Decision Trees & CBC Intro – Lecture Overview

- Problem Representation using a Decision Tree
- ID3 algorithm
- The problem of overfitting
- Research on affective computing, natural HCI, and ambient intelligence
- Facial expressions and Emotions

➤ Overview of the CBC

➤ Group forming
CBC - Goal

• Hands-on experience in implementing and testing basic machine learning techniques

• Work with other team members

➤ CBC = Computer-Based Coursework
Group Forming

• Students will be divided in groups of 4

• Simply fill in the **excel form** with the following information (for each group member):
 - First Name, Last Name, Student login, Email, Course, CID

Group Forming

- This year groups will consist of students that belong to the **same** class.
 - Groups with MSc students only
 - Groups with M.Eng and/or B. Eng students only

- The reason for this is that the 2nd assignment will be different depending on the class you follow.
Group Forming

• Email the excel form by noon Wednesday January 24th
 machinelearningtas@gmail.com

• You will be assigned a TH who will email you informing you about your group number and confirming the members of your group by the end of the week
Group Forming

• 4 members per group, this is a hard limit!
 - In other words, groups of 5, 6, 7, etc are not allowed!!

• If you cannot form a team with 4 members then just email us the above information and we will assign you to a team.
 - Case 1 member: We will add you to a group of 2-3 members
 - Case 2 members: 1-2 more members will be added to your group
 - Case 3 members: 1 member may be added to your group

• We sometimes allow groups of 3 (depends on the number of students who take the course) but generally you should expect that a 4th member will be added by us.

• Once the groups are formed you cannot change groups
External Students

- Follow instructions provided by the department
Tutorial Helpers

- A Tutorial Helper (TH) will be assigned to each group
 - Eftychia Fotiadou
 - Markos Georgopoulos
 - Konstantinos Vougioukas
 - Kritapat Songsri-In
 - Yujiang Wang
 - Pingchuan Ma
 - Bingnan Luo
 - Mengjiao Wang
 - Jie Pu
 - Jiankang Deng
 - Yiming Lin

- If you have any questions about courseworks, marking etc you can ask:
 - Linh
 - Markos

- In the labs you can ask questions to any TH

http://ibug.doc.ic.ac.uk/people
Communication

- Via the website: http://ibug.doc.ic.ac.uk/courses/machine-learning-course-395/
 - CBC Manual (Section Course Material)
 - Provided files, datasets (Section Data and Tools)
 - Tutorials

Course material:
- Example Machine Learning (C395) Exam Questions (pdf file).

Course schedule:
The curriculum schedules 14 class meetings of one hour each. The CBC for this course will mainly be devoted to course work (~50 hours per group of 4 students).

The CBC accounts for 32% of the final grade for the Machine Learning course. In other words, final grade = 0.60*exam_grade + 0.32*CBC_grade + 0.08*survey_completion.

To prepare the exam, attend the CBC and complete the exercises provided during the lectures and those provided at the end of chapters 1, 2, 3, 4, 5, 6, and 9 of Tom Mitchell’s book “Machine Learning.”

COMPUTER BASED COURSEWORK (CBC)

CBC contents:
The CBC is designed to build on lectures by teaching students how to apply ML techniques about which they have been lectured to real-world problems. The CBC will consist of two assignments. All assignments will focus on emotion recognition data on displayed facial expression using decision tree and neural network.

CBC assessment:
Assessment of the CBC work will be conducted based upon the following:
- the quality of the delivered data and that the results are effective and efficient of the delivered data when tested on real (previously unseen) data.
- the quality of the delivered data as measured by the correctness, depth, and breadth of the provided discussion on the evaluation of the performance of the developed ML systems for emotion recognition.

CBC data and tools:
- Decision Tree Coursework: TBA
- Neural Networks Coursework: TBA.

CBC contact:
All Teaching Helpers can be contacted via one email address. If you wish to contact a specific TH, specify the TH’s name in the subject of your email.

Group formation:
Please email us your form through this email address to enroll in CBC. MAX group size is 4.
Communication

- Piazza

- Via email: machinelearningtas@gmail.com

ALWAYS put your group number in the subject line
CBC – Organisation

- Each group must hand in a report of ~4-5 pages (excluding figures) per assignment, including discussion on implementation and answers to questions posed in the manual.

