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Abstract—Networks have been a general tool for representing, analyzing, and modeling relational data arising in several domains.
One of the most important aspect of network analysis is community detection or network clustering. Until recently, the major focus have
been on discovering community structure in single (i.e., monoplex) networks. However, with the advent of relational data with multiple
modalities, multiplex networks, i.e., networks composed of multiple layers representing different aspects of relations, have emerged.
Consequently, community detection in multiplex network, i.e., detecting clusters of nodes shared by all layers, has become a new
challenge. In this paper, we propose Network Fusion for Composite Community Extraction (NF-CCE), a new class of algorithms, based
on four different non–negative matrix factorization models, capable of extracting composite communities in multiplex networks. Each
algorithm works in two steps: first, it finds a non–negative, low–dimensional feature representation of each network layer; then, it fuses
the feature representation of layers into a common non–negative, low–dimensional feature representation via collective factorization.
The composite clusters are extracted from the common feature representation. We demonstrate the superior performance of our
algorithms over the state–of–the–art methods on various types of multiplex networks, including biological, social, economic, citation,
phone communication, and brain multiplex networks.

Index Terms—Multiplex networks, non-negative matrix factorization, community detection, network integration
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1 INTRODUCTION

N ETWORKS (or graphs1) along with their theoretical
foundations are powerful mathematical tools for rep-

resenting, modeling, and analyzing complex systems arising
in several scientific disciplines including sociology, biol-
ogy, physics, and engineering among others [1]. Concretely,
social networks, economic networks, biological networks,
telecommunications networks, etc. are just a few examples
of graphs in which a large set of entities (or agents) corre-
spond to nodes (or vertices) and relationships or interactions
between entities correspond to edges (or links). Structural
analysis of these networks have yielded important findings
in the corresponding fields [2], [3].

Community detection (also known as graph clustering or
module detection) is one of the foremost problems in network
analysis. It aims to find groups of nodes (i.e., clusters,
modules or communities) that are more densely connected to
each other than they are to the rest of the network [4]. Even
thought the volume of research on community detection
is large, e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], the
majority of these methods focus on networks with only one
type of relations between nodes (i.e., networks of single type
interaction).

However, many real-world systems are naturally repre-
sented with multiple types of relationships, or with relation-
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• V. Gligorijević was with the Department of Computing, Imperial College
London, UK. He is now a Research Fellow at Flatiron Institute, Simons
Foundation, USA. Corresponding author: V. Gligorijević, email: vgligori-
jevic@flatironinstitute.org

1. we use terms graphs and network interchangeably throughout this
paper

ships that chance in time. Such systems include subsystems
or layers of connectivity representing different modes of
complexity. For instance, in social systems, users in social
networks engage in different types of interactions (e.g.,
personal, professional, social, etc.). In biology, different ex-
periments or measurements can provide different types of
interactions between genes. Reducing these networks to
a single type interactions by disregarding their multiple
modalities is often a very crude approximation that fails to
capture a rich and holistic complexity of the system. In order
to encompass a multimodal nature of these relations, a mul-
tiplex network representation has been proposed [14], [15],
[16]. Multiplex networks (also known as multidimensional,
multiview or multilayer networks) have recently attracted a
lot of attention in network science community. We re They
can be represented as a set of graph layers that share a
common set of nodes, but different set of edges in each layer
(cf. Fig. 1). With the emergence of this network representa-
tion, finding composite communities across different layers
of multiplex network has become a new challenge [17]. We
refer a reader to Kivelä et al. [18] for a recent review on
multiplex networks.

Here, distinct from the previous approaches (reviewed
in Section 2), we focus on multiplex community detection.
Concretely, a novel and general model, namely the Network
Fusion for Composite Community Extraction (NF-CCE)
along with its algorithmic framework is developed in Sec-
tion 3. The heart of the NF-CCE is the Collective Non-
negative Matrix Factorization (CNMF), which is employed
in order to collectively factorize adjacency matrices repre-
senting different layers in the network. The collective factor-
ization facilitate us to obtain a consensus low-dimensional
latent representation, shared across the decomposition, and
hence to reveal the communities shared between the net-
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work layers. The contributions of the paper are as follows:

1) Inspired by recent advances in non-negative matrix
factorization (NMF) techniques for graph clustering
[19], [20] and by using tools for subspace analysis
on Grassmann manifold [21], [22], [23], we propose
a general framework for extracting composite com-
munities from multiplex networks. In particular,
the framework NF-CCE, utilizes four different NMF
techniques, each of which is generalized for collec-
tive factorization of adjacency matrices representing
network layers, and for computing a consensus
low-dimensional latent feature matrix shared across
the decomposition that is used for extracting latent
communities common to all network layers. To this
end, a general model involving factorization of net-
works’ adjacency matrices and fusion of their low-
dimensional subspace representation on Grassmann
manifold is proposed in Section 3.

2) Unlike a few matrix factorization-based methods for
multiplex community extraction that have been pro-
posed so far, e.g., [23], [24], [25], [26], that directly
decompose matrices representing network layers
into a low-dimensional representation common to
all network layers, NF-CCE is conceptually differ-
ent. Namely, it works in two steps: first, it denoises
each network layer by computing its non-negative
low-dimensional representation. Then it merges the
low-dimensional representations into a consensus
low-dimensional representation common to all net-
work layers. This makes our method more robust
to noise, and consequently, it yields much stable
clustering results.

3) Four efficient algorithms based on four different
NMF techniques are developed for NF-CCE using
the concept of natural gradient [22], [23] and pre-
sented in the form of multiplicative update rules [27]
in Section 3.

The advantages of the NF-CCE over the state-of-the-art
in community detection are demonstrated by conducting ex-
tensive experiments on a wide range of real-world multiplex
networks, including biological, social, economic, citation,
phone communication, and brain multiplex networks. In
particular, we compared the clustering performance of our
four methods with 6 state-of-the-art methods and 5 baseline
methods (i.e., single-layer methods modified for multiplex
networks), on 9 different real-world multiplex networks
including 3 large-scale multiplex biological networks of 3
different species. Experimental results, in Section 5, indicate
that the proposed methods yield much stable clustering
results than the state-of-the-art and baseline methods, by
robustly handling incomplete and noisy network layers. The
experiments conducted on multiplex biological networks of
3 different species indicate NF-CCE as a superior method
for finding composite communities (in biological networks
also known as functional modules). Moreover, the results also
indicate that NF-CCE can extract unique and more function-
ally consistent modules by considering all network layers
together than by considering each network layer separately.

Notations: throughout the paper, matrices are de-
noted by uppercase boldface letters, e.g., X. Subscript in-
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Fig. 1. An example of a multiplex network with 11 nodes present in
three complementary layers denoted in different colors. Two different
communities across all three layers can be identified.

dices denote matrix elements, e.g., Xij , whereas superscript
indices in brackets denote network layer, e.g., X(i). The set
of real numbers is denoted by R. | · | denotes the cardinality
of a set, e.g., |S|. A binary matrix of size n×m is represented
by {0, 1}n×m.

