
 

Assignment 3: Neural Networks 

 

Part I: Data description 

You are provided with two Matlab cell arrays which contain the data you need in order to 

train your neural networks. The first cell array is called datasetInputs and contains the input 

images. The first cell contains the training data, the second cell contains the test data and 

the last cell contains the validation data. Each row in each cell contains one image. The size 

of the image has been downscaled to 30 by 30 (so the columns correspond to the 900 

pixels). There are 25120, 3589 and 3589 images for training, testing and validation, 

respectively.  You can visualise any image by executing the following commands (the 

following code displays the first image of the training set): 

im = datasetInputs{1};  

im1 = im(1,:); 

im2 = reshape(im1,30,30); 

colormap gray 

imagesc(im2') 

The second cell array is called datasetTargets and contains the targets for each image in the 

training, test and validation sets. Each row contains the target for the corresponding input 

image. The targets are the 6 basic emotions (angry, disgust, fear, happy, sad, surprise) + 

neutral. All targets are 0 except for the target that corresponds to the emotion shown in the 

image, e.g. if the displayed emotion is surprise then the target should be [0, 0, 0, 0, 0, 1, 0].   

 

Part II: Creating and training a neural network   

You can have a look at the exampleNN function for a complete example how to train and test a 

network. You should also read the manual (can be found in the Matlab toolbox we provide) which 

describes all the parameters of the network structure. This section briefly describes the main 

functions of the toolbox.  

 nn = paramsNNinit(hiddenLayers, hiddenActivationFunctions); 
Initialises the network parameters. hiddenLayers is a vector containing the number 
of hidden neurons per layer (including the output layer), e.g., [1000 1000 1000 7], 
and hiddenActivationFunctions is a cell array which contains the activation functions 
for each layer, e.g., {‘ReLu’, ‘ReLu’, ‘ReLu’, ‘softmax’} 
 



 [W, biases] = initWeights(inputSize, nn.weightInitParams, hiddenLayers, 
hiddenActivationFunctions); 
Initialises the weights and biases of the network. inputSize is the number of inputs, 
nn.WeightInitParams contains the weight initialisation parameters, see above for 
hiddenLayers and hiddenActivationFunctions. The weights and biases need to be 
assigned to the network, nn.W = W and nn.biases = biases. 

 

 [nn, Lbatch, L_train, L_val]  = trainNN(nn, train_x, train_y, val_x, val_y); 
Trains a network using the training data train_x and training targets train_y.  
Optionally, a validation set can also be used val_x and val_y for validation inputs and targets, 

respectively. 

IMPORTANT NOTE: Think how you should normalise the images.  

IMPORTANT NOTE:  Since your inputs (=pixels) are continuous you should make sure 

that the variable inputActivationFunction is set to ‘linear’.  

 

Part III: Parameter Optimisation 

An important issue in neural networks is parameter optimisation. First, select a performance 

measure which will be used to compare the performance of the different parameters on the 

validation set. You should use stochastic gradient descent with momentum for all experiments, but 

you can experiment with other training algorithms if you wish so.  Then you should optimise the 

parameters as follows: 

1) First select a network architecture and an activation function that you believe is a 

reasonable starting point. Explain your motivation for selecting this architecture and 

activation function. Define a stopping criterion, a weight initialisation method and a 

momentum and learning rate update schedule.  

2) Optimise the initial learning rate (disable regularisation). Explain how you found a good 

initial value for learning rate.  Save the plot of the training and validation loss and training 

and validation classification error (from epoch 1 until the stopping criterion is met). 

3) Optimise the learning rate update schedule. Include a table where you present the results 

on the validation set of the different learning rate schedules you have tested. 

4) Use dropout and report if there is any improvement in the validation performance. Explain 

what changes you have made to the network and/or training procedure when you use 

dropout. 

5) Use two other types of regularisation (any two you wish) and compare their performance 

with dropout. Explain which regularisation parameters you optimised and present a plot 

which shows the performance on the validation set as a function of the parameters that 

needs to be optimised.  Also discuss why regularisation is needed. 

6) Optimise the topology of the network, i.e. the number of hidden layers and the number of 

neurons in each hidden layer, the size of your input is 900 (number of pixels in the image), 

and the number of neurons in the output layer should be 7. Include a plot which shows the 



performance on the validation set as a function of the number of layers. Include another 

plot which shows the performance on the validation set as function of the hidden layers size. 

7) Train a network using the optimal set of parameters you have found so far and a different 

activation function than the one you defined in step 1. Comment on the performance on the 

validation set and discuss if it is any different than the initial activation function you used. 

8) Train a network using the optimal set of parameters and include a figure which shows the 

training and validation loss and another figure which shows the training and validation 

classification error. Present in the same figure the curves you saved in step 2. Comment on 

their differences. Save also this network since you should include it in your submission. 

IMPORTANT NOTE:  It is impossible to run an exhaustive search, so think of a reasonable 

strategy when you optimise parameters (e.g. don’t explore too many similar parameter 

values) and put more effort on optimising parameters you think are more important. Also 

whenever possible use some default values, e.g., start with a momentum of 0.5 and 

increase it (at the same epoch that learning rate begins to decrease) linearly to 0.9. Check 

the slides for more tips. 

 

Part IV: Performance Estimation 

Test the performance of the network trained with the optimal set of parameters on the test set and 

report the confusion matrix, classification rate and F1 measure per class. 

 

Part V: Questions 

1. Assume that you train a neural network classifier using the dataset of the previous coursework. 

You run cross-validation and you compute the classification error per fold. Let’s also assume that you 

run a statistical test on the two sets of error observations (one from decision trees and one from 

neural networks) and you find that one algorithms results in better performance than the other.  

Can we claim that this algorithm is a better learning algorithm than the other in general? Why? Why 

not? 

2. Suppose that we want to add some new emotions to the existing dataset. What changes should 

be made in decision trees and neural networks classifiers in order to include new classes? 

 

c) Deliverable 
For the completion of this part of the CBC, the following have to be submitted electronically via 

CATE: 

1. All the code you have written. 

2. The neural network you have trained in part III (step 8) in .mat format. 

3. Comments in each step of part III. 

4. Confusion matrix and performance measures (part IV) 

5. Answers to the questions in part V.  



 

Final Grade = 0.8* Report content + 0.1* Code Performance + 0.1* Report quality 

Code Performance = 2 * CR on unseen data  

Code (total : 100) 

 Results on new test data  :  100 

We will test your networks using the simulateNN function together with the trained 

network you provide. If you use python make sure you write a test function which 

takes as inputs the trained networks and a set of images and returns the predicted 

labels. 

Make sure that your code runs. If not you will be asked to resubmit the code and lose 

30% of the code mark. 

Report content (total : 100) 

 Parameter estimation (part III),: 10 for each step, so 80 in total. 

 Confusion matrix, classification rate, F1-measure (part IV):  5 

 Question 1 (part V) : 8 

 Question 2 (part V): 7 
 

Report quality (total : 100) 

 Quality of presentation 


