same as in NMF and
can be given by Egs. (6) and (7). It is interesting to note here
that the extracted DNMF bases are now class specific (different
bases for each FAU).

In order to find if a FAU is activated in the facial differences
image X, the image is projected to the lower dimensional feature
space derived from the DNMF algorithm. The distance used
for the classification of the kth FAU is given by
19)

X

uf = min 25, ¢ —m{")].
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where m,({]) and m,(cz) are the mean differences images of the
first and second classes (presence and absence of kth FAU),
respectively.

4. Shape information extraction and classification
4.1. Shape information extraction subsystem

The shape information extraction system is composed of two
subsystems: one for Candide grid node information extraction
and another one for grid node information classification. The
grid node information extraction is performed by a tracking sys-
tem. Candide node tracking is performed by a pyramidal variant
of the well-known Kanade—Lucas—Tomasi (KLT) tracker [46].
The loss of tracked features is handled through a model defor-
mation procedure that increases the robustness of the tracking
algorithm. The algorithm, initially fits and subsequently tracks
the Candide facial wireframe model in video sequences con-
taining the formation of a dynamic human facial expression
from the neutral state to the fully expressive one. The facial
features are tracked in the video sequence using a variant of
the KLT tracker [46]. If needed, model deformations are per-
formed by mesh fitting at the intermediate steps of the tracking
algorithm. Such deformations provide robustness against node
losses and increase tracking accuracy. The algorithm automat-
ically adjusts the grid to the face and then tracks it through
the image sequence, as it evolves over time. The grid initial-
ized in semi-automatic way. That is, elastic graph matching
[47] is applied and afterwards some nodes that may have been

Surprise

Neutral

misplaced are corrected manually. At the end, the grid tracking
algorithm produces the deformed Candide grid that corresponds
to the formed facial expression. A poser with the corresponding
grid for the six basic facial expressions plus the neutral state is
shown in Fig. 6.

4.2. Facial expression recognition using shape information

The extracted grids are afterwards normalized. The normal-
ization procedure ensures the common scaling, orientation and
coordinates system, so that their comparison is feasible. The
grids are initially moved so that the tip of the nose for every
grid is the center of the coordinates system. Afterwards, their
scaling is processed in such a way that the length and the width
of the grid is constant. Finally, the angle that is defined using
the horizontal line that joins the inner eyes’ corners and the
vertical line that joins the center of the forehand with the tip of
the nose is checked so that it is also common for all grids. The
normalized grids are then used as an input to the shape extrac-
tion information subsystem where a metric-multidimensional
scaling is performed in order to create a new Euclidean feature
space. The projection of the input data on that new space is
then used as an input to a SVM classifier for the classification
of the shape information.

4.2.1. Metric-multidimensional scaling
Given two Candide grid point sets: .o/ = {ay, ..
B=1{by, ..

.,ap} and
., by}, we propose the following metric in order to

Anger

Fig. 6. An example of each facial expression for a poser from the Cohn—Kanade database.
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measure the similarity between deformed grids:

1
du(/, B)=— > lai—bj. (20)
tl,‘EA,b,‘EB
It can be easily proven that the proposed measure satisfies the
following properties:

reflectivity i.e., dy (Z;, ;) =0;

positivity i.e., dy (oZ;, o/ j) > 0if of; £ o j;

symmetry i.e., dg(Z;, o/ j) =d(/ j, oA });

triangle inequality ie., dp(oZ;, .o/ ;)<dy(A;,C) +
dy(C, o/ j) where A;, A, C grids.

Thus, the proposed distance can be used as a proper similarity
measure [48]. We will use this similarity measure in order to
define a metric-multidimensional scaling [41-43].

