Course 395: Machine Learning

• Lecturers: Maja Pantic (maja@doc.ic.ac.uk)
 Stavros Petridis (sp104@doc.ic.ac.uk)

• Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core of machine learning

• Goal (CBC): To enable hands-on experience with implementing machine learning algorithms (developed using Matlab or Python)

• Material: *Machine Learning* by Tom Mitchell (1997)
 Neural Networks & Deep Learning by Michael Nielsen (2017)
 Manual for completing the CBC

• More Info: https://www.ibug.doc.ic.ac.uk/courses
Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (*M. Pantic*)

• Lecture 3-4: Decision Trees & CBC Intro (*M. Pantic & S. Petridis*)

• Lecture 5-6: Evaluating Hypotheses (*S. Petridis*)

• Lecture 7-8: Artificial Neural Networks I (*S. Petridis*)

• Lecture 9-10: Artificial Neural Networks II (*S. Petridis*)

• Lecture 11-12: Artificial Neural Networks III (*S. Petridis*)

• Lecture 13-14: Instance Based Learning & Genetic Algorithms (*M. Pantic*)
Course 395: Machine Learning - CBC

- Lecture 1-2: Concept Learning
- Lecture 3-4: Decision Trees & CBC Intro
- Lecture 5-6: Evaluating Hypotheses
- Lecture 7-8: Artificial Neural Networks I
- Lecture 9-10: Artificial Neural Networks II
- Lecture 11-12: Artificial Neural Networks III
- Lecture 13-14: Instance Based Learning & Genetic Algorithms
Course 395: Machine Learning

NOTE

CBC accounts for 33.3% of the final grade for the Machine Learning Exam.

\[
\text{final _grade} = \frac{2}{3} \text{exam _ grade} + \frac{1}{3} \text{exam _ grade}
\]
Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning
 - Lecture 3-4: Decision Trees & CBC Intro
 - Lecture 5-6: Evaluating Hypotheses
 - Lecture 7-8: Artificial Neural Networks I
 - Lecture 9-10: Artificial Neural Networks II
 - Lecture 11-12: Artificial Neural Networks III
 - Lecture 13-14: Instance Based Learning & Genetic Algorithms
Concept Learning – Lecture Overview

• Why machine learning?
• Well-posed learning problems
• Designing a machine learning system
• Concept learning task
• Concept learning as Search
• Find-S algorithm
• Candidate-Elimination algorithm
Machine Learning

• Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)

• Machine Learning ↔ Artificial Intelligence
 – Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 – Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn

• Why Machine Learning? ↔ Why Artificial Intelligence?
Machine Learning
Machine Learning

1st
- Mechanization, water power, steam power
- 1800

2nd
- Mass production, assembly line, electricity
- 1900

3rd
- Computer and automation
- 1980

4th
- Cyber Physical Systems
- 2015
Machine Learning

The world will be one in which we can communicate our intent directly and instantly to machines and have very complex outcomes.
Machine Learning

• Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)

• Machine Learning ↔ Artificial Intelligence
 – Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 – Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn

• Why Machine Learning? ↔ Why Artificial Intelligence?
 ≡ To build machines exhibiting intelligent behaviour (i.e., able to reason, predict, and adapt) while helping humans work, study, and entertain themselves
Machine Learning

- Machine Learning \leftrightarrow Artificial Intelligence
- Machine Learning \leftarrow Biology (e.g., Neural Networks, Genetic Algorithms)
- Machine Learning \leftarrow Cognitive Sciences (e.g., Case-based Reasoning)
- Machine Learning \leftarrow Statistics (e.g., Support Vector Machines)
- Machine Learning \leftarrow Probability Theory (e.g., Bayesian Networks)
- Machine Learning \leftarrow Logic (e.g., Inductive Logic Programming)
- Machine Learning \leftarrow Information Theory (e.g., used by Decision Trees)
Machine Learning

• Human Learning ↔ Machine Learning
 – human-logic inspired problem solvers (e.g., rule-based reasoning)
 – biologically inspired problem solvers (e.g., Neural Networks)
 • supervised learning - generates a function that maps inputs to desired outputs
 • unsupervised learning - models a set of inputs, labelled examples are not available
 – learning by education (e.g., reinforcement learning, case-based reasoning)

• General Problem Solvers vs. Purposeful Problem Solvers
 – emulating general-purpose human-like problem solving is impractical
 – restricting the problem domain results in ‘rational’ problem solving
 – example of General Problem Solver: Turing Test
 – examples of Purposeful Problem Solvers: speech recognisers, face recognisers, facial expression recognisers, data mining, games, etc.

• Application domains: security, medicine, education, finances, genetics, etc.
Well-posed Learning Problems

• Def 1 (Mitchell 1997):
 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves by experience E.

