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Abstract—The collection of large scale 3D face models has led
to significant progress in the field of 3D face alignment “in-the-
wild”, with several methods being proposed towards establishing
sparse or dense 3D correspondences between a given 2D facial
image and a 3D face model. Utilizing 3D face alignment improves
2D face alignment in many ways, such as alleviating issues with
artefacts and warping effects in texture images. However, the
utilization of 3D face models introduces a new set of challenges
for researchers. Since facial images are commonly captured in
arbitrary recording conditions, a considerable amount of missing
information and gross outliers is observed (e.g. due to self-
occlusion, subjects wearing eye-glasses and so on). To this end,
in this paper we propose the Multi-Attribute Robust Component
Analysis (MA-RCA), a novel technique that is suitable for facial
UV maps containing a considerable amount of missing infor-
mation and outliers, while additionally, elegantly incorporates
knowledge from various available attributes, such as age and
identity. We evaluate the proposed method on problems such as
UV denoising, UV completion, facial expression synthesis and age
progression, where MA-RCA outperforms compared techniques.

Index Terms—Robust Component Analysis, Low Rank, Spar-
sity, Facial UV Maps.

I. INTRODUCTION

Significant progress has been observed during the past years
in the field of sparse and dense 3D face alignment [2], [10],
[12], [24], [25]. Recent developments include the utilization
of Deep Neural Networks (DNNs) for estimation of 3D facial
structure, as well as a methodology for fitting a 3D Morphable
Model (3DMM) in “in-the-wild” images [2]. Additionally,
several benchmarks for training sparse 3D face alignment
models have been recently developed [2], [24]. The utilization
of these methods introduces new challenges and opportunities
as far as facial texture is concerned.

In particular, by sampling over the fitted image, a 2D UV
map of the facial texture can be constructed. A UV texture
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Fig. 1. Various indicative applications of MA-RCA, such as: a) facial UV map
completion: On the left is the original image, in the middle is the extracted
3D facial shape with the original texture which has missing values, on the
right is the 3D facial shape with the reconstructed completed facial texture
b) illumination transfer: on the left is the original image, on the right is the
illuminated one, c) age progression: on the left is the original image (old),
on the right is the age-progressed one (young), d) facial expression synthesis:
on the left is the neutral image, in the top row are the reconstructed facial
expressions (smile and scream) from the neutral one and in the bottom row
are the actual, ground truth facial expressions (smile and scream).

map is the main way to store the texture of a 3D model as a
simple 2D image in graphics applications. In more detail, it
is a 2D representation of the texture of a 3D model which
is precisely connected with the object’s vertices through a
set of coordinates that map each vertex to a specific location
of the UV map. The mapping coordinates naturally occur by
unwrapping the 3D model and scaling it to the UV texture
map’s space [4]. In our work we employ UV texture maps
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Fig. 2. Original facial image is depicted in a). The facial image produced by
a 2D face alignment algorithm is presented in b). The UV map derived by
fitting a 3DMM is depicted in c).

that are precisely mapped to 3D models of human faces and
particularly to instances of the LSFM face model [3]. An
example of a UV map with missing values along with the
original face image and the recovered shape projected on it,
is depicted in Fig. 4.

A facial UV map may contain a considerable amount of
missing data (pixels) due to factors such as self-occlusion.
Nevertheless, it does not suffer from warping effects, in
contrast to the facial images produced by a 2D face alignment
algorithm, as can be clearly seen in Fig. 2. Utilizing facial
UV maps for the discovery of latent components suitable for
specific tasks (such as age or illumination transfer) requires the
design of statistical component analysis methods that (a) can
appropriately handle missing values, (b) can alleviate problems
arising from gross errors, and (c) exploit any existing la-
bels/attributes that are available. To tackle the aforementioned
issues, it is natural to adopt techniques from the family of
robust component analysis.

In the past years, significant research has been conducted
in terms of formulating robust component analysis techniques.
Arguably, the most prominent example lies in the Robust
PCA (RPCA) algorithm [5], that has also been extended for
handling missing values in [21]. The RPCA algorithm with
missing values has been recently proven extremely useful
towards the extraction of a low-rank sub-space of facial
UV textures that is free of gross errors, thus deeming it
extremely useful for the fitting of 3DMMs “in-the-wild” [2].
Nevertheless, RPCA is an unsupervised component analysis
technique, and hence does not take into account the various
attributes/annotations that may be present in the data at-hand.

Different variations of RPCA [5] have been introduced in
the literature, such as the Robust Principal Component Analy-
sis with Non-Greedy l1-Norm Maximization (RPCA-L1) [15]
and the Optimal Mean Robust Principal Component Analysis
(OM-RPCA) [16], both of which propose different methods
for solving the RPCA optimization problem ( [5]). In RPCA-
L1 [15], the authors first propose an efficient optimization
algorithm to solve a general l1-norm maximization problem
and then employ it to formulate a non-greedy solution of the
l1-norm RPCA problem. OM-RPCA [16] solves the traditional
l1-norm RPCA optimization problem while simultaneously
updating the mean component of the data matrix at each
iteration of the algorithm, aiming to achieve better separation
of the data. Similarly to the common RPCA algorithm [5],
none of the two aforementioned methods are designed to

exploit any available labels or annotations of the data.
Other recent robust component analysis methods in-

clude Robust Correlated and Individual Component Analy-
sis (RCICA) [17], as well as Robust Joint and Individual
Variance Explained (RJIVE) [19]. RCICA robustly recovers
both the correlated and individual low-rank components of
two views of noisy data, and can therefore be interpreted as
a robust extension of Canonical Correlation Analysis (CCA)
[23]. Nevertheless, RCICA is not designed to utilize labels or
any available annotations. RJIVE further extends RCICA by
extracting low-rank sub-spaces from multiple-views similarly
to RCICA in the presence of a single attribute only (e.g., if
the data at-hand are annotated for the attribute age, then they
may be split in different age-groups and each age-group can
be considered as a different view). As a result, data that is
annotated in terms of multiple attributes (such as identity and
age) cannot be fully exploited in RJIVE.