2 BACKGROUND AND RELATED WORK

2.1 Single-layer (monoplex) networks

In graph theory, a monoplex network (graph) can be repre-
sented as an ordered pair, G = (V,E), where V is a set of
n = |V | vertices or nodes, and E is a set of m = |E| edges
or links between the vertices [28]. An adjacency matrix
representing a graph G is denoted by A ∈ {0, 1}n×n, where
Aij = 1 if there is an edge between vertices i and j, and
Aij = 0 otherwise. Most of the real-world networks that
we consider throughout the paper are represented as edge-
weighted graphs, G = (V,E,w), where w : E → R assigns
real values to edges. In this case, the adjacency matrix
instead of being a binary matrix, is a real one i.e., A ∈ Rn×n,
with entries characterizing the strength of association or
interaction between the network nodes.

Although, there is no universally accepted mathematical
definition of the community notion in graphs, the proba-
bly most commonly accepted definition is the following:
a community is a set of nodes in a network that are
connected more densely among each other than they are
to the rest of the network [4], [29]. Hence, the problem
of community detection is as follows: given an adjacency
matrix A of one network with n nodes and k communities,
find the community assignment of all nodes, denoted by
H ∈ {0, 1}n×k, where Hij = 1 if nodes i belongs to
community j, and Hij = 0 otherwise. We consider the case
of non-overlapping communities, where a node can belong to
only one community, i.e.,

∑k
j=1 Hij = 1.

To address the community detection problem in mono-
plex networks, several methods have been proposed. Com-
prehensive surveys of these methods are [4] and [13]. To
make the paper self-contained, here, we briefly review some
of the most representative approaches, including graph par-
titioning, spectral clustering, hierarchical clustering, modularity
maximization, statistical inference and structure-based methods,
as well as method that rely on non-negative matrix factoriza-
tions:
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• Graph partitioning aims to group nodes into partitions
such that the cut size, i.e., the total number of edges
between any two partitions, is minimal. Two widely
used graph partitioning algorithms that also take
into account the size of partitions are Ratio Cut and
Normalized Cut [30]. Graph partitioning algorithms
can be alternatively defined as spectral algorithms
in which the objective is to partition the nodes into
communities based on their eigenvectors obtained
from eigendecomposition of graph Laplacian matrix [31].

• In hierarchical clustering the goal is to reveal network
communities and their hierarchical structure based
on a similarity (usually topological) measure com-
puted between pairs of nodes [32].

• Modularity-based algorithms are among the most pop-
ular ones. Modularity was designed to measure the
strength of partition of a network into communities.
It is defined as a fraction of the edges that fall
within the community minus the expected fraction
when these edges are randomly distributed [5], [29].
Various algorithms have been proposed for mod-
ularity optimization, including greedy techniques,
simulated annealing, spectral optimization, etc. [4].

• Statistical inference methods aims at fitting the gen-
erative model to the network data based on some
hypothesis. Most commonly used statistical inference
method for community detection is the stochastic
block model, that aims to approximate a given adja-
cency matrix by a block structure [33]. Each block in
the model represents a community.

• Structure-based methods aim to find subgraphs repre-
senting meta definitions of communities. Their objec-
tive is to find maximal cliques, i.e., the cliques which
are not the subgraph of any other clique. The union
of these cliques form a subgraph, whose components
are interpreted as communities [34].

• More recently, graph clustering methods that rely
on the Non-Negative Matrix Factorization (NMF) [27]
have been proposed e.g., [19], [20]. Their goal is
to approximate a symmetric adjacency matrix of a
given network by a product of two non-negative,
low-rank matrices, such that they have clustering
interpretation, i.e., they can be used for assigning
nodes to communities. The proposed methods here,
follow this line of research, but as opposed to the ex-
isting methods [19], [20], the NF-CCE can effectively
handle multiplex networks.

2.2 Multiplex networks

A multiplex network is a set of N monoplex networks (or
layers), Gi(V,Ei), for i = 1, . . . , N . The number of nodes
in each layer is the same, n = |V |, while the connectivity
pattern and the distribution of links in each layer differs,
mi = |Ei| (see Fig. 1). Similarly to monoplex networks, we
consider the case where each layer represents a weighted,
undirected graph, i.e., Gi(V,Ei, wi). A multiplex network
can be represented as a set of adjacency matrices encoding
connectivity patterns of individual layers, A(i) ∈ Rn×n, for
i = 1, . . . , N . The goal of community detection in multiplex
networks is to infer shared, latent community assignment

that best fits all given layers. Given that each layer contains
incomplete and complementary information, this process
of finding shared communities by integrating information
from all layers is also known in the literature as network
integration (fusion) [25], [35].

Unlike the case of monoplex networks, research on com-
munity detection in multiplex networks is scarce. Existing
methods extract communities from multiplex networks first
by aggregating the links of all layers into a single layer,
and then applying a monoplex method to that single layer
[25], [36], [37]. However, this approach does not account
for shared information between layers and treats the noise
present in each layer uniformly. Clearly, this is not the
case in real-world multiplex networks where each level
is contaminated by different noise in terms of magnitude
and, possibly, distribution. Thus, by aggregating links from
different layers the noise in the aggregated layer signifi-
cantly increases, resulting in a poor community detection
performance.

Current state-of-the-art methods are built on monoplex
approaches and further generalized to multiplex networks.
They can be divided into the following categories:

• Modularity-based approaches that generalize the no-
tion of modularity from single-layer to multi-layer
networks. Namely, to alleviate the above mentioned
limitations, the Principal Modularity Maximization
(PMM) [25] has been proposed. First, for each layer,
PMM extracts structural features by optimizing its
modularity, and thus significantly denoising each
layer; then, it applies PCA on concatenated matrix
of structural feature matrices, to find the principal
vectors, followed by K-means to perform clustering
assignment. The main drawback of this approach is
that it treats structural feature matrices of all layers
on equal basis (i.e., it is not capable of distinguishing
between more and less informative network layers,
or complementary layers). Even though the noise is
properly handled by this method, the complementarity
aspect cannot be captured well by the integration
step. On the other hand, Mucha et al. [16] pro-
posed a modularity-based method for multiplex and
also time-dependent networks that can handle layer
complementarity. Namely, in addition to inter-layer
connections, their generalized modularity function
takes into account the coupling between nodes of
different layers. To optimize the modularity function,
the authors proposed Generalized Louvain (or GenLou-
vain, GL) algorithm that has been shown to be most
efficient algorithm for their generalized modularity
function [38]. Despite the efficiency, the method is
not designed to find consensus clustering assignment
across different layers; instead, it only provides node
clustering assignment for each individual layer.

• Spectral clustering approaches that generalize the
eigendecomposition from single to multiple Lapla-
cian matrices representing network layers. One of the
state-of-the-art spectral clustering methods for multi-
plex graphs is the Spectral Clustering on Multi-Layer
(SC-ML) [21]. First, for each network layer, SC-ML
computes a subspace spanned by the principal eigen-
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vectors of its Laplacian matrix. Then, by interpreting
each subspace as a point on Grassmann manifold,
SC-ML merges subspaces into a consensus subspace
from which the composite clusters are extracted. The
biggest drawback of this methods is the underlying
spectral clustering, that always finds tight and small-
scale and, in some cases, almost trivial communities.
For example, SC-ML cannot adequately handle net-
work layers with missing or weak connections, or
layers that have disconnected parts.