• Def 2 (Hadamard 1902):
 A (machine learning) problem is well-posed if a solution to it exists, if that solution is unique, and if that solution depends on the data / experience but it is not sensitive to (reasonably small) changes in the data / experience.
Designing a Machine Learning System

- Target Function V represents the problem to be solved (e.g., choosing the best next move in chess, identifying people, classifying facial expressions into emotion categories).

- $V: D \rightarrow C$ where D is the input state space and C is the set of classes. $V: D \rightarrow [-1, 1]$ is a general target function of a binary classifier.

- Ideal Target Function is usually not known; machine learning algorithms learn an approximation of V, say V'.

- Representation of function V' to be learned should:
 - be as close an approximation of V as possible
 - require (reasonably) small amount of training data to be learned.

- $V'(d) = w_0 + w_1x_1 + \ldots + w_nx_n$ where $\langle x_1 \ldots x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.

- Determine type of training examples
- Determine Target Function
- Choose Target Function Representation
- Choose Learning Algorithm
- Well-posed Problem?
Designing a Machine Learning System

- \(V: D \to C \) where \(D \) is the input state and \(C \) is the set of classes
- \(V: D \to [-1, 1] \) is a general target function of a binary classifier

- \(V'(d) = w_0 + w_1x_1 + ... + w_nx_n \) where \(\langle x_1...x_n\rangle \equiv d \in D \) is an input state. This reduces the problem to learning (the most optimal) weights \(w \).

- Training examples suitable for the given target function representation \(V' \) are pairs \(\langle d, c \rangle \) where \(c \in C \) is the desired output (classification) of the input state \(d \in D \).

- Learning algorithm learns the most optimal set of weights \(w \) (so-called best hypothesis), i.e., the set of weights that best fit the training examples \(\langle d, c \rangle \).

- Learning algorithm is selected based on the availability of training examples (supervised vs. unsupervised), knowledge of the final set of classes \(C \) (offline vs. online, i.e., eager vs. lazy), availability of a tutor (reinforcement learning).

- The learned \(V' \) is then used to solve new instances of the problem.
Concept Learning

• Concept learning
 – supervised, eager learning
 – target problem: whether something belongs to the target concept or not
 – target function: \(V: D \to \{\text{true, false}\} \)

• Underlying idea: Humans acquire general concepts from specific examples (e.g., concepts: beauty, good friend, well-fitting-shoes) (note: each concept can be thought of as Boolean-valued function)

• Concept learning is inferring a Boolean-valued function from training data \(\rightarrow \) concept learning is the prototype binary classification
Concept Learning Task – Notation

• Concept learning task:
 – target concept: Girls who Simon likes
 – target function: \(c: D \rightarrow \{0, 1\} \)
 – data \(d \in D \): Girls, each described in terms of the following attributes
 • \(a_1 \equiv \text{Hair} \) (possible values: blond, brown, black)
 • \(a_2 \equiv \text{Body} \) (possible values: thin, average, plump)
 • \(a_3 \equiv \text{likesSimon} \) (possible values: yes, no)
 • \(a_4 \equiv \text{Pose} \) (possible values: arrogant, natural, goofy)
 • \(a_5 \equiv \text{Smile} \) (possible values: none, pleasant, toothy)
 • \(a_6 \equiv \text{Smart} \) (possible values: yes, no)
 – target f-on representation: \(h \equiv c': \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\} \)
 – training examples \(D \): positive and negative examples of target function \(c \)

• Aim: Find a hypothesis \(h \in H \) such that \((\forall d \in D) h(d) - c(d) < \epsilon \approx 0\), where \(H \) is the set of all possible hypotheses \(h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \), where each \(a_k, k = [1..6] \), may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value.

\[h \equiv \langle ?, ?, ?, ?, ?, ? \rangle \quad h \equiv \langle 0, 0, 0, 0, 0, 0 \rangle \quad h \equiv \langle ?, ?, yes, ?, ?, ? \rangle \]
Concept Learning as Search

- **Concept learning task:**
 - target concept: Girls who Simon likes
 - target function: $c: D \rightarrow \{0, 1\}$
 - data $d \in D$: Girls, each described in terms of the following attributes
 - $a_1 \equiv \text{Hair}$ (possible values: blond, brown, black)
 - $a_2 \equiv \text{Body}$ (possible values: thin, average, plump)
 - $a_3 \equiv \text{likesSimon}$ (possible values: yes, no)
 - $a_4 \equiv \text{Pose}$ (possible values: arrogant, natural, goofy)
 - $a_5 \equiv \text{Smile}$ (possible values: none, pleasant, toothy)
 - $a_6 \equiv \text{Smart}$ (possible values: yes, no)
 - target f-on representation: $h \equiv c': \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\}$
 - training examples D: positive and negative examples of target function c