To alleviate the shortcomings of the previously mentioned
methods, in this paper we introduce Multi-Attribute Robust
Component Analysis, dubbed MA-RCA, which takes a much
more natural approach to the problem of facial UV analysis,
since it is able to inherently incorporate the existence of
multiple attributes at-hand during the training as well as the
testing processes. An example of how MA-RCA decomposes
a UV map into the various components is presented in Fig. 3.
In summary, the contributions of the paper are as follows.
• We introduce MA-RCA, a novel component analysis

technique which recovers suitable components that ro-
bustly capture the shared and individual variation of data
under a multi-attribute scenario. Furthermore, MA-RCA
is inherently able to handle observations with missing
values, as well as sparse and gross corruptions.

• We demonstrate that MA-RCA can be applied to a
number of challenging problems, such as completion of
missing data in the texture of a reconstructed 3D facial
image and transfer of multiple attributes in images cap-
tured “in-the-wild” (e.g., illumination, identity, expression
and age).

The rest of the paper is organized as follows. In Section
II we provide the mathematical formulation of MA-RCA and
present all the necessary optimization algorithms. In Section
III we run a series of experiments and demonstrate the merits
of MA-RCA against other state-of-the-art algorithms.

II. MULTI-ATTRIBUTE ROBUST COMPONENT ANALYSIS

A. Preliminaries

Prior to delving into the model, a few explanations regarding
the notations used throughout the paper are provided. Lower-
case letters, e.g., x, denote scalars, lower-case (upper-case)
bold letters denote vectors (matrices), e.g., x (X). Moreover,
L1 (L2) vector norm is defined as ‖x‖1

.
=
∑
i |xi| (‖x‖2

.
=√∑

i x
2
i ). Similarly, L1,1 ≡ L1 (L2,2 ≡ LF ) matrix norm

is defined as ‖X‖1
.
=
∑
i,j |xij | (‖X‖F

.
=
√∑

i,j x
2
ij). The

nuclear norm of a matrix X, i.e., the sum of its singular values,
is defined as ‖X‖∗. The Hadamard, i.e., element-wise, product
of two matrices X and Y is denoted as X � Y. Finally,
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x30 F1h1,3 F2h2,5 G30 E30= + + +

Fig. 3. Facial UV map decomposition utilizing MA-RCA. Vectorized UV map x30 is decomposed into: a) an age-group component F1h1,3, where F1 is the
base that renders the age-groups and h1,3 is the shared age selector corresponding to the third age-group in the training set (in this example, the age-group is
41-50), b) an identity component F2h2,5, where F2 is the base that renders the identities and h2,5 is the shared identity selector corresponding to the fifth
identity in the training set (in this example, the identity is Frank Sinatra), c) an individual component G30 that captures all of the error-free information of
the particular UV map that cannot be explained by the age and identity components, d) an error component E30 that captures the gross errors of the particular
UV map (in this example, occlusions which correspond to sparse, non-Gaussian noise).

(a) (b) (c) (d)
Fig. 4. Extraction of UV texture map with missing values from a 2D image
using a face 3DMM. Having recovered the (b) 3D shape of a face by fitting a
3DMM into (a) an input image we can (c) project the reconstructed 3D shape
on it and then compute the UV texture map along with the occluded parts.

we provide the following operator definitions which will be
utilized in the mathematical derivations required for MA-RCA.
• Procrustes operator: Q (X)

.
= UVT , where U and V

are given by the rank-r Singular Value Decomposition
(SVD) of X, i.e., X = UΣVT .

• Shrinkage operator: Sτ (σ)
.
= sgn (σ)max (|σ| − τ, 0)

• Singular Value Thresholding (SVT) operator: Dτ (X)
.
=

Udiag (Sτ (d))VT , where X = Udiag (d)VT is the
SVD of X.

B. Problem formulation

Without any loss of generality, suppose that the incomplete,
contaminated by gross errors UV maps at-hand are annotated
for J attributes (e.g., identity, age, etc.), where each attribute
may have Mi,∀i ∈ {1, . . . , J}, different instantiations (e.g.,
attribute identity may have the instantiation Frank Sinatra,
Albert Einstein, etc.). Moreover, assume that there is a total of
N samples in the training set. Aim of MA-RCA is to robustly
extract J joint components corresponding to the available
attributes during training, an individual component which
captures the rest data information that cannot be explained
by the J components and a component which captures the
gross but sparse errors. Let training data be concatenated
in a column-wise manner, i.e., X =

[
x1 . . .xN

]
, where

xi ∈ RF×1, i ∈ {1, . . . , N}, is a vectorized form of a facial
UV map. Then MA-RCA admits the following decomposition.

X =

J∑
i=1

Si + G + E, (1)

where Si, i ∈ {1, . . . , J}, are the J shared components for
every attribute, G is the individual component and E is the
error component.

Nevertheless, Si, i ∈ {1, . . . , J}, must have a specific low-
rank structure which accounts for the different instantiations
of each attribute. That is, every attribute should be rendered
by a base and subsequently every corresponding instantiation
be rendered by a selector on that base. Therefore, (1) is re-
formulated as follows.

X =

J∑
i=1

FiHi + G + E, (2)

where Fi ∈ RF×Mi , i ∈ {1, . . . , J}, are the bases that
render each attribute and Hi ∈ RMi×N , i ∈ {1, . . . , J}, are
comprised of the shared selectors, i.e., Hi

.
=
[
hi,a . . .hi,b

]
(such that a, b ∈ {1, . . . ,Mi}), which render a specific
instantiation for an attribute (e.g., assuming that base Fi
renders attribute identity, then hMi

would render a particular
instantiation of this attribute, e.g., Albert Einstein). It should
be noted that data which bear the same instantiation (e.g.,
Mi) for a particular attribute (e.g., attribute i) have the same
selector hi,Mi

(for instance, multiple data with instantiation
Albert Einstein will all have the selector hi,Mi

). Furthermore,
low-rank base G ∈ RF×N , renders the individual variation for
all of the images in the training set that cannot be explained
by the existing attributes. Finally, E ∈ RF×N encapsulates
gross errors (such as occlusions, pixel corruptions, etc.) for
all of the data samples in the training set.