Let {71, ..., o/ N} be the set of training facial grid database.
The similarity matrix of the training is defined as

[D];,; =du (i, ;). 21

We will use the dissimilarity matrix D in order to define an
embedding X € REXN , where k< N is the dimensionality of
the embedding and the ith column of X, denoted as x;, corre-
sponds to the feature vector of the facial grid .o/; in the new
Euclidean space. In order to find the embedding X, the matrix
B is defined as

B=-1JDJ, (22)

where J =Iy«ny — (1/N)1N1]TV e RN is the centering ma-
trix, Iyxy is the N x N identity matrix and 1y is the N-
dimensional vector of ones. The matrix J projects the data so
that the embedding X has zero mean. The eigendecomposition
of the matrix B will give us the desired embedding. The ma-
trix B is positive semi-definite (i.e., it has real and non-negative
eigenvalues), since the distance matrix D is Euclidean. Let p
be the number of positive eigenvalues of matrix B. Then, the
matrix B can be written as

B=QAQ " =QA!? [M 0] A2QT = G™™G, (23)

where A is a diagonal matrix with the diagonal consisting of
the p positive eigenvalues, which are presented in the following
order: first, positive eigenvalues in decreasing order and finally
the zero values. The matrix Q is an orthogonal matrix of the
corresponding eigenvectors. The matrix M is equal to M=I,, ,
where I, , is the identity p x p matrix. The matrix G is the em-
bedding of the set of facial grids in the Euclidean space R [48]:

G=A/%Q], (24)

where Ay contains only the non-zero diagonal elements of A
and Qg is the matrix with the corresponding eigenvectors.
In this case, the new embedding is

G,=A,"Q’, 25)

where A, is a diagonal matrix having as diagonal elements
the magnitude of the diagonal elements of A;, in descending

order. The matrix Q) contains the corresponding eigenvectors.
For the dimensionality p of the new embedding, the following
inequality holds: p< p < N. As already mentioned, the vector
gf, i.e., the ith column of the matrix G; corresponds to the
feature vector of the grid .oZ; in the Euclidean space.

4.2.2. Multiclass support vector machines in the new space

For every facial expressive grid .«7; € R”, a feature vector
gf is created. The feature vectors gf labelled properly with the
true corresponding facial expressions are used as an input to
a multiclass SVM. SVMs were chosen due to their good per-
formance in various practical pattern recognition applications
[34,49-52] and their solid theoretical foundations. A brief pre-
sentation of the optimization problem of the multiclass SVMs
will be given below. The interested reader can refer to [53-56]
and the references therein for formulating and solving multi-
class SVM optimization problems.

The training data are (gf, ), ..., (gﬁ,, ly), where g? e R
lj € {1,...,7} are the corresponding facial expression class
labels. The multiclass SVM solves only one optimization prob-
lem [55]. It constructs seven facial expressions rules, where
the kth function wgqb(g i)+ by separates training vectors of the
class k from the rest of the vectors, by minimizing the objective
function:

I N
o, §;W3Wk+czzfﬁ 26)

J=1 kL]
subject to the constraints:
WlTj¢(gj) +by, >w () + b +2— &,

£20, j=1.....N, ke{l.....T\l,. (27)

C is the term that penalizes the training errors . b=[b; ... b1*
and ¢ = [5{, R ff, R EZV]T are the bias and slack variable
vectors, respectively. For the solution of the optimization prob-
lem (26), subject to the constraints (27), the reader can refer to
[53,55,56].

The nonlinear mapping ¢ has been used for a high-
dimensional feature mapping for obtaining a linear SVM
system in which it should be ¢(g) = g. This mapping is de-
fined by a positive kernel function, h(g;, g;), specifying an
inner product in the feature space and satisfying the Mercer’s
condition [53,57]:

h(gi.g;) = p@) (g)). (28)

The functions used as SVM kernels were the d degree polyno-
mial function:

h(gi.g) = (glg; + D? (29)
and the Radial Basis Function (RBF) kernel:
h(gi. g;) =exp(—llg — g;ll*). (30)

where 7y is the spread of the Gaussian function.
The decision function is

P = 2r_glma>;<w,f¢<g> + by). 31)
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The question that remains is how novel grids can be classified
using the proposed embedding and multiclass SVM.