• Information diffusion-based approaches that utilize the
concept of diffusion on networks to integrate net-
work layers. One of such methods is Similarity Net-
work Fusion (SNF) proposed by Wang et al. [39]. SNF
captures both shared and complementary informa-
tion in network layers. It computes a fused matrix
from the similarity matrices derived from all layers
through parallel interchanging diffusion process on
network layers. Then, by applying a spectral cluster-
ing method on the fused matrix they extract com-
munities. Another widely used method that uses the
concept of dynamics on network (i.e., diffusion) is
Multiplex Infomap [40]. Namely, Multiplex Infomap
optimizes the map equation, which exploits the
information-theoretic duality between network di-
mensionality reduction, and the problem of network
community detection. However, for noisy networks,
the diffusion process, i.e., information propagation, is
not very efficient and it may results in poor clustering
performance [41].

• Matrix and tensor factorization-based approaches that
utilize collective factorization of adjacency matri-
ces representing network layers. A few matrix and
tensor decomposition-based approaches have been
proposed so far [24], [26], [42], [43], [44]. Tang et
al. [42] introduced the Linked Matrix Factorization
(LMF) which fuses information from multiple net-
work layers by factorizing each adjacency matrix into
a layer-specific factor and a factor that is common
to all network layers. Dong et al. [26], introduced
the Spectral Clustering with Generalized Eigende-
composition (SC-GED) which factorizes Laplacian
matrices instead of adjacency matrices. Papalexakis
et al. [43] proposed GraphFuse, a method for cluster-
ing multi-layer networks based on sparse PARAllel
FACtor (PARAFAC) decomposition [45] with non-
negativity constraints. A similar approach has been
adopted by Gauvin et al. [44] who used PARAFAC
decomposition for time-varying networks. Cheng
et al. introduced Co-regularized Graph Clustering
based on NMF (CGC-NMF). They factorize each ad-
jacency matrix using symmetric NMF while keeping
the Euclidean distance between their non-negative
low-dimensional representations small. As already
pointed out in Section 1, one of the major limitations
of all of these factorization methods is that they treat
each network layer on an equal basis and, unlike
PMM or SC-ML, for example, they cannot filter out
irrelevant information or noise.

To alleviate the drawbacks of the aforementioned meth-

ods, the NF-CCE framework is detailed in the following
section. It consists of 4 models, where each layer is first de-
noised by computing its non-negative low-dimensional sub-
space representation. Then, the low-dimensional subspaces
are merged into a consensus subspace whose non-negative
property enables clustering interpretation. The models are
conceptually similar to the SC-ML method, since they use
the same merging technique to find the common subspace
of all layers.

3 PROPOSED FRAMEWORK

Here, we present four novel metods that are built upon
4 non-negative matrix factorization models, SNMF [19],
PNMF [46], SNMTF [47] and Semi-NMTF [48], and extended
for fusion and clustering of multiplex networks. Since the
derivation of each method is similar, we present them in a
unified framework, namely NF-CCE. NF-CCE extracts com-
posite communities from a multiplex network consisting of
N layers. In particular, given N -layered multiplex network
represented by adjacency matrices, {A(1), . . . ,A(N)}, NF-
CCE consists of two steps:

Step 1: For each network layer, i, we obtain its
non-negative, low-dimensional representation, H(i), under
column orthonormality constraints i.e., H(i)TH(i) = I, by
using any of the non-negative factorization methods men-
tioned above.

Step 2: We fuse the low-dimensional representations
into a common, consensus representation, H, by proposing a
collective matrix factorization model. That is, we collectively
decompose all adjacency matrices, A(i) into a common ma-
trix, H, whilst enforcing the non-negative low-dimensional
representation of network layers, H(i) (computed in the
previous step), to be close enough to the consensus low-
dimensional representation, H. The general objective func-
tion capturing these two properties is written as follows:

min
H≥0
J =

N∑
i=1

J (i)(H;A(i)) + α

N∑
i=1

J (i)
c (H;H(i)) (1)

where, J (i) is an objective function for clustering ith layer
and J (i)

c is the loss function quantifying the inconsistency
between each low-dimensional representation H(i), com-
puted in Step 1, and the consensus representation H.

Below we provide the details of the second step for each
individual factorization technique.

3.1 Collective SNMF (CSNMF)
We factorize each individual adjacency matrix using Sym-
metric NMF in the following way:

A(i) ≈ HHT

under the following constraints: H ≥ 0 and HTH = I;
where, i = 1, . . . , N .

The first part of our general objective function in Step 2
(Eq. 1) has the following form:

J (i)(H;A(i)) =‖ A(i) −HHT ‖2F (2)

where H is the consensus, non-negative low-dimensional
matrix, and F denotes Frobenius norm.
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3.2 Collective PNMF (CPNMF)
We factorize each individual adjacency matrix using Projec-
tive NMF in the following way:

A(i) ≈ HHTA(i)

under the following constraints: H ≥ 0 and HTH = I;
where, i = 1, . . . , N .

The first part of our general objective function in Step 2
(Eq. 1) has the following form:

J (i)(H;A(i)) =‖ A(i) −HHTA(i) ‖2F (3)

where H is the consensus, non-negative low-dimensional
matrix.

3.3 Collective SNMTF (CSNMTF)
We tri-factorize each individual adjacency matrix using
Symmetric NMTF in the following way:

A(i) ≈ HS(i)HT

under the following constraints: H ≥ 0 and HTH = I;
where i = 1, . . . , N .

The first part of our general objective function in Step 2
(Eq. 1) has the following form:

J (i)(H;A(i),S(i)) =‖ A(i) −HS(i)HT ‖2F (4)

where H is the consensus low-dimensional matrix.
In the derivation of our algorithm, we distinguish be-

tween two cases. In the first case, we consider S matrix to be
non-negative, i.e., S(i) ≥ 0. We call that case CSNMTF. In the
second case, we consider S(i) matrix to have both positive
and negative entries. We call this case collective symmetric
semi-NMTF, or CSsemi-NMTF (or CSsNMTF).

3.4 Merging low-dimensional representation of graph
layers on Grassmann Manifolds
For the second term in our general objective function (Eq.
1) in Step 2, we utilize the orthonormal property of non-
negative, low-dimensional matrices, H(i), and propose a
distance measure based on this property. Namely, Dong et
al. [21] proposed to use the tools from subspace analysis
on Grassmann manifold. A Grassmann manifold G(k, n) is
a set of k-dimensional linear subspaces in Rn [21]. Given
that, each orthonormal cluster indicator matrix, Hi ∈ Rn×k,
spanning the corresponding k-dimensional non-negative
subspace, span(Hi) in Rn, is mapped to a unique point
on the Grassmann manifold G(k, n). The geodesic distance
between two subspaces, can be computed by projection
distance. For example, the square distance between two
subspaces, Hi and Hj , can be computed as follows:

d2proj(Hi,Hj) =

k∑
i=1

sin2θi = k −
k∑

i=1

cos2θi

= k − tr(HiH
T
i HjH

T
j )

where, {θi}ki=1 are principal angles between k-dimensional
subspaces, span(Hi) and span(Hj).