In order to recover components {FiHi}Ji=1 and G which
are as informative as possible, the error term which accounts
for the existence of gross but sparse errors in the visible
parts of the UVs has to be minimized. This is equivalent to
minimizing the L0 norm of the error term for the visible parts
of the UV maps. However, to avoid the NP-hardness of the
L0 norm minimization we adopt the L1 norm as the tightest
convex surrogate [7].
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The problem is then formulated as follows.

min
θ
‖W �E‖1 ,

s.t. X =

J∑
i=1

FiHi + G + E (3)

{
FTi Fi = I

}J
i=1

, rank (G) = R,

where θ = {Fi,Hi,G} , i ∈ {1, . . . , J} and R,R <
min(F,N), is a hyper-parameter. Moreover, W

.
=[

w1 . . .wN

]
, where wi ∈ {0, 1}F×1 , i {1, . . . , N}, is the

corresponding vectorized occlusion mask for each UV map
xi. The visible (missing) pixels for each UV map correspond
to ones (zeros) in each matching occlusion mask. Orthonor-
malization constraints on the bases {Fi}Ji=1 facilitate the
recovery of unique and identifiable selectors. Because of the
fact that R is a hyper-parameter, it requires a large number of
experiments to estimate the optimal rank for G. Since R is
upper bounded, the following relaxed decomposition can be
used to automatically recover the optimal rank for G.

min
θ
λ ‖W �E‖1 + ‖G‖∗ ,

s.t. X =

J∑
i=1

FiHi + G + E, (4)

{
FTi Fi = I

}J
i=1

,

where the nuclear norm of G is introduced as a convex
surrogate of the rank function [5] and λ > 0 is a regularizer.

Replacing the parameter R with the regularizer λ makes
the problem much easier to address and in much less time
[5], [19]. Regularizer λ can be selected by using the formula
λ = 1/

√
max(F,N) (where F,N correspond to the rows and

columns of the data matrix, respectively), as shown in [5],
[19]. In the supplemental material we further corroborate this
by conducting a number of different experiments on various
values of λ.

C. Mathematical derivations

Because problem (4) is separable, we adopt an alternating
optimization scheme to find the updates for every parameter.
The corresponding partially Augmented Lagrangian for (4)
may then be written as

L (θ) = λ ‖W �E‖1 + ‖G‖∗ −
1

2µ
‖Λ‖2F +

+
µ

2

∥∥∥∥∥X−
J∑
i=1

FiHi −G−E +
Λ

µ

∥∥∥∥∥
2

F

, (5)

s.t.
{
FTi Fi = I

}J
i=1

,

where θ = {Fi,Hi,G,Λ} , i ∈ {1, . . . , J}. Problem (5) is
minimized by employing the Alternating Direction Method
of Multipliers (ADMM) [1], [8]. The algorithm for solv-
ing (5) is presented in Algorithm 1. The algorithm termi-
nates when the iterations reach a predefined maximum value
or a convergence criterion is met. The convergence crite-
rion is met when the normalized reconstruction error, i.e.,

∥∥∥X−∑J
i=1 Fi[t]Hi[t]−G[t]−W �E[t]

∥∥∥
F
/ ‖X‖F is less

than a predefined threshold ε. The ADMM iteration reads as
follows.

Update the primal variables:
For obtaining Hi, i ∈ {1, . . . , J}, where, as previously men-
tioned, Hi =

[
hi,a . . .hi,b

]
, we need to solve individually

for every hi,j , j ∈ {1, . . . ,Mi}. Based on (5), the solution is
given by minimizing

hi,j [t+ 1] = argmin
hi,j [t]

∥∥∥∥∥X−
J∑
k=1

Fk[t]Hk[t]−

−G[t]−E[t] +
Λ[t]

µ[t]

∥∥∥∥∥
2

F

. (6)

Problem (6) admits a closed-form solution, which is

hi,j [t+ 1] =
1

Ni,j

(
Fi,ji [t]

)T (
Xi,j −

J∑
k=1,k 6=i

Fi,jk [t]Hi,j
k [t]−

Gi,j [t]−Ei,j [t] +
Λi,j [t]

µ[t]

)
· 1, (7)

where superscript {i, j} means that only the Ni,j columns
corresponding each time to the j-th instantiation of the i-
th attribute are considered (e.g., columns corresponding to
data annotated for attribute identity and instantiation Albert
Einstein) and 1 is a column vector of Ni,j ones.

For deriving subspace Fi, i ∈ {1, . . . , J}, the following
needs to be solved.

Fi[t+ 1] =argmin
F[t]

∥∥∥∥∥X−
J∑
j=1

Fj [t]Hj [t+ 1]−G[t]−

−E[t] +
Λ[t]

µ[t]

∥∥∥∥∥
2

F

, (8)

s.t.
{
FTi Fi = I

}J
i=1

.

In order to solve (8), we rely on the Procrustes Operator Q
and the Lemma introduced next.
Lemma: The constraint minimization problem

Ω∗ = argmin
Ω

‖ΩA−B‖2F (9)

s.t. ΩTΩ = I,

has a closed-form solution [20] of the form Ω∗ = Q
(
BAT

)
.

As a result, the solution for (8), taking into account (9), is

Fi[t+ 1] = Q

[(
X−

J∑
j=1,j 6=i

Fj [t]Hj [t+ 1]−G[t]−

−E[t] +
Λ[t]

µ[t]

)
·Hi[t+ 1]T

]
. (10)

For obtaining subspace G, the following needs to be solved.

G[t+ 1] = argmin
G[t]

[
µ[t]

2

∥∥∥∥∥X−
J∑
i=1

Fi[t+ 1]Hi[t+ 1]−

−G[t]−E[t] +
Λ[t]

µ[t]

∥∥∥∥∥
2

F

+ ‖G[t]‖∗

]
. (11)
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Problem (11) is solved utilizing the SVT operator D. The
solution is

G[t+ 1] = D 1
µ[t]

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−E[t]+

+
Λ[t]

µ[t]

]
. (12)

For obtaining E, the following problem needs to solved.

E[t+ 1] = argmin
E[t]

[
λ ‖W �E[t]‖1 +

µ[t]

2

∥∥∥∥∥X−
−

J∑
i=1

Fi[t+ 1] ·Hi[t+ 1]−G[t+ 1]−E[t] +
Λ[t]

µ[t]

∥∥∥∥∥
2

F

]
(13)

Problem (13) is solved utilizing the Shrinkage operator S. The
solution is

E[t+ 1] = W �Y + W �

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−

−G[t+ 1] +
Λ[t]

µ[t]

]
, (14)

where

Y = S λ
µ[t]

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−

−G[t+ 1] +
Λ[t]

µ[t]

]
(15)

and W is the complement of W.