- ONE report per group

- Each group must hand in the code they implemented for each assignment.

- Hand in the code and the reports via CATE.
CBC – Assignment hand in

• Hand in via CATE

 ➢ One group leader per group who submits the report/code and invites the other group members.

 ➢ Each and every group member **individually has to confirm** that s(he) is part of that particular group, for each and every assignment submission (under the pre-determined group leader) before each assignment submission deadline.
Late Submissions

- Up to 24h: Mark is capped to pass (50/40 for MSc/UG students)

- >24h: Mark = 0.

- It’s OK if one member confirms late that he/she belongs to the group.

- If the leader is late then the above penalties apply!!
CBC – Report + Code marking

• The THs will mark your report and provide feedback.

• The THs will test the implemented algorithms using a separate test set (not available to the students).

• We will inform you about the performance of your algorithm on our test set.

• We just want to check that your code runs and your classifier has been properly trained, i.e., it can generalise to unknown data.
Lab Schedule

Assisted Labs (THs present to answer questions), starting on January 25th

- Every Thursday 11:00-13:00, labs 202, 206, 219

- Every Thursday 16:00 – 18:00, labs 202, 206, 219
THs will be here
Deadlines

- Assignment 1: February 12th (Monday) – noon
- Assignment 2: March 5th (Monday) – noon
- Assignment 3: March 9th (Friday) – noon
CBC – Grading

• Every group member is expected to have sufficient contribution to the implementation of every assignment.

• Plagiarism is not allowed!
 Involved groups will be instantly eliminated.
Assignment Grading

<table>
<thead>
<tr>
<th>Report Content</th>
<th>Code</th>
<th>Report Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

\[\text{Group grade} = 0.75 \times \text{report content} + 0.15 \times \text{code} + 0.1 \times \text{report quality} \]

- **Code Mark**: Depends on the performance on the hidden Test set
e.g. for Decision Trees = performance on hidden Test set + 15
 (Max Performance in previous years was 85%)

- **Make sure your code runs. If not you lose 30% of the code mark.**
Assignment Grading

\[CBC_grade = 0.4 \times \text{Grade1} + 0.6 \times \text{Grade2} \]
Machine Learning Grade

CBC Grade
32%

Exam Grade
66.7%

- CBC accounts for 30% of the final grade for the Machine Learning Course. In other words, final grade = 0.667*exam_grade + 0.32*CBC_grade + 0.013*questionnaire.
Questionnaire

• We would like to get some useful feedback about the course from (all) students.

• Feedback on organisation, amount of time spent on the course, etc

 There were 4 hours of lab sessions per week. Do you suggest: (please circle)

 Keep the same More hours Fewer hours

 How many lab sessions did you attend every week? (please circle)

 0 1 2 3 4

• Will be uploaded on CATE as an exercise.

• Doesn’t replace SOLE. You can still provide anonymous feedback on SOLE.
CBC – Emotion Recognition

• Prototypic facial expressions of the six basic emotions were introduced by Charles Darwin (1872) and elaborated by Ekman.

• These prototypic facial expressions can be described in terms of AUs (e.g., surprise \leftrightarrow AU1 + AU2 + AU5 + AU26 / AU27)
Facial Muscle Actions (Action Units - AUs)
CBC – Emotion Recognition