To find a consensus subspace, H, we factorize all the ad-
jacency matrices, A(i), and minimize the distance between
their subspaces and the consensus subspace on Grassmann
manifold. Following this approach, we can write the second
part of our general objective function in the following way:

J (i)
c (H,H(i)) = k − tr(HHTH(i)H(i)T ) (5)

=‖ HHT −H(i)H(i)T ‖2F

3.5 Derivation of the general multiplicative update rule

In Step 1, we use well-known non-negative factorization
techniques, namely SNMF, PNMF, SNMTF and Ssemi-
NMTF, for which the update rules for computing low-
dimensional non-negative matrices, H(i), have been pro-
vided in the corresponding papers [19], [46], [47], [48],
respectively. They are summarized in Table 1. As for the
Step 2, we derive the update rules for each of the collective
factorization techniques presented in Sections 3.1, 3.2 and
3.3. The details of the derivation are given in Section 2 of the
online supplementary material. Here we provide a general
update rule for Equation 1.

We minimize the general objective function shown in
Equation 1, under the following constraints: H ≥ 0 and
HTH = I. Namely, we adopt the idea from Ding et al.
[47] to impose orthonormality constraint on H matrix, i.e.,
HTH = I; that has been shown to lead to a more rigorous
clustering interpretation [47]. Moreover, assignments of net-
work nodes to composite communities can readily be done
by examining the entries in rows of H matrix. Namely, we
can interpret matrix Hn×k as the cluster indicator matrix,
where the entries in i-th row (after row normalization)
can be interpreted as a posterior probability that a node i
belongs to each of the k composite communities. In all our
experiments, we apply hard clustering procedure, where a
node is assign to the cluster that has the largest probability
value.

We derive the update rule, for matrix H, for minimizing
the objective function (Eq. 1) following the procedure from
the constrained optimization theory [49]. Specifically, we
follow the strategy employed in the derivation of NMF [27]
to obtain a multiplicative update rule for H matrix that can
be used for finding a local minimum of the optimization
problem (Eq. 1).

The derivative of the objective function (Eq. 1) with
respect to H is as follows:

∇HJ =

N∑
i=1

∇HJ (i)(H;A(i))− α
N∑
i=1

H(i)H(i)TH (6)

where the first term under summation can be decomposed
into two non-negative terms, namely:

∇HJ (i)(H;A(i)) = [∇HJ (i)(H;A(i))]+−[∇HJ (i)(H;A(i))]−

where, [∇HJ (i)(H;A(i))]+ ≥ 0, [∇HJ (i)(H;A(i))]− ≥ 0
are non-negative terms. Depending on the type of collective
factorization technique represented in Section 3.1, 3.2 or 3.3,
the first term represents the derivative of the corresponding
objective function, i.e., Equation 2, 3 or 4, respectively. The
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second term represents a derivative of Equation 5 with
respect to H .

To incorporate the orthonormality constraint into the
update rule, we introduce the concept of natural gradient
by following the work of Panagakis et al. [23]. Namely,
we shown in Section 3.4 that columns of H matrix span
a vector subspace known as Grassmann manifold G(k, n),
i.e., span(H) ∈ G(k, n) [23]. Using that, Amari in [22]
has showed that when an optimization problem is defined
over a Grassmann manifold, the ordinary gradient of the
optimization function (Equation 6) does not represent its
steepest direction, but natural gradient does [22].

Therefore, we define a natural gradient to optimize our
objective function (1) under the orthornormality constraint.
Following Panagakis et al. [23], the natural gradient of J
on Grassmann manifold at H can be written in terms of the
ordinary gradient as follows:

∇̃HJ = ∇HJ −HHT∇HJ (7)

where, ∇HJ is the ordinary gradient given in Equation 6.
Following the Karush-Kuhn-Tucker (KKT) complemen-

tarity condition [49] and preserving the non-negativity of
H, the general update rule for H matrix using the natural
gradient is as follows:

Hjk ← Hjk

[∇̃HJ ]−jk

[∇̃HJ ]+jk
(8)

[∇̃HJ ]− = HHT
N∑
i=1

[∇HJ (i)(H;A(i))]+

+

N∑
i=1

[∇HJ (i)(H;A(i))]− + α

N∑
i=1

H(i)H(i)TH

[∇̃HJ ]+ = HHT
N∑
i=1

[∇HJ (i)(H;A(i))]−

+

N∑
i=1

[∇HJ (i)(H;A(i))]+ + αHHT
N∑
i=1

H(i)H(i)TH

The concrete update rule for each collective factorization
method is summarized in Table 1 and united within NF-CCE
algorithm (see Algorithm 1).

4 EXPERIMENTS

We test our methods on synthetic, as well as on real-world
data. We designed synthetic multiplex networks with clear
ground truth information and different properties in terms
of noise and complementary information of network layers.
The goal is to address the robustness of our methods against
noise and their ability to handle complementary information
contained in layers. The real-world multiplex networks are
taken from diverse experimental studies to demonstrate the
applicability of our methods in a broad spectrum of disci-
plines. Namely, we consider social and biological networks,
networks of mobile phone communications, brain networks
and networks constructed from bibliographic data. The bi-
ological networks are treated as a special case because of

Algorithm 1 NF-CCE
Input: Adjacency matrices A(i) for each network layer i =
1, . . . , N ; number of clusters k; parameter α; factorization
technique: FACTORIZATION ∈ {SNMF, PNMF, SNMTF}
Output: Consensus cluster indicator matrix H

switch (FACTORIZATION)
case ’SNMF’:

for i ∈ [1, N ] do
H(i) ← FACTORIZATION(A(i), k)

end for

Aavg ←
N∑
i=1

A(i) + α
2
H(i)H(i)T

H← FACTORIZATION(Aavg , k)
case ’PNMF’:

for i ∈ [1, N ] do
H(i) ← FACTORIZATION(A(i), k)

end for

Aavg ←
N∑
i=1

A(i)A(i)T + αH(i)H(i)T

H← FACTORIZATION(Aavg , k)
case ’SNMTF’:

for i ∈ [1, N ] do
(H(i),S(i))← FACTORIZATION(A(i), k)

end for
H← CSNMTF({A(i)}Ni=1, {H(i)}Ni=1, {S(i)}Ni=1, k)

end switch

their lack of ground truth clusters. We provide detailed anal-
ysis of such networks based on the functional annotations
of their nodes (genes). We present results of comparative
analysis of our proposed methods against state-of-the-art
methods described in Section 2.2. Specifically, we compare
our methods against PMM, SC-ML, SNF, LMF, GraphFuse
and CGC-NMF. Moreover, we adopt the following single-
layer methods, SNMF, SNMTF, PNMF and MM (modularity
maximization) to be our baseline methods.

4.1 Synthetic multiplex networks
We generate two sets of synthetic multiplex networks. First
type, that we denote SYNTH-C, is designed to demonstrate
complementary information in layers; whereas the second
type, that we denote SYNTH-N, is designed to demonstrate
different levels of noise between communities contained
in layers. Our synthetic networks are generated by using
planted partition model [50]. The procedure is as follows:
we choose the total number of nodes n partitioned into
N communities of equal or different sizes. For each layer,
we split the corresponding adjacency matrix into blocks
defined by the partition. Entries in each diagonal block, are
filled with ones randomly, with probability pii, representing
the within-community probability or also referred as com-
munity edge density. We also add random noise between
each pair of blocks, ij, with probability pij , representing
between-community probability. The larger the values of pij
are the harder the clustering is. Similarly, the smaller the
values of pii are the harder the clustering is. We vary these
probabilities across the layers to simulate complementary
information and noise in the following way:

SYNTH-C. We generate two-layer multiplex networks
with n = 200 nodes and N = 2 communities with equal
number of nodes each. We generate 11 different multiplex
networks with different amounts of information between
two layers. Namely, we vary the within-community prob-
ability p11 = {0.05, 0.075, . . . , 0.3} of the first community
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TABLE 1
Multiplicative update rules (MUR) for single-layer and multiplex network analysis.