Update the Lagrange multiplier and µt parameter:

Λ[t+ 1] = Λ[t] + µ[t]

(
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−

−G[t+ 1]−E[t+ 1]

)
, (16)

µ[t+ 1] = min (ρµ[t], µmax) . (17)

Regarding the theoretical convergence of the ADMM algo-
rithm presented previously, there is no proof when ADMM
is utilized in settings with more than two blocks of variables.
Nevertheless, ADMM provides good results in non-linear opti-
mization problems [18]. Experimental evaluation of MA-RCA
in a number of different tasks on various facial datasets admits
that the derived solutions constitute a good approximation.
It should be noted that despite using convex surrogates for
the L0 norm and the rank function, the problem is still non-
convex due to the product terms of the MA-RCA formulation.
Non-convex relaxation techniques could be utilized in a future
work.

The time complexity for MA-RCA at each
iteration of Algorithm 1 is

∑J
i=1O

(
max

(
MiF

2
))

+
O
((
max

(
NF 2, F 2N

))
= O

(
max

(
FN2, F 2N

))
, due to

SVD applied on both the shared J components and the

individual one and since Mi < min(F,N),∀i ∈ {1, . . . , J}.
The memory complexity of MA-RCA is O (FN), due to
SVD.

As mentioned previously, the type of noise which is mostly
prevalent in facial UV maps is sparse, gross, non-Gaussian
noise, due to occlusions, subjects wearing eye-glasses, pixel
corruptions, etc. This is why MA-RCA is formulated to explic-
itly account for the sparse noise, as shown in (4). Furthermore,
by increasing the regularizer λ (i.e., by reducing the effect
of the sparse error term in (4)), MA-RCA will be able to
handle data contaminated by both Gaussian and sparse noise.
Finally, MA-RCA is able to handle data solely contaminated
by Gaussian noise by vanishing the sparse error term, i.e., by
setting λ → ∞. This is further corroborated in Section III-A
and Section III-B.

D. Reconstruction of a test image

After the optimal bases and the selectors have been re-
covered as described in Section II-C, they may be utilized
in order to recover the shared and individual components of
a test image. Then, the said components can be utilized in
experiments such as completion of missing UV parts and
joint transfer of a facial test image to another age, identity,
expression or illumination, as demonstrated in Section III.

Without any loss of generality, assume a test UV map
y, which may be decomposed in the shared and individual
components as follows.

y =

J∑
i=1

Fiĥi + Kŵ + ε̂, (18)

where K is the linear span of G, given by applying the rank-
r SVD on G. In the most general case, optimal selectors{

ĥi

}
=Ji=1 and ŵ must be extracted by minimizing the sparse

error term ε̂ corresponding to the visible part of y, for already
recovered {Fi}Ji=1 and G. That is, the following needs to be
solved.

min
θ
‖wy � ε̂‖1

s.t. y =

J∑
i=1

Fiĥi + Kŵ + ε̂, (19)

ŷ =

J∑
i=1

Fiĥi + Kŵ,

where wy is the occlusion mask corresponding to the test
UV map y and ŷ is the reconstructed, error-free facial UV
map. In the case where, e.g., transfer of a test image to
a specific age is required, the selector corresponding to the
specific age will be fixed (i.e., the corresponding optimal
selector found during the training process in Section II-C
is utilized). Because problem (19) is separable, we adopt an
alternating optimization scheme to find the updates for every
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Algorithm 1: ADMM solver for problem (5)

1 Input: X, where X is the set of the training data, Mi, i ∈ {1, . . . , J}, where Mi is number of instantiations for every
attribute i, W, where W is the set of occlusion masks corresponding to the training data and L, where L is a one hot
representation matrix of the instantiations assigned to each image over all the available attributes.

2 Initializations: t = 0, ε = 1e− 8,maximum number of iterations tmax, µ[0] =
25
‖X‖ , λ = 1/

√
max(F,N)

{Fi[0],Hi[0],G[0],Λ[0]} = 0, i ∈ {1, . . . , J} , ρ = 1.2, µmax = 107, {Fi[0]}Ji=1 = random initializations so that
Fi[0], i ∈ {1, . . . , J} , are orthonormal.

Output: {Fi[T ],Hi[T ]}Ji=1 ,G[T ],E[T ].
3 while not converged do
4 for i = 1 : J do
5 Update Hi:
6 for j = 1 :Mi do

7 hi,j [t+ 1] = 1
Ni,j

(
Fi,ji [t]

)T Xi,j −
J∑

k=1,k 6=i

Fk[t]H
i,j
k [t]−Gi,j [t]−Ei,j [t] +

Λi,j [t]

µ[t]

 · 1
8 end

9 Hi[t+ 1] =

[
hi,1[t+ 1] . . .hi,a[t+ 1]︸ ︷︷ ︸

Ni,a times

. . .hi,b[t+ 1] . . .hi,b[t+ 1]︸ ︷︷ ︸
Ni,b times

]
s.t. a, b ∈ {1, . . . ,Mi}

10 end
11 Update F:
12 for i = 1 : J do

13 Fi[t+ 1] = Q

X−
J∑

j=1,j 6=i

Fi[t]Hi[t+ 1]−G[t]−E[t] +
Λ[t]

µ[t]

HT
i [t+ 1]


14 end
15 Update G:

16 G[t+ 1] = D1/µ[t]

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−E[t] +
Λ[t]

µ[t]

]
17 Update E:

18 E[t+ 1] = S λ
µ[t]

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−G[t+ 1] +
Λ[t]

µ[t]

]

19 E[t+ 1] = W �E[t+ 1] + W �

[
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−G[t+ 1] +
Λ[t]

µ[t]

]
20 Update Λ:

21 Λ[t+ 1] = Λ[t] + µ[t]

(
X−

J∑
i=1

Fi[t+ 1]Hi[t+ 1]−G[t+ 1]−E[t+ 1]

)
22 Update µ:
23 µ[t+ 1] = min (ρµ[t], µmax)
24 end

parameter. The corresponding partially Augmented Lagrangian
for (4) may then be written as