- **Aim:** Find a hypothesis $h \in H$ such that $(\forall d \in D) \ h(d) - c(d) < \epsilon = 0$, where H is the set of all possible hypotheses $h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$, where each a_k, $k = [1..6]$, may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value.

\[|H| = 1 + 4 \cdot 3 \cdot 4 \cdot 3 \cdot 4 \cdot 3 = 2305 \]

\[h \equiv \langle 0, 0, 0, 0, 0, 0 \rangle \]

\[\text{error rate} \]

\[\text{concept learning} \equiv \text{searching through } H \]
General-to-Specific Ordering

- Many concept learning algorithms utilize general-to-specific ordering of hypotheses

- General-to-Specific Ordering:
 - \(h_1 \) precedes (is more general than) \(h_2 \) \(\iff \) \((\forall d \in D) (h_1(d) = 1) \iff (h_2(d) = 1) \) (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_1 \succ h_2 \))
 - \(h_1 \) and \(h_2 \) are of equal generality \(\iff \) \((\exists d \in D) \{ [(h_1(d) = 1) \rightarrow (h_2(d) = 1)] \land [(h_2(d) = 1) \rightarrow (h_1(d) = 1)] \} \land h_1 \) and \(h_2 \) have equal number of ‘?’ (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_1 =_g h_2 \))
 - \(h_2 \) succeeds (is more specific than) \(h_1 \) \(\iff \) \((\forall d \in D) (h_1(d) = 1) \iff (h_2(d) = 1) \) (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_2 \succeq h_1 \))
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' \geq_h h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

$h \leftarrow \langle 0,0,0,0,0,0 \rangle \quad \rightarrow \quad h \equiv d1 \quad \rightarrow \quad h \leftarrow \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle$
Find-S Algorithm

• Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
• The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

• However,
 – Find-S is sensitive to noise that is (almost always) present in training examples.
 – there is no guarantee that h returned by Find-S is the only h that fits the data.
 – several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 – Why we should prefer most specific hypotheses over, e.g., most general hypotheses?
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' \geq_h h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S $\rightarrow h = \langle$blond, ?, yes, ?, ?, no\rangle BUT $h2 = \langle$blond,?, ?, ?, ?, no\rangle fits D as well
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S $\rightarrow h1 = \langle \text{blond, ?, ?, ?, ?, no} \rangle$ YET $h2 = \langle \text{blond, ?, yes, ?, ?, ?> \rangle$ fits D as well
Candidate-Elimination Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

However,
1. Find-S is sensitive to noise that is (almost always) present in training examples.
2. there is no guarantee that h returned by Find-S is the only h that fits the data.
3. several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed
Candidate-Elimination (C-E) Algorithm

- Main idea: Output a set of hypothesis $VS \subseteq H$ that fit (are consistent) with data D

- Candidate-Elimination (C-E) Algorithm is based upon:
 - general-to-specific ordering of hypotheses
 - $\text{Def:} h$ is consistent (fits) data $D \iff (\forall \langle d, c(d) \rangle) h(d) = c(d)$
 - Def: version space $VS \subseteq H$ is set of all $h \in H$ that are consistent with D

- C-E algorithm defines VS in terms of two boundaries:
 - general boundary $G \subseteq VS$ is a set of all $h \in VS$ that are the most general
 - specific boundary $S \subseteq VS$ is a set of all $h \in VS$ that are the most specific
Candidate-Elimination (C-E) Algorithm

1. Initialise \(G \subseteq VS \) to the most general hypothesis: \(h \leftarrow \langle a_1, \ldots, a_n \rangle, (\forall i) \ a_i = ? \).
 Initialise \(S \subseteq VS \) to the most specific hypothesis: \(h \leftarrow \langle a_1, \ldots, a_n \rangle, (\forall i) \ a_i = 0 \).
2. FOR each training instance \(d \in D \), do:
 IF \(d \) is a positive example
 Remove from \(G \) all \(h \) that are not consistent with \(d \).
 FOR each hypothesis \(s \in S \) that is not consistent with \(d \), do:
 - replace \(s \) with all \(h \) that are consistent with \(d \), \(h >_g s \), \(h \not>_g g \in G \),
 - remove from \(S \) all \(s \) being more general than other \(s \) in \(S \).
 IF \(d \) is a negative example
 Remove from \(S \) all \(h \) that are not consistent with \(d \).
 FOR each hypothesis \(g \in G \) that is not consistent with \(d \), do:
 - replace \(g \) with all \(h \) that are consistent with \(d \), \(g >_g h \), \(h >_g s \in S \),
 - remove from \(G \) all \(g \) being less general than other \(g \) in \(G \).
3. Output hypothesis \(G \) and \(S \).
C-E Algorithm – Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[G_0 \leftarrow \{?, ?, ?, ?, ?, ?\} , \quad S_0 \leftarrow \{0, 0, 0, 0, 0\} \]
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[d_1 \text{ is positive} \rightarrow \text{refine } S\]