Method Single-layer MUR Multiplex MUR

SNMF H
(i)
jk ← H

(i)
jk

[
A(i)H(i)

]
jk[

H(i)H(i)TA(i)H(i)
]
jk

Hjk ← Hjk

[
AavgH

]
jk[

HHTAavgH
]
jk

Aavg =
N∑
i=1

A(i) + α
2
H(i)H(i)T

PNMF H
(i)
jk ← H

(i)
jk

[
A(i)A(i)TH(i)

]
jk[

H(i)H(i)TA(i)A(i)TH(i)
]
jk

Hjk ← Hjk

[
AavgH

]
jk[

HHTAavgH
]
jk

Aavg =
N∑
i=1

A(i)A(i)T + αH(i)H(i)T

SNMTF
H

(i)
jk ← H

(i)
jk

[
A(i)H(i)S(i)

]
jk[

H(i)H(i)TA(i)H(i)S(i)
]
jk Hjk ← Hjk

[ N∑
i=1

A(i)HS(i)+α
2

N∑
i=1

H(i)H(i)TH
]
jk[

HHT
( N∑
i=1

A(i)HS(i)+α
2

N∑
i=1

H(i)H(i)TH
)]
jkS

(i)
jk ← S

(i)
jk

[
H(i)TA(i)H(i)

]
jk[

H(i)TH(i)S(i)H(i)TH(i)
]
jk

SsNMTF
H

(i)
jk ← H

(i)
jk

[[
A(i)H(i)S(i)

]+
+H(i)H(i)T [A(i)H(i)S(i)

]−]
jk[[

A(i)H(i)S(i)
]−

+H(i)H(i)T [A(i)H(i)S(i)
]+]

jk Hjk ← Hjk

[
N∑
i=1

[
A(i)HS(i)

]+
+HHT

[
A(i)HS(i)

]−
+α

2
H(i)H(i)TH

]
jk[

N∑
i=1

[
A(i)HS(i)

]−
+HHT

([
A(i)HS(i)

]+
+α

2
H(i)H(i)TH

)]
jk

S(i) ←
(
H(i)TH(i)

)−1
H(i)TA(i)H(i)(H(i)TH(i)

)−1

of the first layer across different multiplex networks, while
fixing the within-community probability of the second com-
munity, p22 = 0.2. In the second layer, we represent the com-
plementary information by fixing the within-community
probability of the first community to p11 = 0.2 and vary-
ing within-cluster probability of the second community
p22 = {0.05, 0.075, . . . , 0.3} across the multiplex networks.
For all multiplex networks, we set the same amount of
noisy links, by fixing between-community probability to
p12 = 0.05.

SYNTH-N. Similar to SYNTH-C we generate two-layer
multiplex networks with two communities (n and N are the
same as in SYNTH-C). We fix the within-community prob-
ability of both communities and both layers to p11 = 0.3
and p22 = 0.3 across all multiplex networks. We vary the
between-community probability p12 = {0.02, 0.04, . . . , 0.2}
of the first layer, while keeping the between-community
probability of the second layer fixed, p12 = 0.02, across all
multiplex networks.

For each set of within-community, pii, and between-
community, pij , probabilities, we generate 100 different ran-
dom realizations of multiplex networks. This allows us to
compute the average performance and the standard error
for each artificial multiplex networks. The spy plots of
adjacency matrices representing layers of SYNTH-C and
SYNTH-N are given in the Section 1 of the online supple-
mentary material.

4.2 Real-world multiplex networks

Below we provide a brief description of real-world multi-
plex networks used in our comparative study:

Bibliographic data, CiteSeer: the data are adopted from
[51]. The network consist of N = 3, 312 papers belonging to
6 different research categories, that we grouped into k = 3
pairs categories. We consider these categories as the ground
truth classes. We construct two layers: citation layer, repre-
senting the citation relations between papers extracted from
the paper citation records; and the paper similarity layer,
constructed by extracting a vector of 3, 703 most frequent

and unique words for each paper, and then computing the
cosine similarity between each pair of papers. We construct
the k-nearest neighbor graph from the similarity matrix by
connecting each paper with its 10 most similar papers.

Bibliographic data, CoRA: the data are adopted from [51].
The network consists of 1, 662 machine learning papers
grouped into k = 3 different research categories. Namely,
Genetic Algorithms, Neural Networks and Probabilistic
Methods. We use the same approach as for CiteSeer dataset
to construct the citation and similarity layers.

Mobile phone data (MPD): the data are adopted from [26].
The network consists of N = 3 layers representing different
mobile phone communications between n = 87 phone users
on the MIT campus; namely, the layers represent physical
location, bluetooth scans and phone calls. The ground truth
clusters are known and manually annotated.

Social network data (SND): the data are adopted from
[52]. The dataset represents the multiplex social network
of a corporate law partnership, consisting of N = 3 layers
having three types of edges, namely, co-work, friendship
and advice. Each layer has n = 71 nodes representing
employees in a law firm. Nodes have many attributes. We
use the location of employees’ offices as well as their status
in the firm as the ground truth for clusters and perform two
different experiments, namely SND(o) and SND(s) respec-
tively.

Worm Brain Networks (WBN): the data are retrieved from
WormAtlas2, i.e., from the original study of White et al. [53].
The network consist of n = 279 nodes representing neurons,
connected via N = 5 different types of links (i.e., layers),
representing 5 different types of synapse. We use neuron
types as the ground truth clusters.

Word Trade Networks (WTN): the data represents different
types of trade relationships (import/export) among n = 183
countries in the world [54]. The network consist of 339
layers representing different products (goods). Since, for
some products layers are very sparse, we retain the layers
having more than n− 1 links, which resulted in N = layers.

2. http://www.wormatlas.org/
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TABLE 2
Real-world multiplex networks used for our comparative study.

Net name n N ground truth Ref.
CiteSeer 3,312 2 known (k = 3) [51]
CoRA 1,662 2 known (k = 3) [51]
MPD 87 3 known (k = 6) [26]
SND 71 3 known (k = 3) [52]
WBN 279 10 known (k = 10) [53]
WTN 183 14 known (k = 5) [54]
HBN 13,251 8 unknown (k = 100) [55]
YBN 3,904 44 unknown (k = 100) [55]
MBN 21,603 10 unknown (k = 100) [55]

We use geographic regions (continents) of countries and eco-
nomic trade categories for defining ground truth clusters3.
Thus, we perform experiments with this two ground truth
clusters, namely WTN (reg), denoting geographic regions
and WTN (cat), denoting economic categories.

In Table 2 we summarize the important statistics and
information of real-world multiplex networks used in our
experiments.

