
Stavros Petridis Machine Learning (course 395)

Course 395: Machine Learning - Lectures
Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Artificial Neural Networks III (S. Petridis)

Lecture 13-14: Genetic Algorithms (M. Pantic)



Stavros Petridis Machine Learning (course 395)

Stochastic Gradient Descent

• Stochastic/Incremental/On-line: One example at a time is fed to

the network.

• Weights are updated after each example is presented to the network

Stavros Petridis Machine Learning (course 395)

Batch Gradient Descent

• Batch: All examples are fed to the network. Weights are updated

only after all examples have been presented to the network

• For each weight the corresponding gradient (or Δw) is computed

(for each example).

• The weights are updated based on the average gradient over

all examples.Type equation here.

• Δ𝑤𝑎𝑙𝑙𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 =
1

𝐷
σ𝑑=1
𝐷 Δ𝑤𝑜𝑛𝑒𝐸𝑥𝑎𝑚𝑝𝑙𝑒

Stavros Petridis Machine Learning (course 395)

Mini-batch Gradient Descent

• Mini-Batch: M randomly examples are fed to the network.

- M = usually 32…128

• For each weight the corresponding gradient (or Δw) is computed

(for each example).

• The weights are updated based on the average gradient over

all M examples.

• Set of M examples is called mini-batch.

• Popular approach in deep neural networks.

• Sometimes called stochastic gradient descent (NOT to be confused

with online/incremental gradient descent).

Stavros Petridis Machine Learning (course 395)

• When the gradient magnitude (or Δ𝑤𝑖) is small, i.e.

• When the maximum number of epochs has been

reached

• When the error on the validation set does not improve

for n consecutive times (this implies that we monitor

the error on the validation set). This is called early

stopping.

Backpropagation Stopping Criteria

𝜕𝐸

𝜕𝑤𝑖
< 𝛿 𝑜𝑟 Δ𝑤𝑖 < 𝛿

Stavros Petridis Machine Learning (course 395)

Early stopping

• Stop when the error in the validation does not impove.

• Error might decrease in the training set but increase in the

‘validation’ set (overfitting!)

• It is also a way to avoid overfitting.

Stavros Petridis Machine Learning (course 395)

1. Initialise weights randomly

2. For each input training example x compute the outputs

(forward pass)

3. Compute the output neurons errors and then compute the

update rule for output layer weights (backward pass)

Backpropagation Summary

4. Compute hidden neurons errors and then compute the

update rule for hidden layer weights (backward pass)

Δ𝒘𝒌𝒋= −𝜼
𝝏𝑬

𝝏𝒘𝒌𝒋
= −𝜼𝜹𝒌𝒚𝒋 𝑤ℎ𝑒𝑟𝑒 𝜹𝒌=

𝝏𝑬

𝝏𝒐𝒌

𝝏𝝈(𝒏𝒆𝒕𝒌)

𝝏𝒏𝒆𝒕𝒌

Δ𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒊 𝑤ℎ𝑒𝑟𝑒 𝜹𝒋 =෍

𝒌=𝟏

𝑲

(𝜹𝒌𝒘𝒌𝒋)
𝝏𝝈(𝒏𝒆𝒕𝒋)

𝝏𝒏𝒆𝒕𝒋

Stavros Petridis Machine Learning (course 395)

5. Compute the sum of all Δw, once all training

examples have been presented to the network

6. Update weights

7. Repeat steps 2-6 until the stopping criterion is met

• The algorithm will converge to a weight vector with

minimum error, given that the learning rate is

sufficiently small

Backpropagation Summary

iii www 

Stavros Petridis Machine Learning (course 395)

Backpropagation: Convergence

• Converges to a local minimum of the error function

• … can be retrained a number of times

• Minimises the error over the training examples

• …will it generalise well over unknown examples?

• Training requires thousands of iterations (slow)

• … but once trained it can rapidly evaluate output

Stavros Petridis Machine Learning (course 395)

Backpropagation: Error Surface

Stavros Petridis Machine Learning (course 395)

Output Weights Update Rule: Example

• Update rule for output units: Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

• Error function

•
𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘)

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

when σ is sigmoid

  


K

k kk otE
1

2

2

1

Stavros Petridis Machine Learning (course 395)

Output Weights Update Rule: Example

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 = 𝜂 𝑡𝑘 − 𝑜𝑘 𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗

• When the output is 0 or 1 then Δw is 0 as well

• No matter if our prediction is right or wrong Δw will be 0

if the output is either 0 or 1

• When the output activation function is sigmoid it is not a good

idea to use the quadratic error function

• See http://neuralnetworksanddeeplearning.com/chap3.html

Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• A good error function when the output activation functions are

sigmoid is the binary cross entropy defined as follows:

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

•
𝜕𝐸

𝜕𝑜𝑘
=

𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

  


K

k kkkk ototE
1

)1ln()1(ln

Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

• Δ𝑤𝑘𝑗 = −𝜂
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗= 𝜂(𝑡𝑘 − 𝑜𝑘) 𝑦𝑗

• The higher the error the higher the weight update

Stavros Petridis Machine Learning (course 395)

Softmax output activation functions

• A popular output activation function for classification is

softmax 𝑜𝑘 =
𝑒𝑛𝑒𝑡𝑘

σ𝑘 𝑒
𝑛𝑒𝑡𝑘

• The output can be interpreted as a discrete probability

distribution

• The right error function is the negative log likelihood cost

E = −σ𝑘 𝑡𝑘𝑙𝑛𝑜𝑘

• Target vectors = [0 0 1 … 0]  E = −𝑙𝑛𝑜𝐿 where L is the

position of the active target, i.e., it is 1.