\[\text{no } g \in G_0 \text{ is inconsistent with } d_1 \rightarrow G_1 \leftarrow G_0 \equiv \{?, ?, ?, ?, ?, ?\}\]

add to S all minimal generalizations of \(s \in S_0\) such that \(s \in S_1\) is consistent with \(d_1\)

\[S_1 \leftarrow \{\text{blond, thin, yes, arrogant, toothy, no}\}\]
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

d2 is negative → refine G

no s ∈ S₁ is inconsistent with d2 → S₂ ← S₁ ≡ {〈blond, thin, yes, arrogant, toothy, no〉}

add to G all minimal specializations of g ∈ G₁ such that g ∈ G₂ is consistent with d2
G₁ ≡ {〈?, ?, ?, ?, ?, ?〉}
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

d3 is positive → refine S

add to S all minimal generalizations of s ∈ S2 such that s ∈ S3 is consistent with d3
S2 ≡ {⟨blond, thin, yes, arrogant, toothy, no⟩}
S3 ← {⟨blond, ?, yes, ?, ?, no⟩}
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

\[d4 \text{ is negative} \rightarrow \text{refine } G\]

\[\text{no } s \in S_3 \text{ is inconsistent with } d4 \rightarrow S_4 \leftarrow S_3 \equiv \{\langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle \}\]

\[\text{add to } G \text{ all minimal specializations of } g \in G_3 \text{ such that } g \in G_4 \text{ is consistent with } d4\]

\[G_4 \leftarrow \{\langle \text{blond}, ?, ?, ?, ?, ? \rangle, \langle ?, ?, \text{yes}, ?, ?, ? \rangle \}\]
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d5\) is negative \(\rightarrow\) refine \(G\)

no \(s \in S_4\) is inconsistent with \(d4\) \(\rightarrow\) \(S_5 \leftarrow S_4 = \{\langle\text{blond, ?, yes, ?, ?, no}\rangle\}\)

add to \(G\) all minimal specializations of \(g \in G_4\) such that \(g \in G_5\) is consistent with \(d5\)

One \(g \in G_4\) is inconsistent with \(d5\), i.e., \(\langle\text{blond, ?, ?, ?, ?, ?}\rangle\) \(\rightarrow\)
\(G_4 = \{\langle\text{blond, ?, ?, ?, ?, ?}\rangle\} \cup \{\langle\text{?, ?, yes, ?, ?, ?}\rangle\}\)
\(G_5 \leftarrow \{\langle\text{?, ?, yes, ?, ?, ?}\rangle\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output of C-E:

version space of hypotheses \(VS \subseteq H \) *bound with*

specific boundary \(S \equiv \{\langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle\} \) *and*

general boundary \(G \equiv \{\langle ?, ?, \text{yes}, ?, ?, ? \rangle\} \)

Output of Find-S:

most specific hypothesis \(h \equiv \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle \)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output of C-E:

version space of hypotheses $VS \subseteq H$ bound with specific boundary $S \equiv \{\langle blond, ?, yes, ?, ?, no \rangle \}$ and
general boundary $G \equiv \{\langle ?, ?, yes, ?, ?, ? \rangle \}$

$VS \equiv \{\langle ?, ?, yes, ?, ?, ? \rangle , \langle blond, ?, yes, ?, ?, ? \rangle , \langle ?, ?, yes, ?, ?, no \rangle , \langle blond, ?, yes, ?, ?, no \rangle \}$
Concept Learning – Lecture Overview

- Why machine learning?
- Well-posed learning problems
- Designing a machine learning system
- Concept learning task
- Concept learning as Search
- Find-S algorithm
- Candidate-Elimination algorithm
Concept Learning – Practice

- Tom Mitchell’s book – chapter 1 and chapter 2
- Relevant exercises from chapter 1: 1.1, 1.2, 1.3, 1.5
- Relevant exercises from chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5
Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning
- Lecture 3-4: Decision Trees & CBC Intro
- Lecture 5-6: Evaluating Hypotheses
- Lecture 7-8: Artificial Neural Networks I
- Lecture 9-10: Artificial Neural Networks II
- Lecture 11-12: Artificial Neural Networks III
- Lecture 13-14: Instance Based Learning & Genetic Algorithms