4.2.1 Multiplex biological networks
We obtained multiplex biological networks of 3 different
species, i.e., human biological network (HBN), yeast biolog-
ical network (YBN) and mouse biological network (MBN)4,
from the study of Mostafavi and Morris [55]. The network
layers are constructed from the data obtained from differ-
ent experimental studies and from the publicly available
databases. The network layers represent different types of
interactions between genes5, including protein interactions,
genetic interaction, gene co-expressions, protein localiza-
tion, disease associations, etc. The number of nodes and
layers in each network is summarized in Table 2. For each
network and its genes, the corresponding GO annotations
has also been provided by Mostafavi and Morris [55]. For
details about network statistics and layer representation we
refer a reader to Mostafavi and Morris [55].

4.3 Setup for state-of-the-art methods

Each of the state-of-the-art method takes as an input param-
eter the number of clusters k that needs to be known in
advance. Also, some of the methods take as input other
types of parameters that needs to be determined. To make
the comparison fair, below we briefly explain each of the
comparing method and provide the implementation and
parameter fitting details that we use in all our experiments
(for detailed procedure on parameter fitting, please refer to
Section 3 in the online supplementary material):

Baseline, single-layer methods (MM, SNMF, PNMF, SN-
MTF and SsNMTF). In order to apply them on multiplex
network we first merge all the network layers into a sin-
gle network described by the following adjacency matrix:
A = 1

N

∑N
i=1 A

(i).

3. data about countries are downloaded from http://unctadstat.
unctad.org

4. The network can be retrieved from: http://morrislab.med.
utoronto.ca/∼sara/SW/

5. genes and their coded proteins are considered as the same type of
nodes in networks layers

PMM [25] has a single parameter, `, which represents
the number of structural features to be extracted from each
network layer. In all our runs, we compare the clustering
performance by varying this parameter, but we also noted
that the clustering performance does not change signifi-
cantly when l� k.

SNF [39] the method is parameter-free. However, the
method prefers data in the kernel matrix. Thus, we use
diffusion kernel matrix representation of binary interaction
networks as an input to this method.

SC-ML [21] has a single regularization parameter, α,
that balances the trade-off between two terms in the SC-
ML objective function. In all our experiments we choose the
value of α that leads to the best clustering performance.

LMF [42] has a regularization parameter, α, that balances
the influence of regularization term added to objective func-
tion to improve numerical stability and avoid over fitting.
We vary α in all our runs, and choose the value of α that
leads to the best clustering performance.

GraphFuse [43] has a single parameter, sparsity penalty
factor λ, that is chosen by exhaustive grid search and the
value of λ that leads to the best clustering performance is
chosen.

CGC-NMF [24] has a set of parameters γij ≥ 0 that bal-
ance between single-domain and cross-domain clustering
objective for each pair of layers ij. Given that in all our
experiments the relationship between node labels for any
pair of layers is one-to-one, we set γij = 1 (as in [24]) for all
pairs of layers and throughout all our experiments.

GL [16] has two parameters: the resolution parameter,
γs, that affects the size and number of communities in
each layer, and the coupling parameter, ω, that affects the
coupling strength between network layers. We chose the
optimal parameters by exhaustive grid search.

Infomap [40] has one parameter, relax rate, r, which is a
probability of diffusion process happening between layers.
It is a measure of coupling between different layers. We use
the top cluster indices for each node as a final clustering
assignment, and we choose the value of r that leads to the
best clustering performance.

4.4 Clustering evaluation measures

Here we discuss the evaluation measures used in our ex-
periments to evaluate and compare the performance of our
proposed methods with the above described state-of-the-art
methods. Given that we test our methods on multiplex
network with known and unknown ground truth cluster,
we distinguish between two sets of measures:

Known ground truth. For multiplex network with known
ground truth clustering assignment, we use the following
three widely used clustering accuracy measures: Purity [56],
Normalized Mutual Information (NMI) [57] and Adjusted Rand
Index (ARI) [57]. All three measures provide a quantitative
way to compare the computed clusters Ω = {ω1, . . . , ωk}
with respect to the ground truth classes: C = {c1, . . . , ck}.
Purity represents percentage of the total number of nodes
classified correctly, and it is defined as [56]:

Purity(Ω, C) =
1

n

∑
k

max
j
|ωk ∩ cj |
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where n is the total number of nodes, and |ωk∩cj | represents
the number of nodes in the intersection of ωk and cj . To
trade-off the quality of the clustering against the number of
clusters we use NMI. NMI is defined as [57]:

NMI(Ω, C) =
I(Ω;C)

|H(Ω) +H(C)|/2

where I is the mutual information between node clusters Ω
and classes C , while H(Ω) and H(C) represent the entropy
of clusters and classes respectively. Finally, Rand Index rep-
resents percentage of true positive (TP ) and true negative
(TN ) decisions assigns that are correct (i.e., accuracy). It is
defined as:

RI(Ω, C) =
TP + TN

TP + FP + FN + TN

where, FP and FN represent false positive and false neg-
ative decisions respectively. ARI is defined to be scaled in
range [0, 1] [57]. All three measures are in the range [0, 1],
and the higher their value, the better clustering quality is.

Unknown ground truth. For biological networks, the
ground truth clusters are unknown and evaluating the
clustering results becomes more challenging. In order to
evaluate the functional modules identified by our methods,
we use Gene Ontology (GO) [58], a commonly used gene an-
notation database. GO represents a systematic classification
of all known protein functions organized as well-defined
terms (also known as GO terms) divided into three main
categories, namely Molecular Function (MF), Biological Pro-
cess (BP) and Cellular Component (CC) [58]. GO terms (i.e.,
annotations), representing gene functions, are hierarchically
structured where low-level (general) terms annotate more
proteins than high-level (specific) terms. Thus, in our analy-
sis we aim to evaluate our clusters with high-level (specific)
GO terms annotating not more than 100 genes. Additionally,
we remove GO terms annotating 2 or less proteins. Thus, for
each gene in a network, we create a list of its corresponding
GO term annotations. We then analyze the consistency of
each cluster, i, obtain by our method, by computing the
redundancy [6], Ri as follows:

Ri = 1−

(
−

NGO∑
l=1

pl log2 pl

)
log2NGO

where, NGO represents the total number of GO terms
considered and pl represents the relative frequency of GO
term l in cluster i. Redundancy is based on normalized
Shannon’s entropy and its values range between 0 and
1. For clusters in which the majority of genes share the
same GO terms (annotations) redundancy is close to 1,
whereas for clusters in which the majority of genes have
disparate GO terms the redundancy is close to 0. When
comparing clustering results obtained by different methods,
we use the value of redundancy averaged over all clusters.
Furthermore, the redundancy is a very suitable measure for
clustering performance comparisons because its value does
not depend on the number of clusters and unlike others
evaluation measures for biological network clustering [59],
it is parameter-free.
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Fig. 2. The clustering performance of our proposed and other methods
on 11 different SYNTH-C multiplex networks measured by NMI. On x-
axis we present within-community probability, representing the density
of connections of communities in the two complementary layers.