4.2.3. Classifying novel grids

For testing, let {¢,...,%,} be a set of n testing (novel)
facial grids. The matrix D,, € R is created, with D], =
dy(%;, </ ;). The matrix D, represents the similarity between
the n test facial grids and all the training facial grids. The matrix
B, € RN of inner products that relates all the new (test)
facial grids to all facial grids from the training set is then found
as follows:

B, = —}(D,J — UDJ), 32)

where J is the centering matrix and U = (1/N)1, IITV e RN,
The embedding G,, € RP*" of the test facial grids is defined as

G, =A,'?QlB]. (33)

The columns of the matrix G,, are the features used for clas-
sification. Let g; , € R’ be the ith column of the matrix G,
i.e., the vector that contains the features of the grid ;. A test
grid deformation feature vector is classified to one of the seven
facial expressions using Eq. (34). Once the seven-class SVM
system is trained, it can be used for testing, i.e., for recogniz-
ing facial expressions on new facial videos. The classification
of ¥; to one of the seven facial expression classes is performed
by the decision function:

(%)= fgmaX(wk O(gin) + bi), (34)

.....

where wy and by have been found during training. The distance
that defines the facial expression class the grid deformation
vector belongs to is given by

sg = max 7(chﬁ(g) + by, (35)

which is the distance from the class separating hyperplane.

4.3. FAU recognition using shape information

For FAU recognition, the shape information produced from
the jth video sequence is the Candide node displacements d’j
of the Candide grid nodes, defined as the difference between
coordinates of this node in the neutral and expressive frame
[34]:

=[Ax} AY.T', iefl,..., 104}, (36)
where Ax; j, Ay; ; are the x, y coordinate displacement of the
ith node in the jth image, respectively. This way, for every
facial image sequence in the training set, a feature vector g; is
created, called grid deformation feature vector containing the
geometrical displacement of every grid node:
de 1%,

gl=[d; doj... j=1,...,N (37)

having QO = 104 x 2 =208 dlmenswns We assume that each
grid deformation feature vector g j=1,...,N.

Let 7~ be the database that is consisted of the differences
of grids between the neutral and expressive states as extracted
from the video sequences. For the kth FAU recognition, the
database is clustered into two different classes {7~ ,((l), e ,((2)}
each one representing one possible kth FAU state (presence or
absence). The grid deformation feature vector g5. e RY is used
as an input to 17 two-class SVM systems, each one detecting a
specific FAU (the FAU set includes FAUs 1, 2, 4, 5, 6,7, 9, 10,
12, 15, 16, 17, 20, 23, 24, 25 and 26). Each SVM system, uses
the Candide node geometrical displacements to decide whether
a specific FAU is activated for the test grid under examination or
not. The kth SVM, k=1, ..., 17 is trained with the examples in
“V,((l) :{(g‘;, yf), j=1,..., N, y’f: 1} as positive ones and
all other examples “/‘,ﬂz)={(gj, y?), j=1,..., N, y?:—l}
as negative ones. The feature vectors g; € RY labelled properly
with the correct label (/; =1 when the FAU under examination
is activated and /; = —1 when it is not activated) are used as
an input to a set of two-class SVM systems.

Two-class SVM systems are used in order to detect the ac-
tivated FAUs. The grid deformation feature vector g € N9,
j=1,..., Nisused as an input to 17 two-class SVM systems,
each one detecting a specific FAU from the ones depicted in
Fig. 4. Each SVM system uses the grid node geometrical dis-
placements to decide whether a specific FAU is activated at the
grid under examination or not. In order to train the kth SVMs
network, the following minimization problem has to be solved
[54]:

N
. 1 T k
min —w, Wi + Cy &8 (38)
wi, by, & 2 g ; !

subject to the separability constraints:
YEwig@) +b)>1-&. &>0, j=1.....N, (39

where by is the bias for the kth SVM, & = [& ... &k ] is
the slack variable vector and Cy is the term that penalizes the
training errors.