L (θ) = λ ‖wy � ε̂‖1 −
1

2µ
‖Λ‖2F +

+
µ

2

∥∥∥∥∥X−
J∑
i=1

Fiĥi −Kŵ − ε̂+
Λ

µ

∥∥∥∥∥
2

F

, (20)

where θ =
{

ĥi, ŵ,Λ
}
, i ∈ {1, . . . , J}. Problem (20) is

minimized by employing the ADMM. The algorithm for
solving (20) is presented in Algorithm 2. The algorithm
terminates when the iterations reach a predefined max value
or a convergence criterion is met. The convergence crite-

rion is met when the normalized reconstruction error, i.e.,∥∥∥y −∑J
i=1 Fiĥi[t]−Kŵ[t]− ε̂[t]

∥∥∥
2
/ ‖y‖2 is less than a

predefined threshold ε. The ADMM iteration reads as follows.
Update the primal variables:
For obtaining ĥi, i ∈ {1, . . . , J}, we need to minimize

ĥi[t+ 1] = argmin
ĥi[t]

∥∥∥∥∥y −
J∑
k=1

Fkĥk[t]−

−Kŵ[t]− ε̂[t] +
λ[t]

µ[t]

∥∥∥∥∥
2

2

. (21)
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Problem (21) admits a closed-form solution, which is

ĥi[t+ 1] = FTi

(
y −

J∑
k=1,k 6=i

Fkĥk[t]−Kŵ[t]−

− ε̂[t] +
λ[t]

µ[t]

)
. (22)

For obtaining optimal ŵ, we need to minimize

ŵ[t+ 1] = argmin
ŵ[t]

∥∥∥∥∥y −
J∑
i=1

Fiĥi[t+ 1]−

− ε̂[t] +
λ[t]

µ[t]

∥∥∥∥∥
2

2

(23)

Problem (23) admits a closed-form solution of the form

ŵ[t+ 1] = KT

(
y −

J∑
i=1

Fiĥi[t+ 1]− ε̂[t] +
λ[t]

µ[t]

)
. (24)

For obtaining optimal ε̂, we need to minimize

ε̂[t] = argmin
ε̂[t]

[
λ ‖wy � ε̂[t]‖1 +

µ[t]

2

∥∥∥∥y−
−

J∑
i=1

Fiĥi[t+ 1]−Kŵ[t+ 1] +
λ[t]

µ[t]

∥∥∥∥2
2

]
. (25)

Utilizing the SVT operator, problem (25) admits the following
solution

ε̂[t+ 1] = wy � a + wy �

(
y −

J∑
i=1

Fiĥi[t+ 1]−

−Kŵ[t+ 1] +
λ[t]

µ[t]

)
, (26)

where

a = S λ
µ[t]

(
y −

J∑
i=1

Fiĥi[t+ 1]−Kŵ[t+ 1] +
λ[t]

µ[t]

)
.

(27)

Update the Lagrange multiplier and parameter µ:

λ[t+ 1] = λ[t] + µ[t]

(
y −

J∑
i=1

Fiĥi[t+ 1]−

−Kŵ[t+ 1]− ε̂[t+ 1]

)
, (28)

µ[t+ 1] = min (ρµ[t], µmax) . (29)

III. EXPERIMENTS

The experimental evaluation of MA-RCA against other
state-of-the-art algorithms is carried out via a series of exper-
iments such as: a) noise analysis on synthetic data, b) noise
analysis on real facial UV texture maps, c) completion of UV
maps with missing values on data captured in “in-the-wild”
conditions, d) age-progression on data captured in controlled

as well as “in-the-wild” conditions, e) facial expression synthe-
sis on data captured in controlled conditions and comparison
with the ground truth corresponding expressions, f) joint
expression and illumination transfer and joint illumination and
identity transfer on data captured in controlled as well as “in-
the-wild” conditions.

In order to extract the incomplete face UV maps that were
used in our algorithm we have fitted the various databases with
a 3DMM. The 3DMM fitting process that was used is the one
in [2], which is publicly available. The occlusion masks of
the fitted images were extracted by utilizing the corresponding
shape and camera parameters.

For the experimental evaluations, databases Multi-PIE [9]
and AgeDB [13] were utilized to train MA-RCA. Multi-
PIE is a database captured under controlled lab conditions
and thus the images do not contain gross-errors attributed to
e.g., occlusions. Nevertheless, Multi-PIE is a multi-attribute
database, since it contains labels for attributes such as identity,
expression and illumination. That renders it suitable to be
utilized in MA-RCA to extract bases with respect to e.g.,
illumination that can be then used to reconstruct “in-the-
wild” images with various illumination settings (Section III-F).
In particular, in the training phase of MA-RCA on Multi-
PIE, 90% of the total number of UVs pertaining to distinct
identities, expressions and illuminations were utilized. The rest
were used for testing.

AgeDB contains images captured under “in-the-wild” con-
ditions (i.e., occlusions, various poses, pixel corruptions are
present in the images). Moreover, it is annotated for multi-
ple attributes (i.e., identity, age) and thus it is suitable for
evaluating MA-RCA. AgeDB was split in six distinct age-
groups, namely 21-30, 31-40, 41-50, 51-60, 61-70 and 71-100.
Then, the UVs belonging to each age-group were further split
according to the attribute identity. In the training phase of MA-
RCA, 90% of the total number of UVs were kept to extract
the bases with respect to attributes identity and age-groups and
the rest were used for testing.

A. Synthetic noise analysis

In this section we detail the experiments we conducted
on synthetic data contaminated by artificial noise of different
forms and levels. We report quantitative results and compare
the performance of MA-RCA against RJIVE [19], RPCA-L1
[15] and OM-RPCA [16].

In more detail, with the following experiments we aim to
investigate the ability of the four component analysis methods
to handle data that have been contaminated by two common
types of noise. Sparse noise, which is composed of errors that
are sparsely supported but of large or unbounded magnitude, is
a form of noise that is often present in visual data. Such noise
can be the salt & pepper noise, occlusions and registration
errors. However, errors of small magnitude, like ambient noise
or quantization noise cannot be assumed as sparse errors.
For such types of noise it is reasonable to assume that they
follow a Gaussian distribution of small variance. Thus, the
two types of noise that we consider in our experiments are
the gross, sparse, non-Gaussian noise and the Gaussian noise.
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Algorithm 2: ADMM solver for problem (20)

1 Input: y, where y is the test datum, Fi, i ∈ {1, . . . , J} and G, where Fi and G are the bases extracted utilizing
Algorithm 1, K is the linear span of G given by applying the rank-r SVD on G and wy , where wy is the occlusion
mask corresponding the test datum.