5 RESULTS AND DISCUSSION

5.1 Clustering evaluation on artificial multiplex net-
works

The ability of our proposed methods to extract clusters from
complementary layers, represented by SYNTH-C networks,
is shown in Figure 2. The performance of our methods
is compared with other methods and it is measured by
NMI. By decreasing the within-community probability of
complementary clusters in both layer, i.e., by decreasing
the density of connections within communities and thus
making communities harder to detect, we see a drastic
decrease of performance in many methods, including SC-
ML, PMM, SNF and CGC-NMF (Fig. 2). Furthermore, below
some value of within-community probability, i.e., < 0.1, the
performance of these methods is equal or close to zero. Un-
like them, our proposed methods, particularly CSNMF and
CPNMF show significantly better performance. Specifically,
CPNMF demonstrates constant performance for all values
of within-community probability. The similar results can
also be observed for GraphFuse and LMF. Given that, we
can observe that CPNMF method is mostly successful in
utilizing complementary information contained in all layers
and achieving the highest clustering results.

In terms of noise, incorporated into SYNTH-N networks,
the ranking between the methods in terms of clustering per-
formance is different. By increasing the between-community
probability of the first layer, and thus introducing more
noise between communities, the clustering performance
of all methods decreases (Fig. 3). Our proposed meth-
ods, CSNMF, CSNMTF and CSsNMTF, along with SC-ML
demonstrate the best performance across different values
of within-community probability, which makes them more
robust to noise than other methods. On the other hand, other
methods methods are characterized with significantly lower
clustering performance.

Out of all four methods, CPNMF is a method that
performs reasonably good in both situations (i.e., in both
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SYNTH-N and SYNTH-C networks). However, it is not to
be expected that one single method can be equally good
in in handling both noisy and complementary network
layers. Furthermore, it is expected that our four methods
are complementary to each other; i.e., CSNMTF is better in
handling complementary network layers (SYNTH-C) than
noisy network layers (SYNTH-N); whereas, CSNMF is better
in handling noisy network layers (SYNTH-N) than comple-
mentary network layers (SYNTH-C). This is also reflected in
the performance of our methods on the real-world networks
(see Table 3), where we do not have a situation in which
one single method outperforms all other methods in all data
sets.

5.2 Clustering evaluation on real-world multiplex net-
works

Table 3 presents the Purity, NMI and ARI of our four
proposed collective factorization methods, along with five
different baseline methods and eight different widely used
state-of-the-art methods on six different real-world net-
works. The first important observation is that all four pro-
posed collective NMF methods (CSNMF, CPNMF, CSNMTF
and CSsemi-NMTF) perform better than their correspond-
ing baseline methods (SNMF, PNMF, SNMTF and Ssemi-
NMTF) on all real-world multiplex networks. Thus, the
strategy of merging layers into a single layer always leads
to underperformance. Moreover, single-layer modularity
maximization (MM) algorithm is outperformed by baseline,
single-layer NMF methods in almost all real-world net-
works, except for WTN networks where MM significantly
outperforms baseline NMF methods, and SND(o) where
MM performs better than SNMF, SNMTF and Ssemi-NMTF,
but not better than PNMF. In comparison to the state-of-the-
art methods (PMM, SNF, SC-ML, LMF, GraphFuse, CGC-
NMF, GL, Infomap), at least one of our proposed methods
outperforms them all (in terms of either Purity, NMI or ARI
or all three measures) in all real-world multiplex network.
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Fig. 3. The clustering performance of our proposed and other methods
on 10 different SYNTH-N multiplex networks measured by NMI. On x-
axis we present between-community probability, representing the noise
level between communities in the first layer.

Fig. 4. Average redundancy of each individual network layer (in blue),
computed by SNMF, and of their fused representation (in red), com-
puted by CSNMF, for networks: HBN (top), YBN (middle) and MBN
(bottom). The ethod parameters are: k = 300 and α = 0.01.

Moreover, for example, on MPD network, both CSNMF and
CSsemi-NMTF perform better than all other methods, with
CSemi-NMTF being the best in terms of Purity and NMI;
on SND(s) network, CSNMF, CSNMTF and CSsemi-NMTF
perform better than all other methods, with CSNMTF per-
forming the best in terms of all three measures; on WBN
network, both CSNMF and CSNMTF perform better than
all other methods, with CSNMTF being the best in terms of
Purity and ARI, and CSNMF being the best in terms of NMI.

5.2.1 Clustering evaluation on multiplex biological networks

In table 4, we also present the average redundancy (Ravg)
obtained by clustering multiplex biological networks with
our four methods, as well as with state-of-the-art and baseline
methods. The results, again, indicate the superior perfor-
mance of our methods over the state-of-the-art and baseline
methods, except in the case of MBN, where SNMTF, applied
on merged network layers, yields the highest redundancy.

Furthermore, we compare the functional consistency of
clusters obtain by collective integration of all network layers
with the functional consistency of clusters obtained from
each individual network layer. The results for all three
biological networks, obtained by applying SNMF on each
individual network layer and CSNMF on all network layers
together, are depicted in Fig. 4. We observe that each in-
dividual network layer has biologically consistent clusters.
However, the highest level of biological consistency, mea-
sured by the average redundancy, is achieved when all the
layers are fused together (red bars in Fig.4).
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TABLE 3
Clustering accuracy measures for methods (from left to right): MM, SNMF, PNMF, SNMTF, SsNMTF, PMM, SNF, SC-ML, LMF, GraphFuse,

CGC-NMF, GL, Infomap, CSNMF, CPNMF, CSNMTF, CSsNMTF applied on real-world multi-layer networks (from top to bottom): CiteSeer, CoRA,
MPD, SND, WBN, WTN, HBN, YBN and MBN. AVG row represents the average performance of the methods over all datasets.

MM SNMF PNMF SNMTF SsNMTF PMM SNF SC-ML LMF GF CGC GL Infomap CSNMF CPNMF CSNMTF CSsNMTF

C
it

eS
ee

r Purity 0.500 0.407 0.405 0.377 0.371 0.302 0.214 0.419 0.235 0.512 0.212 0.669 0.509 0.501 0.519 0.416 0.404
NMI 0.187 0.222 0.221 0.170 0.164 0.145 0.023 0.191 0.013 0.211 0.013 0.323 0.265 0.237 0.216 0.172 0.195
ARI 0.152 0.059 0.057 0.042 0.038 0.008 0.001 0.169 0.005 0.201 0.001 0.155 0.157 0.207 0.185 0.093 0.089

C
oR

A Purity 0.706 0.669 0.660 0.669 0.669 0.496 0.733 0.787 0.492 0.642 0.678 0.781 0.922 0.802 0.790 0.683 0.684
NMI 0.340 0.385 0.353 0.382 0.382 0.085 0.449 0.480 0.002 0.201 0.389 0.418 0.373 0.514 0.480 0.346 0.390
ARI 0.257 0.280 0.247 0.277 0.277 0.030 0.470 0.485 0.001 0.209 0.296 0.334 0.016 0.491 0.470 0.279 0.288

M
PD

Purity 0.563 0.678 0.666 0.620 0.678 0.689 0.620 0.701 0.471 0.689 0.678 0.678 0.701 0.701 0.655 0.655 0.724
NMI 0.313 0.471 0.466 0.384 0.473 0.533 0.395 0.495 0.191 0.565 0.457 0.467 0.410 0.504 0.451 0.458 0.521
ARI 0.147 0.268 0.259 0.228 0.272 0.383 0.280 0.379 0.029 0.411 0.357 0.372 0.115 0.394 0.368 0.346 0.422