After solving the optimization problem (38) subject to the
separability constraints (39) [53,57], the function that decides
whether the kth FAU is activated by a test displacement feature
vector g‘3 is

fi(g) = sign(w} p(g°) + by). (40)

The distance of the grid to the decision surface of the kth FAU
(k=1,...,17) in the test video that produced the grid defor-
mation vector is

vg =W (g°) + by (41)
5. Fusion of texture and shape information
5.1. Fusion for facial expression recognition

Various methods were used in our study to achieve fusion
of the texture and shape information results (SVMs and many
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variations of NNs). However, only the one that provided the
best results (MRBF NN) will be described below, due to space
limitations. The DNMF algorithm, applied to the image x, pro-
duces the distance rx as a result, while SVMs applied to the
Candide grid g, produce the distance sg as the equivalent re-
sult. The distances ryx and sg, defined in Eq. (13) and in Eq.
(34), respectively, were normalized in [0, 1] using Gaussian
normalization [58]. Thus, a new feature vector ¢, ¢ = [ry sg]T,
is defined containing information from both texture and shape
information sources. The feature vector ¢ was used as an input
to a RBF NN system. The output of this system is the facial ex-
pression class label /. Many variations of RBF NNs were tested
in our experiments, such as the general RBF NNs, Generalized
Regression NNs (GRNNs) and MRBFs.

5.2. Fusion for FAU recognition

The DNMF algorithm, applied to the difference image x?
produces a score u’,ﬁ (defined in Eq. (19)) as a result, which
specifies whether the kth FAU examination was activated in the
image x°. The SVM application to the vector of geometrical
displacements gb, produces the score v’g‘ s (defined in Eq. (41))
k~]T
g()
containing information from both texture and shape information
sources was created. The feature vector ¢ was used as an input
to a MRBF NN system to produce the final decision on FAU
recognition.

as the equivalent result. A new feature vector ¢k = [u’; v

5.3. Median radial basis function neural networks for fusion

In this section, we shall describe the best solution found
in our experiments for fusing the scores of the texture and
shape classifiers. The best solution has been an RBF NN [59]
based on robust statistics, the so-called MRBF. The use of the
MRBEF for fusing the scores has been motivated by its successful
application in fusing the scores of various modalities in the
person identification problem [60].

An RBF network is a two-layer feed-forward NN, in which
various clusters are grouped together in order to describe
classes, thus making it appropriate for nonlinear functional
approximation [61]. The inputs of the RBF network are the
previously described vectors ¢. Each hidden unit implements a
Gaussian function which models a cluster:

¢;(¢) =exp[—(c —p)'S; (¢ —p))], (42)

where ¢ is the entry vector, p; is the mean vector, S; is the
covariance matrix, and j=1, ..., L, where L is the total number
of hidden units. Each hidden unit models the location and the
spread of a cluster. The output unit consists of a weighted sum
of hidden unit outputs, which are fed into a sigmoidal function:

1
I+ expl=27_; 4, (@]

Y(e) = (43)

where /; are the output weights associated with the hidden
units. The output consists of a decision function ¥/(c) € (0, 1).

A very common approach for estimating the parameters of
an RBF network consists of an adaptive implementation of
the k-means clustering algorithm [62]. Another approach is to
use hybrid SVMs plus a RBF system, where the centers of
the classes are estimated using initially a SVM system (i.e.,
we use as the RBF centers the learned Support Vectors (SVs)
[63]). In [59], a robust statistics algorithm was proposed for
estimating the parameters of the RBF networks. It was proven
that this algorithm provides better parameter estimates when
the clusters are overlapping or in the presence of outliers [59].
MRBEF assigns an incoming data vector to a cluster which has
the smallest Euclidean distance:

llei — pjll = min fle; — pr|l. (44)

After assigning a set of vectors to the same cluster, we calculate
the center of the cluster using the marginal median algorithm

p; =med{c;o,¢j1,...,¢jnl, (45)

where ¢;; fori =0, ..., n are the data samples assigned to the
hidden unit j. In order to limit the computational complexity,
we consider only a limited set of data samples and the formula
(45) is calculated from a running window. For the dispersion
estimation we employ the median of the absolute deviations
from the median algorithm:

_med{|c; o —Ppjl.....|¢jn —Pjl}
0.6745 '
The covariance matrix S; is considered to be diagonal. The

output weights are calculated from the back-propagation algo-
rithm:

S, (46)

i =Y [H(e) = yenlp(enll — (el (ci), (47)

i=0

where H (¢;) is the decision function associated with each data
sample in the training set (i.e., H(c;) is the label of ¢;).

