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Linear Complexity Self-Attention with 3rd Order
Polynomials

Francesca Babiloni, Ioannis Marras, Jiankang Deng, Filippos Kokkinos, Matteo Maggioni,
Grigorios Chrysos, Philip Torr and Stefanos Zafeiriou

Abstract—Self-attention mechanisms and non-local blocks have become crucial building blocks for state-of-the-art neural
architectures thanks to their unparalleled ability in capturing long-range dependencies in the input. However their cost is quadratic with
the number of spatial positions hence making their use impractical in many real case applications. In this work, we analyze these
methods through a polynomial lens, and we show that self-attention can be seen as a special case of a 3rd order polynomial. Within
this polynomial framework, we are able to design polynomial operators capable of accessing the same data pattern of non-local and
self-attention blocks while reducing the complexity from quadratic to linear. As a result, we propose two modules (Poly-NL and Poly-SA)
that can be used as ”drop-in” replacements for more-complex non-local and self-attention layers in state-of-the-art CNNs and ViT
architectures. Our modules can achieve comparable, if not better, performance across a wide range of computer vision tasks while
keeping a complexity equivalent to a standard linear layer.

Index Terms—self-attention, non-local blocks, transformers, polynomial expansion, neural networks

✦

1 INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) are often at
the core of state-of-the-art methods in computer vision.

However, CNNs suffers from limited receptive field, even
in deep architectures, because interactions between input
features decay exponentially with their distance [1].

Self-attention (SA) [2] and the non-local block (NL) [3]
have been proposed as techniques to extract long-range
dependencies from the input in a position-independent
manner. Specifically, SA adaptively modulates any given
(reference) position using contributions of all the other posi-
tions scaled by their pairwise similarity with the reference.
This has been shown to be an effective strategy to enrich, or
even completely replace, standard convolutional layers in a
wide range of architectures and domains [4], [5], [6], [7], [8],
[9], [10]. However, the effectiveness of these layers relies on
computing similarities between every pair of positions. This
operation has a quadratic cost (with respect to the input-
dimension size) and thus is prohibitive to compute when
input resolution is large and/or computational resources are
limited (e.g., on edge devices).

We establish a new link between the self-attention/non-
local block and polynomial expansions. This new perspec-
tive enables us to design novel operators that are able to
capture the same correlations as the non-local block of [3]
while reducing the computational cost of these blocks from
quadratic to linear without shrinking the receptive field as
done in previous works [11], [12], [13].
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In our preliminary work [14], we frame the NL block as a
special case of 3rd order polynomials, and introduced Poly-
NL. In this work, we perform three significant extensions:
a) we propose Poly-SA, a multi-head self-attention layer
that extends our Poly-NL to fit Vision Transformer (ViT)
architectures, which are widely used across a range of
tasks [15], [10], [16]; b) We provide new insights into the
link between SA/NL and the polynomial expansions (i.e.
Sec. 2), as well as polynomial networks in general; c) We
conduct a thorough evaluation with the newly introduced
proposed Poly-SA, which highlights its ability to work
as low-complexity alternative to standard attention blocks
in several ViT backbones. In addition to these extensions,
we d) provide additional visualizations of the long-term
dependencies captured by our blocks which are able to
intuitively illustrate the inner workings of our method,
and e) we extend the text to discuss limitations for the
interested practitioner. In summary, our contributions can
be summarized as follows:

• We bridge the formulations of high-order
polynomials and attention. In particular, we prove
that self-attention (in the form of non-local blocks)
can be seen as a particular case of general 3rd order
polynomials.

• We propose Poly-NL and Poly-SA, two novel
building blocks for neural networks which can
replace standard NL/SA reducing the complexity
from quadratic to linear.

• We showcase the efficiency and the effectiveness of
our blocks in both CNN and ViT architectures across
a wide range of tasks: image recognition, instance
segmentation, jigsaw puzzle reconstruction, and face
detection.
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2 RELATED WORK

2.1 Multiplicative Interactions

Multiplicative interactions [17], [18] are essential to various
machine learning models such as LSTM, Bilinear layers,
and Higher-order Boltzmann machines. In LSTM [19], [20],
element-wise products are used to fuse representations. In
Bilinear layers [21], [22], [23], [24] feature maps of differ-
ent networks get bilinearly combined together to capture
pairwise interactions. In kth-order Boltzmann machines [25],
[26], [27], kth order multiplicative interactions are used to
define the energy function. These high order interactions
capture diverse interactions between the input elements.
More recently, Π−nets [28] use polynomial expansions as
a function approximator using tensor decompositions [29]
to reduce the number of learnable parameters. A number of
works have demonstrated the separation of polynomial net-
works from regular neural networks and their benefits with
respect to expressivity [30], [17], interpretability [31], learn-
ing high frequency functions [32], and extrapolation [33].