SN
D

(o
) Purity 0.929 0.943 0.943 0.676 0.943 0.943 0.943 0.943 0.788 0.943 0.943 0.929 0.676 0.943 0.943 0.943 0.943

NMI 0.618 0.681 0.681 0.133 0.681 0.675 0.689 0.681 0.303 0.675 0.673 0.618 0.001 0.681 0.685 0.773 0.678
ARI 0.460 0.493 0.493 0.021 0.493 0.477 0.515 0.493 0.239 0.477 0.472 0.460 0.012 0.493 0.503 0.811 0.484

SN
D

(s
) Purity 0.619 0.577 0.633 0.634 0.619 0.591 0.633 0.591 0.633 0.619 0.662 0.671 0.507 0.633 0.633 0.747 0.605

NMI 0.038 0.025 0.052 0.055 0.041 0.037 0.057 0.030 0.053 0.045 0.0781 0.097 0.001 0.053 0.053 0.276 0.034
ARI 0.024 0.012 0.058 0.058 0.043 0.022 0.058 0.021 0.059 0.044 0.092 0.089 0.001 0.059 0.059 0.234 0.031

W
BN

Purity 0.473 0.512 0.501 0.476 0.523 0.473 0.534 0.272 0.283 0.509 0.516 0.566 0.401 0.577 0.537 0.548 0.530
NMI 0.333 0.382 0.400 0.327 0.363 0.373 0.425 0.079 0.098 0.426 0.370 0.398 0.355 0.463 0.432 0.404 0.424
ARI 0.199 0.226 0.213 0.112 0.180 0.130 0.211 0.001 0.009 0.216 0.211 0.185 0.200 0.291 0.233 0.237 0.225

W
T

N

Purity 0.506 0.475 0.464 0.388 0.284 0.388 0.289 0.497 0.453 0.415 0.278 0.783 0.453 0.579 0.420 0.371 0.420
NMI 0.231 0.269 0.242 0.176 0.077 0.205 0.073 0.226 0.191 0.176 0.072 0.426 0.273 0.322 0.172 0.154 0.155
ARI 0.080 0.114 0.114 0.073 0.001 0.039 0.005 0.133 0.094 0.107 0.002 0.068 0.273 0.160 0.094 0.035 0.088

A
V

G

Purity 0.613 0.608 0.610 0.548 0.583 0.554 0.566 0.601 0.479 0.618 0.566 0.725 0.595 0.676 0.642 0.6233 0.6157
NMI 0.294 0.347 0.345 0.232 0.311 0.293 0.301 0.311 0.121 0.328 0.293 0.392 0.239 0.396 0.355 0.369 0.342
ARI 0.188 0.207 0.205 0.115 0.186 0.155 0.220 0.240 0.062 0.237 0.204 0.237 0.110 0.300 0.273 0.290 0.232

5.3 Contribution of different network types to cluster-
ing performance
We have seen in Fig. 4 that different network layers carry
different information and thus the clustering of their nodes
results in different performance. In order to estimate the
contribution of different network layers to the final, con-
sensus clustering performance and to distinguish between
more and less informative network layers, we compute the
distance between the consensus low-dimensional feature
representation, H, and the low-dimensional feature repre-
sentation of individual network layers, H(i), as introduced
in equation 5. We hypotheses that the network layers with
the low-dimensional feature representations that are the
larger distance from the consensus feature representation
contribute less than those that are at the smaller distance
from the consensus feature representation. The results for
biological multiplex networks are shown in Fig. 5. Compar-
ing these results with the ones shown in Fig. 4, we can see
that, for example, in HBN, layer 3 is the least informative
(Fig. 4 (top)) and also with the largest projection distance
(Fig. 5 (top)). Furthermore, in YBN we observe that the two
least informative layers are layer 23 and layer 41 (Fig. 4
(middle)) are also those with the largest distance (Fig. 5
(middle). Similar observation holds for MBN. This is an
interesting observation and it suggests that the projection
distance could be used as an indicator for selecting more or
less informative network layers even before the clustering is
performed.

6 CONCLUSION

In this paper, we address the problem of composite commu-
nity detection in multiplex networks by proposing NF-CCE,
a general model consisting of four novel methods, CSNMF,
CPNMF, CSNMTF and CSsemi-NMTF, based on four non-
negative matrix factorization techniques. Each of the pro-
posed method works in a similar way: in the first step, it

TABLE 4
Clustering accuracy measures for methods (from top to bottom): MM,

SNMF, PNMF, SNMTF, SsNMTF, PMM, SNF, SC-ML, LMF, GraphFuse,
CGC-NMF, GL, Infomap, CSNMF, CPNMF, CSNMTF, CSsNMTF

applied on biological multi-layer networks (from left to right): HBN, YBN
and MBN

.

Method HBN YBN MBN
MM 0.180 0.027 0.015
SNMF 0.325 0.374 0.416
PNMF 0.350 0.336 0.387
SNMTF 0.322 0.372 0.462
SsNMTF 0.326 0.358 0.441
PMM 0.351 0.343 0.355
SNF 0.141 0.163 0.211
SC-ML 0.266 0.257 0.320
LMF 0.045 0.100 0.180
GraphFuse 0.203 0.005 0.298
CGC-NMF 0.320 0.085 0.002
GL 0.161 0.114 0.014
Infomap 0.172 0.311 0.328
CSNMF 0.341 0.383 0.422
CPNMF 0.364 0.342 0.401
CSNMTF 0.339 0.383 0.416
CSsNMTF 0.342 0.381 0.433

decomposes adjacency matrices representing network layers
into low-dimensional, non-negative feature matrices; then,
in the second step, it fuses the feature matrices of layers into
a consensus non-negative, low-dimensional feature matrix
common to all network layers, from which the composite
clusters are extracted. The second step is done by collective
matrix factorization that maximizes the shared information
between network layers by optimizing the distance between
each of the non-negative feature matrices representing lay-
ers and the consensus feature matrix.

The ability of our methods to integrate complementary
as well as noisy network layers more efficiently than the
state-of-the-art methods has been demonstrated on artifi-
cially generated multiplex networks. In terms of cluster-
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Fig. 5. Projection distance between the networks’ low-dimensional con-
sensus representation and the representation of its individual layers.
The distance is computed by Eq. 5, and the low-dimensional repre-
sentation by CSNMF method with parameters k = 300 and α = 0.01.
The results are shown for HBN (top), YBN (middle) and MBN (bottom)
multiplex biological networks.

ing accuracy, we demonstrate the superior performance of
our proposed methods over the baseline and state-of-the-art
methods on nine real-world networks. We show that sim-
ple averaging of adjacency matrices representing network
layers (i.e., merging network layers into a single network
representation), the strategy that is usually practiced in the
literature, leads to the worst clustering performance. More-
over, our experiments indicate that widely-used modularity
maximization methods are significantly outperformed by
NMF-based methods.

NF-CCE can be applied on multiplex networks from
different domains, ranging from social, phone communica-
tion and bibliographic networks to biological, economic and
brain networks, demonstrating the diverse applicability of
our methods.
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