MRBF networks use the second-order statistics. The RBFs
modelling the clusters are not influenced by the presence of
outliers in the MRBF training algorithm, due to the use of the
robust median operators [64]. Therefore, MRBF networks are
expected to have good classification performance.

6. Experimental results
6.1. Database description

The Cohn-Kanade database has been used in the experi-
ments. This database is annotated with FAUs. These combina-
tions of FAUs were translated into facial expressions accord-
ing to [5], in order to define the corresponding ground truth
for the facial expressions. All the available subjects and videos
were taken under consideration to form the database for the
experiments.

The most frequently used approach for testing the generaliza-
tion performance of a classifier is the leave-one cross-validation
approach [65]. It was devised in order to make maximal use of
the available data and produce averaged classification accuracy
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Anger Anger20% | Anger 20% Anger20% [ | Anger20%
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Fig. 7. Diagram of leave-one-out method used in classification assessment.

results. The term leave-one out cross-validation does not corre-
spond to the classical leave-one-out definition, as a variant of
leave-one-out was used (i.e., leave 20% of the samples out) for
the formation of the test data set in our experiments. However,
the procedure followed will be called leave-one-out from now
on for notation simplicity without loss of generalization. More
specifically, all image sequences contained in the database are
divided into seven facial expression classes (or 17 FAU classes).
Five sets containing 20% of the data for each class, chosen
randomly, were created. One set containing 20% of the sam-
ples for each class is used as the test set, while the remaining
sets form the training set. After the classification procedure is
performed, the samples forming the test set are incorporated
into the current training set, and a new set of samples (20% of
the samples for each class) is extracted to form the new test
set. The remaining samples create the new training set. This
procedure is repeated five times. A diagram of the leave-one-
out cross-validation method can be seen in Fig. 7. The average
classification accuracy is defined as the mean value of the per-
centages of the correctly classified facial expressions over all
data presentations.

The accuracy achieved for each facial expression is
averaged over all facial expressions and does not provide any
information with respect to a particular expression. The confu-
sion matrices [34] have been computed to handle this problem.
The confusion matrix is a n X n matrix containing information
about the actual class label lab,. (in its columns) and the label

obtained through classification lab.; (in its rows). The diag-
onal entries of the confusion matrix are the number of facial
expressions that are correctly classified, while the off-diagonal
entries correspond to misclassifications. The abbreviations
an, di, fe, ha, sa, su and ne represent anger, disgust, fear,
happiness, sadness, surprise and neutral, respectively.

6.2. Facial expression recognition

In this section, facial expression recognition experiments are
described. The facial expressions under examination are the
six basic ones plus the neutral state. Only the best accuracies
achieved for any method used are taken under consideration to
make the final conclusions.

6.2.1. Facial expression recognition from texture

The basis images extracted when the NMF, LNMF and
DNMF algorithms were applied are depicted in Fig. 8. The
accuracy rates obtained for facial expression recognition using
texture information and applying several methods, such as
PCA, PCA followed by LDA, NMF, LNMF and DNMF, are
shown in Fig. 9. DNMF clearly outperforms the rest image
representations. The number of dimensions kept after applying
PCA plus LDA, were equal to the number of facial expression
classes minus 1, thus equal to 6. The confusion matrix ob-
tained when using DNMF on texture information is presented
in Table 2. The best accuracy achieved was equal to 74.3%.
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Fig. 8. Basis images extracted for: (a) NMF (b) LNMF and (¢) DNMF algorithms.

b
; ; ; ; ; ; s
-©- PCA plus LDA
— NMF
r ~ LNMF i
—— DNME
F 2
1 £
e S < < % = = Y
r”e/ 1 2
Q
<
20 40 60 80 100 120 140 160 180 200

Number of basis images

100

90

80

70

60

50

40

FAUs recognition

— NMF

—©- LNMF

—<— DNMF

—#*— PCA

- —#— PCA plus LDA

20 40 60 80 100 120 140

Number of basis images

160 180 200

Fig. 9. Recognition accuracies obtained for: (a) facial expression and (b) FAU recognition using NMF, LNMF and DNMF algorithms.