2.2 Attention

Multiplicative interactions are also crucial in the context of
self-attention. Self-attention methods have been proposed
as mechanisms to self-recalibrate feature maps and have
been used either as replacement or addition to traditional
residual blocks [34]. Complementary to our work, some
of these methods accumulate contextual information into
lightweight global-descriptors extrapolating a single scalar
for each spatial position [35], channel [36], [37], channel
and position [38], or region of space [39]. Capturing long-
range spatial dependencies among spatial positions is a
long-standing problem in computer vision [40], [41], [42].
However, it had received little attention until recently in the
context of neural network architectures [3], [2]. Spatial self-
attention modules for neural networks leverage long-range
dependencies of the input and have been used in natural
language processing as well as in computer vision to achieve
state-of-the-art performance in various problems such as
translation [7], question answering [9], classification [8],
[4], segmentation [43], [44], [45], and video processing [6],
among others. Some works focused on extending the scope
of attention by capturing channel correlations [46], [47], [48]
or considering multiple resolutions of the image [49], [5].
Other influential works conducted in the context of archi-
tecture design proved how spatial-self-attention networks
(Transformers) represent a suitable alternative to CNN in
vision [50], [51], [52], [53], [54].

2.3 Reducing Complexity

Despite the undiscussed success of self-attention, recent
works sparked a discussion on its scalability, and on how
to overcome its intrinsic efficiency limitations [55]. Ex-
isting solutions focus on increasing the efficiency of the
similarity operator, for example by reducing the number
of positions attended [56] or using low dimensional la-
tent spaces [57], [58]. Linear-Attention (LA) [59] replaces
the softmax-attention in transformer architectures with a

feature-map dot product while XCiT [60] replaces the com-
putation of the standard attention matrix with a cross-
covariance alternative. These methods linearize complexity
by computing pairwise relations between features instead of
spatial positions. A similar idea in the context of non-local
block can be found in Double Attention network [61] and,
more recently, in Efficient Attention [62]. In a similar spirit,
LatentGNN [63] introduces an additional interaction opera-
tion in the latent space, representing non-local relations via
a mixture of low-rank kernel matrices. Different strategies
investigate alternative kernels for transformer architectures
[64] and propose alternatives of linear complexity by using
random features [65], [66] or kernel learning [67].Lastly, At-
tention Free Transformers [68] uses element-wise multipli-
cation to calculate attention in transformer architectures. In
contrast to previous works, we propose a linear alternative
of the non-local block by framing non-local dependencies as
3rd order interactions.

3 CAPTURING HIGH-ORDER INTERACTIONS IN
NEURAL NETWORKS

We start by introducing notation and background, then
proceed in formalizing the concept of 3rd order interactions.
Our goal is to frame spatial-attention blocks and long-range
interactions as a polynomial expansion.

3.1 Polynomials for Neural Networks.
We follow the notation of Kolda et al. [29]. Vectors are
denoted as lower-case bold letters (e.g. x) and matrices as
upper-case bold letters (e.g. X). The element at position
(i, j) of a matrix X ∈ RI1×I2 can be indicated as x(i,j).
Tensors are identified with bold Euler script letters (e.g. X ).
The order of a tensor is the number of dimensions, also
known as way or mode. Hadamard products are indicated
using the symbol “⊙”. Given two tensors, we define their
double-dot product as the tensor contraction with respect
to the last two indices of the first one and the first two
indices of the second one, identified with the bullet “•”
symbol. For instance, the double-dot product between a
tensor W ∈ RI1×I2···×IN−1×IN and a matrix X ∈ RIN−1×IN

is a tensor of order N - 2, i.e. Y = W • X ∈ RI1···×IN−2 .
Specifically, the element-wise form of the double-dot prod-
uct is expressed as:

y(i1,...,iN−2) =
IN∑

in=1

IN−1∑
in−1=1

w(i1,...,iN−2,in−1,in)x(in−1,in).

