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Course 395: Machine Learning - Lectures
Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis) 

Lecture 11-12: Artificial Neural Networks III (S. Petridis)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Dropout

• We don’t modify the error function but the network itself

• During training neurons are randomly dropped out

• The probability that a neuron is present is p 

From Dropout: A simple way to prevent neural networks from

overfitting by Srivastava et al., JMLR 2014 
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Dropout

• Dropout prevents overfitting because it prevents neurons from 

co-adapting too much. Each neuron should create useful 

features on its own without relying on other hidden units to 

correct its mistakes.

• Typical values for p: 0.8/0.5 for input/hidden neurons.

• Test time: outgoing weights of a neuron are multiplied by p.

From Dropout: A simple way to prevent neural networks from

overfitting by Srivastava et al., JMLR 2014 
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Dropout - Tips

• If a network with n neurons in the hidden layer works 

well for a given task then a good dropout network should 

have n/p neurons.

• Dropout introduces a significant amount of noise in the 

gradients, a lot of gradients cancel each other  you 

should use higher learning rate (and maybe higher 

momentum)

• More epochs are needed

• The above heuristics do not always work!
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Data Augmentation

• One of the best ways to avoid overfitting is more data

• So we can artificially generate more data, usually a bit 

noisy, so we introduce more variation

• We should apply operations that correspond to real-world 

variations.

• For images: flip left-right, rotate, random cropping, etc
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Data Normalisation

• It is not desirable that some inputs/features are orders of 

magnitude larger than other inputs. Why?

• Map each input/feature to [-1/0, +1]

• Min value is mapped to -1/0

• Max value is mapped to 1
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Data Normalisation

• Standardize inputs to mean=0 and 1 std. dev.=1

y = 
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑

• Useful for continuous inputs/targets

• It’s called z-normalisation

• Scaling is needed if inputs take very different values. If e.g.,  

they are in the range [-3, 3] then scaling is probably not needed
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Data Normalisation

• 𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑 are computed on the training set and then 

applied to the validation and test sets. 

• It is not correct to normalise each set separately.
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Image Normalisation

• When the input data are images then you can simply 

remove the mean image computed on the training set.

• Alternatively, you can compute the mean and 

standard deviation of all the pixels in each image and

z-normalise each image independently.

• In case of videos, it’s usually better to apply the same 

normalisation to all frames in the video.
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Monitoring the learning process

• Find a learning rate value at which the loss on the training data

immediately begins to decrease.

• It’s a good idea to turn off regularisation at this point

• If loss increases or oscillates

then the learning rate is too  

high

• If loss goes down slowly the

the learning rate is low

From http://cs231n.github.io/neural-networks-3/
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Monitoring the learning process

Other tips

• Compute the mean and standard deviation of hidden 

neurons activations for all examples in a mini-batch

• They should be different than 0 (this is important when 

ReLu is used since the neurons can easily die)

• For each layer compute the norm of the weights and the 

norm of the weight updates Δw.

• The ratio norm(Δw) / norm(w) should be 0.01 – 0.0001

• If ratio is significantly different then something could be 

wrong
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Hyperparameter Optimisation

• Once a good initial learning rate value is found then we 

can optimise the hyperparameters on the validation set

• Network architecture: number of layers, number of neurons

per layer.

• Learning rate: when to start decaying, type of decay

• Regularisation: type of regularisation, values for 

regularisation parameters

• Training algorithm, SGD+Momentum, Adam, RMSprop

• Maybe we wish to optimise again the initial learning rate
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(Hyper)Parameters / Weights

• (Hyper)Parameters are what the user specifies, e.g. 

number of hidden neurons, learning rate, number of 

epochs etc

• They need to be optimised

• Weights: They are also parameters but they are optimised

automatically via gradient descent
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Deep NNs
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• Two ways to train

• A lot of data (data augmentation), ReLu, dropout etc

• Pre-training: weights are initialised to a good starting point

- Restricted Boltzmann Machines or Stacked Denoising Autoencoders

- Backpropagation is used to fine-tune the weights 
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Convolutional Neural Networks

• Convolutional Neural Networks (CNNs) have been very 

successful in computer vision

• First version was introduced in 1980s (Fukushima, K.; Miyake, S.; Ito, T. (1983). 

"Neocognitron: a neural network model for a mechanism of visual pattern recognition". IEEE Transactions on 

Systems, Man, and Cybernetics. 1983)

• Improved by LeCun et al., “Gradient-Based Learning Applied to 

Document Recognition”, Proc. IEEE, 1998
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Convolutional Neural Networks

• Became popular in 2012 after winning the ImageNet competition

• “ImageNet Classification with Deep Convolutional Neural 

Networks”, by Krizhevsky et al., NIPS 2012

• Tricks: Data augmentation, Dropout, ReLu + GPUs
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ImageNet Competition – Object Classification

• Classification of 1000+ objects

• State-of-the-art before 2012: ~26%

• New state-of-the-art in 2012 with deep networks: ~15%
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Convolutional Neural Networks

• It’s a deep network = many layers

• Each layer is either a convolutional layer or subsampling layer 

• Final layers are fully connected layers



Stavros Petridis                       Machine Learning (course 395)