As can be seen from the confusion matrix, sadness seems to
be the most ambiguous facial expression. More specifically, it
is misclassified the most as neutral and anger (23.3% and 7.7%

845

of the cases, respectively). The facial expression that follows
in misclassification rate is fear, which is mainly confused with
neutral (21% of the cases). The facial expression misclassifica-
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Table 2

Confusion matrices

lab¢; %

lab, % an di fe ha sa su ne
(a) Texture (74.3%) information

an 77 0 0 5.6 7.7 14 5.5
di 0 74 3.6 33 1.5 0 0
fe 3 0 68.2 2.2 1.5 1.5 1.1
ha 0 3 3.6 73.3 1.5 1.4 1.1
sa 6 0 0 0 61.5 1.4 0
su 0 3 3.6 0 3 75.7 2.2
ne 14 20 21 15.6 23.3 18.6 90.1
(b) Shape (84.8%) information

an 91 14.3 0 0 10.8 0 4.8
di 6 85.7 7.3 0 0 0 0
fe 0 0 68.2 0 0 7.1 2.4
ha 0 0 11.8 91 4.6 0 0
sa 0 0 5.5 0 30 0 2.4
su 3 0 0 0 0 92.9 5.8
ne 0 0 7.2 9 4.6 0 84.6

tion descending ordering continues with happiness (misclassi-
fied as neutral in 15.6% of the cases), disgust (misclassified as
neutral in 20% of the cases), surprise (misclassified as neutral
in 18.6% of the cases), anger (misclassified as neutral in 14%
of the cases) and neutral (misclassified as anger in 5.5% of the
cases).

6.2.2. Shape information extraction using SVMs

The confusion matrix obtained when using SVMs on shape
information using the method described in Section 4, is pre-
sented in Table 2. The accuracy achieved was equal to 84.8%.
In Fig. 10, the accuracy rates achieved for facial expression
recognition when using SVMs with polynomial and RBF ker-
nels are shown.

As can be seen from the confusion matrix, fear seems to
be the most ambiguous facial expression. More specifically,
fear is misclassified the most as happiness, followed by dis-
gust and neutral (11.8%, 7.3% and 7.2% of the cases, respec-
tively). The facial expression that follows in misclassification
rate is sadness, which is mainly confused with anger (10.8%
of the cases). The facial expression misclassification descend-
ing ordering continues with neutral (misclassified as surprise
in 5.8% of the cases), disgust (misclassified as anger in 14.3%
of the cases), anger and happiness (misclassified as disgust and
neutral in 6% and 9% of the cases, respectively) and surprise
(misclassified as fear in 7.1% of the cases).

6.2.3. Fusion of texture and shape information for facial
expression recognition

The confusion matrix obtained when fusion using MRBF
NNs is presented in Table 3. The accuracy achieved when
MRBF NNs were used for the fusion of the texture and shape
results, was equal to 92.3%, which is better than using either
texture or shape information alone. The combination of texture
and shape information increases the classification rate for all

facial expressions. More specifically:

e For anger, the final accuracy achieved when fusion is ap-
plied is equal to 93.6%, while the equivalent ones before
fusion were 77% and 91% for texture and shape informa-
tion classification, respectively. The confusion of anger with
fear and neutral that appears when only texture information
is used no longer exists, while the confusion of anger with
sadness remains but is significantly reduced when fusion is
introduced. Regarding shape information, the confusion of
anger with surprise no longer exists when fusion is intro-
duced, while the confusion of anger with disgust remains but
is significantly reduced.

e For disgust, the final accuracy achieved when fusion is ap-
plied is equal to 89.5%, while the equivalent ones before
fusion were 74% and 85.7% for texture and shape infor-
mation classification, respectively. The confusion of disgust
with surprise and neutral that appears when only texture in-
formation is used no longer exists. Regarding shape infor-
mation, the confusion of disgust with anger no longer exists
when fusion is introduced.