2 Initializations: t = 0, ε = 1e− 8,maximum number of iterations tmax, µ[0] =
25
‖X‖ , ρ = 1.2, µmax = 107 and

λ = 1/
√
max(F,N).

Output: the reconstructed UV map without the error term, i.e., ŷ =

J∑
i=1

Fiĥi[T ] + Kŵ[T ]

3 while not converged do
4 for i = 1 : J do
5 Update ĥi:

6 ĥi[t+ 1] = FTi

y −
J∑

k=1,k 6=i

Fkĥk[t]−Kŵ[t]− ε̂[t] +
λ[t]

µ[t]


7 end
8 Update ŵ:

9 ŵ[t+ 1] = KT

(
y −

J∑
i=1

Fkĥk[t]− ε̂[t] +
λ[t]

µ[t]

)
10 Update ε̂:

11 ε̂[t+ 1] = S λ
µ[t]

[
y −

J∑
i=1

Fiĥi[t+ 1]−Kŵ[t+ 1] +
λ[t]

µ[t]

]

12 ε̂[t+ 1] = wy � ε̂[t+ 1] + wy �

[
y −

J∑
i=1

Fiĥi[t+ 1]−Kŵ[t+ 1] +
λ[t]

µ[t]

]
13 Update λ:

14 λ[t+ 1] = λ[t] + µ[t]

(
y −

J∑
i=1

Fiĥi[t+ 1]−Kŵ[t+ 1]− ε̂[t+ 1]

)
15 Update µ:
16 µ[t+ 1] = min (ρµ[t], µmax)
17 end

We conduct experiments for different levels of each form of
noise mentioned above.

We generate the data as follows. We create a random matrix
X ∈ Rm×n for various dimensions that admits the following
decomposition: X = F∗H∗ + G∗ + E∗, where F∗H∗ and
G∗ are random matrices with ranks r1 and r2, respectively.
E∗ corresponds to the noise term. As mentioned previously,
we used different noise forms (i.e., sparse non-Gaussian and
Gaussian) as well as different noise levels per form. More
specifically, we present the results when applying MA-RCA,
RJIVE [19], RPCA-L1 [15] and OM-RPCA [16] to extract the
error-free components for the following cases:
• Sparse, non-Gaussian noise, contaminating 10%, 25%

and 50% of the data matrix entries. The values for the
regularizer λ used for the experiments are provided by the
formula: λ = 1/

√
max(m,n), following the selection

process described in [5]. In particular, for the case of
(m,n) = (500, 500), we used λ ≈ 0.04 and for the case
of (m,n) = (1000, 1000), we used λ ≈ 0.03. We further
empirically show in the supplemental material that this
selection formula for λ is indeed the desired one. The
convergence threshold ε used for this experiment for MA-
RCA and RJIVE [19] is 1e − 8. In Table I we report

the reconstruction losses where, as evinced, MA-RCA
successfully reconstructs the error-free components. In
the contrary, RPCA-L1 [15] and OM-RPCA [16] perform
poorly compared to RJIVE [19] and MA-RCA, due to
the existence of the term F∗H∗, which is a matrix with
identical columns in many parts (e.g., if F∗H∗ referred
to the age-group component, the columns corresponding
to the age-group 21-30 would be the same for all of
the samples that belong in the specific age-group). The
specific structure of F∗H∗ does not comply with the
incoherence property of the low-rank component in the
RPCA [5] setting, since F∗H∗ is a matrix with sparse
singular values. As a result, since both RPCA-L1 [15]
and OM-RPCA [16] belong in the family of RPCA
algorithms, the poor performance under this setting is
expected. We empirically validated this fact by conduct-
ing synthetic experiments under the setting where the
incoherence property for the low-rank component holds.
Further details on these experiments can be found in the
supplemental material.

• Gaussian noise corresponding to zero-mean samples with
variances of 0.1, 0.25 and 0.5. The value for the regular-
izer λ used for the experiments is very large, i.e., λ =
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10, 000, since MA-RCA can handle data contaminated
by Gaussian noise by vanishing the sparse error term, as
explained in Section II-C. The convergence threshold ε
used for this experiment for MA-RCA and RJIVE [19]
is 1e− 8. In Table II we report the reconstruction losses
where, as evinced, all the four methods successfully
reconstruct the error-free components.

We should note that since MA-RCA constitutes the first
multi-attribute learning algorithm, we ran experiments under
the single attribute scenario (i.e., only a single term F∗H∗ is
utilized), so that comparisons against the other methods are
feasible.

B. Qualitative noise analysis

In this section we detail the experiments we conducted on
real data contaminated by artificial noise of different forms
and levels. We report qualitative results and compare the
performance of MA-RCA against RJIVE [19], RPCA-L1 [15]
and OM-RPCA [16].

To pursue this analysis we employ the UV texture data from
images of neutral expression from Multi-PIE [9]. Five images
of the same person, captured simultaneously in five different
viewing angles, −30◦,−15◦, 0◦, 15◦ and 30◦ were used to
obtain the UV textures. We first fitted a 3DMM on the five
images of each person and then generated a corresponding UV
map from each image. By using the occlusion free pixels of
each of the five UV maps we were able to obtain a full UV
texture map that contains no missing values as can also be seen
in Fig. 5. We trained all of the four algorithms on UV maps
that are completely free of sparse errors (i.e., we only chose
subjects that are not wearing eye-glasses and also created UV
maps without missing values). This is of important essence, as
we can then artificially add noise on the error-free UV maps
which in turn can be used as ground truth for evaluating the
performance of the four methods.