Stavros Petridis Machine Learning (course 395)

Output activation functions: Summary

• For each output activation function the right error function

should be selected

• Sigmoid  Cross entropy error (useful for classification)

• Softmax  negative log likelihood cost (useful for

classification)

• Both combinations work well for classification problems,

Softmax has the advantage of producing a discrete probability

distribution over the outputs

• Linear  Quadratic loss (useful for regression)

Stavros Petridis Machine Learning (course 395)

SGD with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

• If the error surface is a long and narrow valley, gradient

descent goes quickly down the valley walls, but very slowly

along the valley floor.

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf

Stavros Petridis Machine Learning (course 395)

SGD with momentum

• Backpropagation with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + (1 − 𝜇) −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
OR

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)

• 𝜇 = momentum constant, usually 0.9, 0.95

• It is like giving momentum to the weights

• We do not take into account only the local gradient but

also recent trends in the error surface

Stavros Petridis Machine Learning (course 395)

Other Training Algorithms

• Adam (usually works quite well)

• Adagrad

• Adadelta

• RMSprop

• Nesterov momentum

• …and others

Stavros Petridis Machine Learning (course 395)

Learning Rate Decay

• In the beginning weights are random so we need large weight

updates, then as training progresses we need smaller and

smaller updates.

• It’s a good idea to start with a “high” (depends on the

problem/dataset) learning rate and decay it slowly.

• Typical values for initial learning rate, 0.1, 0.01. It’s problem

dependent

• Step decay: Reduce the learning rate by some factor every few

epochs, e.g., divide by 2 every 50 epochs

Stavros Petridis Machine Learning (course 395)

Learning Rate Decay

• Keep learning rate constant for T epochs and then decrease as

follows:𝑙𝑟𝑡 =
𝑙𝑟0∗𝑇

max(𝑡,𝑇)

• Keep learning rate constant for T epochs and then decrease as

follows: 𝑙𝑟𝑡 =𝑙𝑟𝑡−1 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 (e.g. 0.99)

• Decrease as follows: 𝑙𝑟𝑡 =
𝑙𝑟0

1+
𝑡

𝑇

, T is the epoch where the

learning rate is halved

• You can think of many other ways to decay the learning rate

Stavros Petridis Machine Learning (course 395)

Momentum

• It’s usually a good practice to increase the momentum during

training.

• Typically the initial value is 0.5 and the final value is 0.9, 0.95

• Increase is usually linear

• It’s also common to start increasing the momentum when the

learning rate starts decreasing.

Stavros Petridis Machine Learning (course 395)

Weight Initialisation

• We said we start with random weights…but how?

• Some of the most common weight initialisation

techniques are the following:

1. Sample from a gaussian distribution, we need to define mean

(usually 0) and standard deviation (e.g. 0.1 or 0.01)

2. Sample from a uniform distribution, we need to define the

range [-b,b]

3. Sparse initialisation: Use gaussian/uniform distributions to

initialise weights and then set most of them to 0. You need to

define sparsity level, e.g. 0.8 (80% weights in each layer are

set to 0).

Stavros Petridis Machine Learning (course 395)

Weight Initialisation

4. Glorot Initialisation: Sample from a gaussian distribution

with 0 mean and st. dev. = 2/(𝑛1 + 𝑛2)

- n1, n2 are the number of neurons in the previous and next

layers, respectively.

- Glorot, Bengio, Understanding the difficulty of training

deep feedforward neural networks, JMLR, 2010

Stavros Petridis Machine Learning (course 395)

Weight Initialisation

5. He Initialisation: Sample from a gaussian distribution with 0

mean and st. dev. = 2/𝑛1

- n1 is the number of inputs to the neuron (i.e. the size of the

previous layer).

- Designed for neurons which use ReLu as activation

functions.

- He et al., Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification, ICCV 2015

6. You can find many other approaches in the literature

Stavros Petridis Machine Learning (course 395)

Ways to avoid overfitting

• Early stopping (see slide 6)

• L1 Regularisation

• L2 Regularisation

• Dropout

• Data augmentation

Stavros Petridis Machine Learning (course 395)

Early Stopping

• Early stopping: should we use loss or Classification error?

• It’s common that classification error can go down

while the loss goes up!

Stavros Petridis Machine Learning (course 395)

L2 Regularisation

• 𝐸 = 𝐸0 + 0.5 ∗ 𝜆σ𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑤
2

• 𝐸0 is the original error function, e.g., quadratic loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆 we prefer to minimise 𝐸0

• Large 𝜆 we prefer small weights

Stavros Petridis Machine Learning (course 395)

L1 Regularisation

• 𝐸 = 𝐸0 + 𝜆σ𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 |𝑤|

• 𝐸0 is the original error function, e.g., quadratic loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆 we prefer to minimise 𝐸0

• Large 𝜆 we prefer small weights

Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• So what’s the difference between L1 and L2

regularisation?

• L2:
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑤Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑤

• L1:
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑠𝑖𝑔𝑛(𝑤)Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑠𝑖𝑔𝑛(𝑤)

• L1: The weights shrink by a constant amount towards 0

• L2: The weights shrink by an amount proportional to w

• L1 drives small weights to zero

Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• Why small weights prevent overfitting?

• When weights are 0 or close to zero this equivalent to

removing the corresponding connection between the

neurons

• Simpler architecture  avoids overfitting

• Network has the right capacity

• It is like we start with a high capacity (complex) network

until we find a network with the right capacity for the

problem