e For fear, the final accuracy achieved when fusion is applied
is equal to 84.3%, while the equivalent ones before fusion
were equal to 68.2% both for texture and shape information
classification. The confusion of fear with disgust, happiness,
surprise and neutral that appears when only texture informa-
tion is used no longer exists. Regarding shape information,
the confusion of fear with disgust, happiness and neutral no
longer exists when fusion is introduced, while the confusion
of disgust with sadness remains but is significantly reduced.

e For happiness, the final accuracy achieved when fusion is
applied is equal to 97.5%, while the equivalent ones before
fusion were 73.3% and 91% for texture and shape informa-
tion classification. The confusion of happiness with anger,
disgust and fear that appears when only texture information
is used no longer exists, while the confusion of happiness
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Fig. 10. Facial expression and FAU recognition accuracies using shape and SVMs for various kernels: (a) polynomial kernels; (b) RBF kernels.
Table 3
Confusion matrix achieved fusing texture and shape information using MRBF NN for seven facial expressions
labci (%)
lab,. (%) an di fe ha sa su ne
an 93.6 0 0 0 0 0 6.7
di 1.6 89.5 0 0 0 0 0
fe 0 0 84.3 0 0 0 0
ha 2.6 10.5 0 97.5 5.7 0 0
sa 22 0 15.7 0 94.3 2.5 0
su 0 0 0 0 0 95.6 2.0
ne 0 0 0 2.5 0 1.9 91.3

The facial expression recognition rate has been 92.3%.

with neutral remains but is significantly reduced. Regarding
shape information, the confusion of happiness with neutral
remains but is significantly reduced.

e For sadness, the final accuracy achieved when fusion is ap-
plied is equal to 94.3%, while the equivalent ones before fu-
sion were 61.5% and 80% for texture and shape information
classification. The confusion of sadness with anger, disgust,
fear, surprise and neutral that appears when only texture in-
formation is used no longer exists. Regarding shape infor-
mation, the confusion of sadness with anger and neutral is
now absent.

e For surprise, the final accuracy achieved when fusion is ap-
plied is equal to 95.6%, while the equivalent ones before
fusion were 75.7% and 92.9% for texture and shape infor-
mation classification. The confusion of surprise with anger,
fear and happiness that appears when only texture informa-
tion is used no longer exists, while the confusion of surprise
with neutral remains but is significantly reduced. Regarding
shape information, the confusion of surprise with fear is now
absent.

e For neutral, the final accuracy achieved when fusion is ap-
plied is equal to 91.3%, while the equivalent ones before
fusion were 90.1% and 84.6% for texture and shape infor-
mation classification. The confusion of neutral with fear and
happiness that appears when only texture information is used
no longer exists. Regarding shape information, the confu-
sion of neutral with anger, fear and sadness is now absent,
while the confusion of neutral with surprise remains but is
significantly reduced.

As can be seen from the confusion matrix (Table 3), all facial
expressions are correctly recognized in more cases when tex-
ture and shape information are used. This is due to the fact that
all facial expressions depend to a great extent on the posers’ ex-
pressive ability. For example, anger can appear only with a gaze
change rather than the equivalent mouth movement, something
that can only be detected by the human eye (therefore being
visible as a change in texture information), while disgust in-
cludes a frown that cannot be perfectly represented by the Can-
dide grid due to the lack of enough grid vertices that should be
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Fig. 11. Comparison with recent dynamic facial expression recognition methods.

placed at the wider nose area. Fear can include extremely mi-
nor facial movements in combination with gaze changes, thus
making it difficult to recognize (also being visible as changes in
texture information). Sadness may be expressed as a difference
in gaze and a subtle mouth movement and, of course, neutral
does not include any movement at all. Thus all of the above-
mentioned facial expressions are greatly affected by the pres-
ence of texture information when it comes to their recognition.
The remaining facial expressions (happiness and surprise) in-
clude more important changes in the form of facial movements.
Their existence, however, results in major texture changes, e.g.
when a person smiles a white area corresponding to his teeth
appears, while when a person is surprised and opens his mouth
a big black area appears. Thus, the recognition of happiness
and surprise can be also improved when texture information is
available.