We then applied MA-RCA, RJIVE [19], RPCA-L1 [15] and
OM-RPCA [16] to extract the error-free components. Similarly
to the quantitative experiments, we present the results for the
following cases:
• Sparse, non-Gaussian noise with error terms correspond-

ing to samples with 10%, 25% and 50% non-zero entries.
The value for the regularizer λ used for the experiments is
provided by the formula: λ = 1/

√
max(m,n), following

the selection process described in [5] and the empirical
results presented in the supplemental material. In partic-
ular, for n = 765 UV images and m = 556266 the size
of a vectorized UV image, λ ≈ 0.0015. The convergence
threshold ε used for this experiment for MA-RCA and
RJIVE [19] is 1e− 5, which is sufficient for the analysis
of images. The recovered rank of the individual subspace
G when MA-RCA was applied was 185 for 10% noise,
197 for 25% noise and 216 for 50% noise. These rank
values are expected as G is by definition a low rank
matrix which is able to express the individual variations
of the data. Also, the low rank of matrix G is sensible
for the data in use as all data are facial images with
similar background. As can been seen in Fig. 6, MA-RCA

is able to produce better results in recovering the error
free images than RPCA-L1 [15] and OM-RPCA [16] in
almost all cases. In comparison to RJIVE [19], MA-RCA
retains the identity and illumination with greater success.

• Gaussian noise with error terms corresponding to zero-
mean samples with variances of 0.1, 0.25 and 0.5. The
value for the regularizer λ used for the experiments is
very large, i.e., λ = 10, 000, since MA-RCA can handle
data contaminated by Gaussian noise by vanishing the
sparse error term, as explained previously. The conver-
gence threshold ε used for this experiment for MA-RCA
and RJIVE [19] is 1e − 5, which is sufficient for the
analysis of images. The recovered rank of the individual
subspace G when MA-RCA was applied was 164 for
variance 0.1, 182 for variance 0.25 and 214 for variance
0.5. These rank values are expected as in the previous
experiment. As anticipated, all four methods are able to
recover the error-free images with high accuracy as is also
shown in Fig. 7. RPCA-L1 [15] seems to have produced
the lowest quality reconstructions.

Similarly to Section III-A, we should note that since MA-
RCA constitutes the first multi-attribute learning algorithm, we
ran experiments under the single attribute scenario (i.e., only
a single term F∗H∗ is utilized), so that comparisons against
the other methods are feasible.

C. Completion of UV maps with missing values

Completion of UV maps with missing values is a very
challenging task. Since MA-RCA is inherently able to handle
UV maps with missing values, it can be applied on this task.
In this experiment, AgeDB “in-the-wild” [13] was utilized.

For the testing phase, a random, incomplete, contaminated
with gross but sparse errors UV map which did not belong
to the training set was chosen and reconstructed following
the process described in Section II-D. As it is evident in Fig.
8 as well as Fig. 9, MA-RCA successfully fills the missing,
occluded parts in the original UV map as well as the missing
parts in the corresponding 3D facial textures.

D. Age-progression “’in-the-wild”

Age-progression “in-the-wild” entails the task of rendering
a facial image of a subject at various ages. It is arguably a
very challenging task in Computer Vision, since “in-the-wild”
images are captured in uncontrolled conditions (e.g., different
illuminations and poses, self-occlusions, etc.). AgeDB [13]
was utilized in this experiment, since it is a manually collected
“in-the-wild” age database with accurate age and identity
labels and hence the extracted age-groups and identity bases
will contain no errors due to incorrect annotations.

During the training phase, MA-RCA was trained under the
multi-attribute scenario, incorporating both the knowledge of
the age as well as the identity attributes.

In the testing phase, a random UV map which did not belong
to the training set was chosen and reconstructed for various
ages following the process described in Section II-D.

Comparisons against other broadly used age-progression
methods are provided in Fig. 11 and Fig. 12. More specifically,
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TABLE I
QUANTITATIVE RESULTS WHEN COMPARING RECONSTRUCTION LOSSES OF THE ERROR-FREE COMPONENTS AS RETRIEVED BY MA-RCA AGAINST

RPCA-L1 [15], OM-RPCA [16] AND RJIVE [19] ON SYNTHETIC DATA OF VARIOUS DIMENSIONS, CONTAMINATED BY SPARSE, NON-GAUSSIAN NOISE,
WHERE THE DATA DECOMPOSITION IS X = F∗H∗ +G∗ +E∗ . IN THE CASE OF RJIVE [19], FH CORRESPONDS TO THE INDIVIDUAL COMPONENT A

AND G TO THE JOINT COMPONENT J. IN THE CASE OF RPCA-L1 [15] AND OM-RPCA [16], THE PROJECTION MATRIX W IS RELATED TO THE LOW
RANK COMPONENT FH+G. ALL OF THE EXPERIMENTS WERE EXECUTED ON AN INTEL I9-7900X 3.30GHZ MACHINE. WE RAN EACH EXPERIMENT

10 TIMES AND REPORT THE AVERAGE EXECUTION TIME FOR EACH ONE.

(m,n, r1, r2) Method
‖F∗H∗ +G∗ − FH−G‖2F

‖F∗H∗ +G∗‖2F
Execution time (s)

Noise level 10% 25% 50% 10% 25% 50%

(500, 500, 5, 10)

RPCA-L1 [15] 0.182 0.313 2.159 0.99 1.09 0.84
OM-RPCA [16] 0.181 0.313 2.159 0.36 0.36 0.37

RJIVE [19] 3.36e− 09 3.62e− 09 6.17e− 04 25.75 26.33 24.38
MA-RCA 1.78e− 10 4.81e− 10 2.56e− 04 16.25 17.27 16.83

(1000, 1000, 10, 20)

RPCA-L1 [15] 0.183 0.315 2.167 5.04 4.17 4.64
OM-RPCA [16] 0.183 0.315 2.167 1.72 1.80 1.84

RJIVE [19] 1.07e− 09 2.27e− 09 8.25e− 04 71.18 71.98 65.11
MA-RCA 3.56e− 10 5.75e− 10 4.39e− 04 24.85 27.28 28.30

TABLE II
QUANTITATIVE RESULTS WHEN COMPARING RECONSTRUCTION LOSSES OF THE ERROR-FREE COMPONENTS AS RETRIEVED BY MA-RCA AGAINST

RPCA-L1 [15], OM-RPCA [16] AND RJIVE [19] ON SYNTHETIC DATA OF VARIOUS DIMENSIONS, CONTAMINATED BY GAUSSIAN NOISE, WHERE THE
DATA DECOMPOSITION IS X = F∗H∗ +G∗ +E∗ . IN THE CASE OF RJIVE [19], FH CORRESPONDS TO THE INDIVIDUAL COMPONENT A AND G TO

THE JOINT COMPONENT J. IN THE CASE OF RPCA-L1 [15] AND OM-RPCA [16], THE PROJECTION MATRIX W IS RELATED TO THE LOW RANK
COMPONENT FH+G. ALL OF THE EXPERIMENTS WERE EXECUTED ON AN INTEL I9-7900X 3.30GHZ MACHINE. WE RAN EACH EXPERIMENT 10

TIMES AND REPORT THE AVERAGE EXECUTION TIME FOR EACH ONE.