Convolutional Neural Networks

• Convolution

• Max Pooling

From: http://cs231n.github.io/convolutional-networks/#pool

From: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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From: Taigman et. al, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014

Convolutional Neural Networks

From: Peeman et. al, Speed sign detection and recognition by convolutional neural networks 
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Convolution Types

• Images: 2D convolution

• Videos: we can use 2D convolutions on each image

• We can also stack together a few frames (e.g., 3 – 5) and 

use a 3D convolution

• Audio signal: 1D convolution
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CNN Architectures

• AlexNet

• VGG16, VGG19

• Inception

• ResNet 18, 34, 50, 101, 152

• DensetNet 121, 161, 169, 201
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Residual Networks (ResNet)

• Deep CNN with shortcut connections

• Makes easier training of deeper networks. 

• Variations: DenseNet, Wide ResNet

From: He et al., Deep Residual Learning for Image Recognition, CVPR 2016
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Fine-tuning and Feature Extraction

Oquab, M., Bottou, L., Laptev, I., and Sivic, J.. Learning and transferring mid-level image representations 

using convolutional neural networks. In Computer Vision and Pattern Recognition, 2014
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Deep Networks for Time Series

• Deep feedforward NNs/CNNs are good at various tasks but

not at handling time series data

• Recurrent Neural Networks are suitable for time series

• They also suffer from the vanishing gradient problem
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LSTMs

• A type of recurrent network that can be effectively trained is the 

Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s

• We replace the neuron with a memory cell

• There are input, output and forget gates which control when 

information flows in / out of the cell and when to reset the state 

of the cell
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LSTMs

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015
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CNNs vs LSTMs

• CNNs are good at extracting features from raw data (images, 

audio waveform etc) but they do not model temporal dynamics.

• LSTMs are good at modelling time series but they do not extract 

features.

• We can add a softmax layer to turn them into classifiers.

• If we jointly want to extract features, model temporal dynamics, 

and perform classification (video classification, speech 

recognition) then we can combine CNNs + LSTMs + softmax.
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End-to-end Learning

• This is called end-to-end learning 

because the input is raw data (one 

end) and the output is the 

classification label (other end).

• We do not intervene at feature 

extraction or classification, the deep 

network learns to model the pipeline 

from one end to the other end.     
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Data Types

Image:

- 2D spatial data

- 2D CNNs

- No temporal information

Video:

- 3D spatiotemporal data

- 2D images in time

- We can use 2D/3D CNNs  

+ LSTM

- Frame rate: 25/30 frames 

per second 

Audio:

- 1D temporal data

- There is no spatial       

information

- 1D CNN + LSTM

- Sampling rate: 44.1 kHz
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Data Types

• In images/videos we extract features per frame/group of 

frames.

• In audio there is no notion of frame, so we define a window 

with length K (e.g., 40) ms as our frame. 

• We also use overlapping frames with stride = 10ms.

40ms

10ms
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Data Types

40ms

10ms

Traditional Features: Mel Frequency Cepstral 

Coefficients (MFCCs)

CNN Features: 1D CNNs

• Above values for window length and stride are usually 

used with traditional features.

• When CNNs are used different window size/stride might 

be used, e.g., 5ms and 0.25ms.

• Note that frame rate of audio and video are different!!
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Image/Video

• ResNet extract features directly from the 

images.

• BLSTMs model temporal dynamics in 

each stream.

• Such architectures significantly 

outperform traditional approaches (feature 

extraction + classification).

• You can come up with several variants of 

this architecture.
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Audio

• ResNet extract features directly from the 

raw waveform.

• BLSTMs model temporal dynamics in 

each stream.

• Use of 1D CNNs is still an active reseach

area.

• Usually MFCCs + BLSTMs work equally 

well.
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End-to-end Audiovisual Fusion

• ResNets extract features directly 

from the images and the audio 

waveform, respectively.

• BLSTMs model temporal 

dynamics in each stream.

• Top BLSTMs perform fusion and 

model joint temporal dynamics. 
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Traditional Audiovisual Fusion 

• Handcrafted audio/visual features are extracted then fusion takes 

place, e.g., by feature concatenation 

• Similar approach was also used for emotion recognition

From: G. Potamianos et al., Recent Advances in the Automatic Recognition of 

Audio-Visual Speech, Proc. IEEE, 2003
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End-to-end Audiovisual Fusion - Training

• It’s impossible to train the entire 

architecture from scratch.

• We first train each stream 

(audio/visual) independently 

in 2 steps.
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End-to-end Audiovisual Fusion - Training

First train 

the ResNet

Fix ResNet,

Train BLSTMs

 FIXED

Fine-tune entire

stream
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End-to-end Audiovisual Fusion - Training

• Fix audio/visual streams and train 

top BLSTM layers only.

• Fine-tune the entire network.
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End-to-end Audiovisual Fusion - Results

• Results on audiovisual speech recognition, goal is to 

recognize 500 words (data from BBC TV).

• AV model results in small improvement in clean audio 

conditions and significant improvement in noisy audio conditions.