<table>
<thead>
<tr>
<th>Emotion</th>
<th>AUs</th>
<th>Emotion</th>
<th>AUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happy</td>
<td>{12}</td>
<td>Fear</td>
<td>{1,2,4}</td>
</tr>
<tr>
<td></td>
<td>{6,12}</td>
<td></td>
<td>{1,2,4,5,20,25,26,27}</td>
</tr>
<tr>
<td></td>
<td>{1,4}</td>
<td></td>
<td>{1,2,4,5}</td>
</tr>
<tr>
<td></td>
<td>{1,4,11,15}</td>
<td></td>
<td>{1,2,5,25,26,27}</td>
</tr>
<tr>
<td></td>
<td>{1,4,15,17}</td>
<td></td>
<td>{1,2,4,5,26,27}</td>
</tr>
<tr>
<td></td>
<td>{6,15}</td>
<td></td>
<td>{1,2,5,25,26,27}</td>
</tr>
<tr>
<td></td>
<td>{11,17}</td>
<td></td>
<td>{5,20,25,26,27}</td>
</tr>
<tr>
<td></td>
<td>{1}</td>
<td></td>
<td>{5,20}</td>
</tr>
<tr>
<td>Sadness</td>
<td>{1,2,5,26,27}</td>
<td></td>
<td>{20}</td>
</tr>
<tr>
<td></td>
<td>{1,2,5}</td>
<td></td>
<td>{4,5,7,10,22,23,25,26}</td>
</tr>
<tr>
<td></td>
<td>{1,2,26,27}</td>
<td></td>
<td>{4,5,7,10,23,25,26}</td>
</tr>
<tr>
<td></td>
<td>{5,26,27}</td>
<td></td>
<td>{4,5,7,17,23,24}</td>
</tr>
<tr>
<td>Surprise</td>
<td>{9,10,17}</td>
<td>Anger</td>
<td>{4,5,7,23,24}</td>
</tr>
<tr>
<td></td>
<td>{9,10,16,25,26}</td>
<td></td>
<td>{4,5,7}</td>
</tr>
<tr>
<td></td>
<td>{9,10}</td>
<td></td>
<td>{17,24}</td>
</tr>
</tbody>
</table>

$V: \text{AUs} \rightarrow \text{basic-emotions}$

$V': \langle a_1, \ldots, a_{45} \rangle \rightarrow [1..6]$

learning algorithms:
• decision trees (ID3)
• Neural Networks
• Case-based Reasoning

evaluating developed systems:
• t-test
Assignments 1-2 : Overview

• Classification Problem
 - Inputs: \(x \) (*AU vectors or Images*)
 - Desired Output: \(y \) (*Emotion label*)

• Use \(x \) and \(y \) to train your learning algorithms to discriminate between the 6 classes (emotions)

• Evaluate your algorithms using 10-fold cross validation (decision trees) or the holdout method (training/validation/test sets)

• Write a function \(y^{\text{pred}} = \text{testLearner}(T, x) \), which takes your trained learners \(T \) and the features \(x \) and produces a vector of label predictions \(y^{\text{pred}} \)
Training – Validation – Test Sets

- Training Set: Used to train the classifiers
- Validation Set: Used to optimise the parameters of the classifiers - e.g. number of hidden neurons in neural networks
- Test Set: Used to measure the performance of the classifier
N-fold Cross validation

- Initial dataset is partitioned in N folds
- Training + Validation set: N - 1 folds, Test set: 1 fold
- This process is repeated N times → N error estimates
- Final error: Average of the N error estimates

\[\hat{e} = \frac{1}{N} \sum_{i=1}^{N} e_i \]
Assignment 1 : Decision Trees

• Implement and train a decision tree learning algorithm

• Evaluate your trees using 10-fold cross validation

• Write a function $y^{pred} = testTrees(T, x)$, which takes your trained trees T and the features x and produces a vector of label predictions y^{pred}

• You can use Python or Matlab

• Theoretical / Implementation questions
Assignment 2 : Artificial Neural Networks

• Use a Neural Networks to train your networks (UG)

• Write the training functions from scratch (UG/MSc)

• Evaluate your networks on the test set

• Write a function: $y^{\text{pred}} = \text{testANN}(N, x)$, which takes your trained networks N and produces a vector of label predictions y^{pred}.

• You can use Python or Matlab

• Theoretical / Implementation questions
CBC – Tips

• Work together!!! Divide the work, but you should all know how you have implemented your algorithms, why you took some specific decision, etc...

• Make sure your code runs!!

• Make sure you use the new version of the manual (updated yesterday!)

• If you have any complaints (marking, THs etc) contact the course support leader
Group Forming

• Students will be divided in groups of 4 students

• Simply fill in the **excel form** with the following information (for each group member):
 - Student login, email, First Name, Last Name, Course, CID

• You can find the excel form on http://ibug.doc.ic.ac.uk/courses, Section: Group Forming

• Email the **excel form** by noon **Wednesday January 24th**
 machinelearningtas@gmail.com

• If you cannot form a team with 4 members then just email us the above information and we will assign you to a team.