A comparison of the recognition rates achieved for each fa-
cial expression with the state of the art [65-68], when six fa-
cial expression were examined (the neutral state was not taken
under consideration) is depicted in Fig. 11. The total facial
expression recognition of the proposed fused architecture has
been 94.5% for the six facial expressions. Unfortunately, there
is no direct method to compare the rates achieved by other
researchers [65-68], since there is not standard protocol (ev-
ery one uses his own testing protocol). Moreover, some of the
methods similar to that in [66—-68] have been tested only of
the six facial expressions therefore, the performance of these
methods in case the seventh facial expression (i.e., neutral) had
been included remains unknown. Only the method in [65] has
been tested for the seven facial expressions and their recog-

nition rate has been 78.52% which is significantly lower than
the performance of the proposed method that achieved 91.3%
when neutral was included.

6.3. FAU recognition

In this section, FAU recognition is described. We examined
the FAUs 1, 2,4, 5, 6,7, 9, 10, 12, 15, 16, 17, 20, 23, 24, 25
and 26, as proposed in the facial expression recognition rules
in [5] (17 FAUs in total).

6.3.1. FAU recognition using texture information

The accuracy rates obtained for FAU recognition using
texture information and by applying several methods, such
as PCA, PCA followed by LDA, NMF, LNMF and DNMF
are shown in Fig. 9(b). Only one dimension was kept af-
ter applying PCA and LDA, this number being equal to the
number of classification classes (presence or absence of a
FAU) minus 1. Only the DNMF method that provided the
best accuracies is taken in consideration for the fusion exper-
iments. The total classification accuracy achieved was equal
to 84.4%.

6.3.2. FAU recognition using shape information

The total accuracy achieved was equal to 86.7%. In Fig. 10,
the accuracy rates achieved for FAU recognition when using
SVMs are shown. The functions used as SVM kernels were the
polynomial and RBF functions.
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Fig. 12. Furrows that appear when FAUs 12 and 23 are observed and two of the sparse DNMF bases that correspond to the furrows.

6.3.3. Fusion of texture and shape information for FAU
recognition

The total accuracy achieved for both cases was equal to
92.1%, which is significantly better than the one obtained when
using either texture or shape information. The accuracy rate was
increased due to the use of both texture and shape information.
The introduction of texture eliminates some of the confusions
observed when using shape information only. This happens as
in many FAUs, the shape information is not enough to fully
describe its presence. In many cases, the available grid nodes
fail to describe all possible texture characteristics, such as fur-
rows and wrinkles that may appear on the face. To be more
specific, when FAU 12 is observed (see Fig. 12), some vertical
furrows appear between the nose and the corners of the mouth
(emphasized with a cloud of black dots). These furrows can-
not be fully described by the Candide grid deformation due to
the absence of properly placed grid nodes. The same happens
with FAU 23 (also shown in Fig. 12), where horizontal fur-
rows appear between the chin and mouth (emphasized with a
cloud of black dots). Texture can capture all the necessary in-
formation where the shape description would fail, thus making
the fusion of the two kinds of information more powerful. For
FAU 9, the accuracy rate achieved when using texture informa-
tion was equal to 86.4%, while the equivalent one when using
shape information was 91.7%. Fusion produced an accuracy of
95.8%. The proposed method increased the accuracy by more

than 12% when compared to the accuracy achieved when only
shape information is used (82.7%) [34].

7. Conclusions

A novel and complete (i.e., uses both shape and texture in-
formation) method for facial expression and FAUs recogni-
tion is proposed in this paper. The recognition is performed
by fusing the texture and the shape information extracted from
a video sequence using a subspace representation method and
an Euclidean embedding in combination with a SVMs system,
respectively. The results obtained from the above-mentioned
methods are then fused. Various methods are used for fusion,
including SVMs and MRBF. The system achieves an accuracy
of 92.3% when recognizing the seven basic facial expressions
and 92.1% when recognizing the 17 basic FAUs. Conclusions
regarding the most misclassified facial expressions are drawn
and the way fusion aids to their easier and most accurate recog-
nition is indicated.
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