(m,n, r1, r2) Method
‖F∗H∗ +G∗ − FH−G‖2F

‖F∗H∗ +G∗‖2F
Execution time (s)

Variance level 0.10 0.25 0.50 0.10 0.25 0.50

(500, 500, 5, 10)

RPCA-L1 [15] 6.89e− 09 4.32e− 08 1.71e− 07 0.36 0.35 0.35
OM-RPCA [16] 6.89e− 09 4.32e− 08 1.71e− 07 0.38 0.38 0.36

RJIVE [19] 6.89e− 09 4.32e− 08 1.71e− 07 31.95 32.34 28.53
MA-RCA 6.89e− 09 4.32e− 08 1.71e− 07 18.34 18.00 17.65

(1000, 1000, 10, 20)

RPCA-L1 [15] 1.88e− 09 1.17e− 08 4.70e− 07 2.39 1.81 1.83
OM-RPCA [16] 1.88e− 09 1.17e− 08 4.70e− 07 1.84 1.82 1.84

RJIVE [19] 1.88e− 09 1.17e− 08 4.70e− 07 142.78 142.03 140.39
MA-RCA 1.88e− 09 1.17e− 08 4.70e− 07 91.83 86.98 85.04

−30◦ −15◦ 0◦ 15◦ 30◦ full UV
Fig. 5. UV texture maps extracted by five images of the same person, captured simultaneously from different viewing angles and contained in the multipie
database. By combining the five UV maps we are able to generate a full UV texture map.

we compare MA-RCA against Illumination Aware Age Pro-
gression (IAAP) [11], Aging with Deep Restricted Boltzmann
Machines (ADRBM) [14], Exemplar-based Age Progression
(EAP) [22] and RJIVE [19] . Finally, MA-RCA is compared
against the state-of-the-art RJIVE [19] in Fig. 10.

E. Facial expression synthesis

In this section, the task of facial expression synthesis under
the MA-RCA framework is considered. Facial expression syn-
thesis corresponds to the process of creating artificial images
of different expressions from a given facial image.

For this experiment, Multi-PIE [9] was utilized by MA-
RCA in order to learn the basis that corresponds to the
expression subspace. In particular, the expression subspace of

the instantiations Neutral, Disgust, Scream, Smile, Squint and
Surprise was extracted.

In the synthesis step, an unseen UV map of expression
Neutral was chosen and reconstructed for all the learned
expressions following the process described in Section II-D.
Then, the reconstructed UV maps were projected back on
target images of the same identity, illumination and the target
expression, included in Multi-Pie [9]. This projection allows a
direct qualitative comparison between the ground truth target
images and the generated ones. In Fig. 13, examples of synthe-
sized images as well as the target ones are presented. From this
figure, it becomes evident that MA-RCA successfully recovers
the expression subspace and is capable of generating new
instances of different expressions from a given image.
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Noise free
image

Noise
level

Input RPCA-L1 OMRPCA RJIVE MARCA

10%

25%

50%

Fig. 6. Reconstructed UV texture maps produced by employing RPCA-L1, OM-RPCA, RJIVE and MA-RCA on data that have been contaminated by different
levels of sparse, non-Gaussian noise.

Noise free
image

Noise
level

Input RPCA-L1 OMRPCA RJIVE MARCA

10%

25%

50%

Fig. 7. Reconstructed UV texture maps produced by employing RPCA-L1, OM-RPCA, RJIVE and MA-RCA on data that have been contaminated by different
levels of Gaussian noise.

Original image UV with missing values Reconstructed completed UV

Fig. 8. Examples of UV map completion utilizing MA-RCA. A 3DMM [2]
is fitted in the original image and the UV map with missing values and sparse
errors is extracted. Finally, the complete UV map is reconstructed utilizing
MA-RCA.

F. Multi-attribute transfer “in-the-wild”

In this section, we present a series of experiments under the
multi-attribute scenario, i.e., when a test image is reconstructed

with more than one attribute transferred at the same time.
MA-RCA is the first, to the best of our knowledge, method
that can successfully carry out such a task. For this series of
experiments, both Multi-PIE [9] and AgeDB [13] are utilized.

In particular, the illumination and expression bases were
extracted from Multi-PIE while the identity and individual
bases were extracted from AgeDB. During the reconstruction
of a test image (Section II-D) the bases from Multi-PIE as well
as AgeDB are utilized. In Fig. 14, we present how MA-RCA
can be utilized to transfer the identity of a particular subject
into another one and also transfer the illumination setting at the
same time. Additionally, in Fig. 15 we present how expression
and illumination can be jointly transferred by employing MA-
RCA. For this experiment, we first choose an unseen image
of Multi-PIE which depicts a Neutral expression and includes
no illumination. Then, we are able to synthesize images by
combining any instantiation of the learned illumination and
expression bases.
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Fig. 9. Examples of 3D texture completion utilizing MA-RCA. Multiple views
are visualized to demonstrate the texture completion under various angles.

IV. CONCLUSIONS

With the use of 3D face fitting methods we can generate
incomplete facial UV maps of the facial textures. The use of
incomplete facial UV maps contaminated with gross errors
introduces many challenges and opportunities. In particular,
since facial UV map lies in a pose free space, linear com-
ponent analysis techniques can be applied to learn statistical
components for various tasks. In this paper, we propose a novel
statistical robust component analysis technique that can tackle
the above challenges and at the same time exploit multiple
labels of the data at-hand during training. We demonstrate the
usefulness of the proposed robust component analysis tech-
nique in various tasks including UV map denoisoing, UV map
completion on “in-the-wild” data, illumination, expression and
identity transfer, as well as aging.
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