
Notes on Hidden Markov Models

The materials are adopted from Chapter 17 of Kevin’s Murphy Book:
Machine Learning a Probabilistic Approach

1 The forwards algorithm

We want to compute recursively the posterior density p(zt|x1:t) of the HMM (i.e., the
filtered posterior density). We want to find a recursive formula at time t. First we notice
that

p(ztj = 1|x1:t−1) =
∑
i

p(ztj = 1|z(t−1)i = 1)p(z(t−1)i = 1|x1:t−1). (1)

Next comes the update step, in which we absorb the observed data from time t using
Bayes rule:

αt(j) , p(ztj = 1|x1:t) = p(ztj = 1|xt,x1:t−1)

=
1

Zt

p(xt|ztj = 1,x1:t−1)p(ztj = 1|x1:t−1)

=
1

Zt

p(xt|ztj = 1)
∑
i

p(ztj = 1|z(t−1)i = 1)p(z(t−1)i = 1|x1:t−1)

=
1

Zt

p(xt|ztj = 1)
∑
i

p(ztj = 1|z(t−1)i = 1)αt−1(i)

where the normalization constant is given by

Zt , p(xt|x1:t−1) =
∑
j

p(zt = j|x1:t−1)p(xt|zt = j). (2)

The above process is known as the predict-update cycle. The distribution p(zt|x1:t) is
called the (filtered) belief state at time t, and is a vector of K numbers, often denoted
by αt

1.

1In Christopher’s Bishop book, as well as, in my first series of notes αt(j) is defined as the joint
probability p(zt,x1:t), rather than defining directly the filtered posterior p(zt|x1:t), as we do here. As
we have discussed, defining it as p(zt,x1:t), has two problems. First it rapidly suffers from numerical
underflow, since the probability of observing any particular sequence of evidence x1:t is very small.
Second, the joint probability p(zt,x1:t) is not as meaningful as the posterior distribution over states
p(zt|x1:t). Note, however, that these two definitions only differ by a multiplicative constant, so the
algorithmic difference is just one line of code. (In fact, all good implementations of the forwards algorithm
normalize the belief state after each step, to avoid underflow, and hence they are actually computing
p(zt|x1:t)!).

1

Advanced Statistical Machine Learning Notes on HMMs 1

In matrix-vector notation, we can write the update in the following simple form:

αt ∝ bt � (ATαt−1) (3)

where bt = p(xt|zt) is the emission probability vector at time t, A(i, j) = p(ztj =
1|z(t−1)i = 1) is the transition probability matrix, and u�v is the Hadamard product,
representing elementwise vector multiplication. See algorithm 1.1 for the pseudo-code,
(also hmmFilter of Kevin’s Murphy code for some Matlab code).
In addition to computing the hidden states, we can use this algoritm to compute the log
probability of the evidence:

logp(x1:T |θ) =
T∑
t=1

logp(xt|x1:t−1) =
T∑
t=1

logZt (4)

(We need to work in the log domain to avoid numerical underflow).

Algorithm 1.1: Forwards algorithm
1 Input: Transition matrices A = [p(ztj = 1|z(t−1)i = 1)],

emission probability vectors bt = p(xt|zt),
initial state distribution vector π = p(z1);

2 [α1, Z1] = normalize(b1 � π);

3 for t = 2 : T do

4 [αt, Zt] = normalize(bt � (ATαt−1));

5 Return α1:T and logp(x1:T) =
∑
t

logZt;

6 Subroutine: [v, Z] = normalize(u) : Z =
∑
j

uj; uj = uj/Z;

2 The forwards-backwards algorithm

In the previous section we have described how to compute the filtered posterior p(zt|x1:t).
In the following, we will discuss how to compute the smoothed posteriors p(zt|x1:T).

2.1 Basic idea

The key decomposition relies on the fact that we can break the chain into two parts, the
past and the future, by conditioning on zt:

p(ztj = 1|x1:T) ∝ p(ztj = 1,xt+1:T |x1:t) ∝ p(ztj = 1|x1:t)p(xt+1:T |ztj = 1,x1:t). (5)

Let αt(j) , p(ztj = 1|x1:t) be the filtered belief state as before. Also define βt(j) ,
p(xt+1:T |ztj = 1) as the conditional likelihood of future evidence given that the hidden

2

Advanced Statistical Machine Learning Notes on HMMs 1

state at time t is j. (Note that this is not a probability distribution over states, since it
does not need to satisfy

∑
j βt(j) = 1.) Finally, define

γt(j) , p(zt = j|x1:T) (6)

as the desired smoothed posterior. From equation 5, we have

γt(j) ∝ αt(j)βt(j). (7)

We have already described how to recursively compute the α’s in a left-to-right fashion in
the previous section. We now describe how to recursively compute the β’s in a right-to-left
fashion. If we have already computed βt, we can compute βt−1 as follows:

βt−1(i) = p(xt:T |z(t−1)i = 1)

=
∑
j

p(ztj = 1,xt:T |z(t−1)i = 1)

=
∑
j

p(xt:T |ztj = 1, z(t−1)i = 1)p(ztj = 1|z(t−1)i = 1)

=
∑
j

p(xt:T |ztj = 1)p(ztj = 1|z(t−1)i = 1)

=
∑
j

p(xt+1:T |ztj = 1)p(xt|ztj = 1)p(ztj = 1|z(t−1)i = 1)

=
∑
j

βt(j)bt(j)A(i, j).

We can write the resulting equation in matrix-vector form as

βt−1 = A(bt � βt). (8)

The base case is

βT (i) = p(xT+1:T |zT i = 1) = p(0|zT i = 1) = 1 (9)

which is the probability of a non-event (another way to see why βT (i) can be found in the
presentation notes).
Having computer the forwards and backwards messages, we can combine them to com-
pute γt(j) ∝ αt(j)βt(j). The overall algorithm is known as the forwards-backwards
algorithm. The pseudo code is very similar to the forwards case; (see hmmFwdBack
from Kevin’s Murphy library for an implementation).
We can think of this algorithm as passing ‘messages’ from left to right, and then from
right to left, and then combining them at each node.

3

Advanced Statistical Machine Learning Notes on HMMs 1

2.2 Two-slice smoothed posterior

Finally we have to compute the joint smoothed posterior of t and t + 1, i.e., p(zti =
1, z(t+1)j = 1|x1:T) is called a (smoothed) two-slice posterior, and can be computed as
follows:

ξt,t+1 , p(zt, zt+1|x1:T)

∝ p(zt|x1:T)p(zt+1|zt,xt+1:T)

∝ p(zt|x1:T)p(xt+1:T |zt, zt+1)p(zt+1|zt)
∝ p(zt|x1:T)p(xt+1|zt+1)p(xt+2:T |zt+1)p(zt+1|zt)
= αt(i)bt+1(j)βt+1(j)A(i, j).

In matrix-vector form, we have

ξt,t+1 ∝ A� (at(bt+1 � βt+1)
T).

4