In [28], the authors adopted polynomials as layers of
neural networks. Intuitively each element of the output de-
pends on all the elements of the input through a polynomial
function. Formally, the output of the layer is defined as

Y = P (X) =
D∑

d=1

W [d]
d∏

j=1

•X+W[0], (1)

where X and Y are the input and output matrices both
having size I1 × I2, P is a polynomial function of order D,
W [d] ∈ RI1×I2×

∏d
j=1(I1×I2) is a tensor of learnable param-

eters associated with a specific order d ∈ {1, . . . , D}, and
W[0] is a bias matrix of learnable parameters. Note that the
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(a) (b)

Fig. 1: Two views of the Poly-NL block. a) Poly-NL as a non-local self-attention block for neural networks. Gray boxes
represent convolutions of kernel size 1 and an averaging function over the rows. The output of the average pooling
undergoes an expansion before the Hadamard multiplication. b) Poly-NL as a 3rd order polynomial module for neural
networks. In the first box the space of 3rd order interactions is represented as a line of (NC)3 white dots, containing all
possible triplets. The learnable parameters of W [3]

Poly-NL ∈ RN×C×N×C×N×C×N×C weight each triplet x(c,d)x(e,f)x(g,h) by
its importance w(a,b,c,d,e,f,g,h). This is depicted in the second box as a line of colored dots. The output element y(a,b) is the
weighted summation of every triplet. Poly-NL focuses only on a small subset of all order interactions (e.g. 0.025% ), which
is equivalent to assuming a portion of W [3]

Poly-NL values equal to zero.

size of the parameter tensor W [d] increases exponentially
with the order d of the polynomial.

3.2 Higher Order Interactions

To provide some relevant background, we start by de-
scribing higher-order interactions terms for a feature map
X ∈ RH×W×C , where H , W , and C correspond to the
height, the width and the number of channels for the
given input tensor. We consider its folding X ∈ RN×C ,
with vectorized spatial dimensions of size N = HW . A
2nd order polynomial building block for neural networks
captures pairwise dependencies among the elements of X,
by considering their linear combination weighted with a set
of learnable parameters. The general equation for a 2nd order
block can be derived by isolating the 2nd order term (D = 2)
of Eq. (1)

Y =
((

W [2] •X
)
•X

)
, (2)

where W [2] is a tensor of order 6 and dimension
RN×C×N×C×N×C . Note that Eq. (1) acts as a generalization
of a single linear layer, as visible from its element-wise
equation:

y(a,b) =
N∑
c,e

C∑
d,f

w2(a,b,c,d,e,f)
x(c,d)x(e,f). (3)

Analogously, to capture all 3rd order dependencies between
elements of X, we isolate the 3rd order term (D = 3) of
Eq. (1) by assuming W [d] = 0 for d ∈ {0, 1, 2}. As a result,
we obtain a simplified formulation for Eq. (1) as

Y =
(((

W [3] •X
)
•X

)
•X

)
, (4)

where W [3] is a tensor of order 8 and dimension
RN×C×N×C×N×C×N×C . Similarly to the 2nd order case, its
element-wise form is defined as

y(a,b) =
N∑

c,e,g

C∑
d,f,h

w3(a,b,c,d,e,f,g,h)
x(c,d)x(e,f)x(g,h), (5)

which clearly highlights how Eq. (5) includes multiplica-
tion of all possible triplets of the input elements summed
together, i.e.. , all possible 3rd order interactions. As can be
seen from Eq. (5), in a 3rd order polynomial each element
of the output matrix y(a,b) benefits from the contributions
of every possible triplet x(c,d)x(e,f)x(g,h), each weighted by
its unique importance w3(a,b,c,d,e,f,g,h)

, where spatial indexes
a, c, e, g are ranging from 1 to N and channels indexes
b, d, f, h are ranging from 1 to C . The use of W [3] in its
most general form allows to take into account every possible
interaction in the input but, at the same time, it exponen-
tially increases the number of parameters. A major issue
when scaling to higher orders is the exponential growth in
the number of parameters and computational cost. In our
case, the number of parameters in Eq. (1) depends on the
order D of the polynomial and, even without considering
orders lower than D, the parameters required are (NC)D+1

(for instance, the use of D = 3 on an input 1024 × 196
will introduce approximately extra 1021 parameters). The
number of parameters can be reduced by taking into account
prior knowledge about the task or the nature of the input
data [29], [26]. That is, we can select only a limited subset of
all the possible combinations x(c,d)x(e,f)x(g,h) exploiting a
particular structure of the tensor W [3]. For example, assign-
ing the same weight to a group of triplets will guarantee
each of them to have same contribution on the output,
while setting their weight to zero will cancel their impact
altogether. The central idea of this paper is to factor the
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interaction tensor W [3] in a particular way, and extract
only a minimal subset of 3rd order interactions from the
input data. Practically, we replace the interaction tensor with
matrices of smaller size using efficient operators commonly
used in neural networks.

4 METHOD

In this section, we formally describe the proposed non-
local module, called “Poly-NL”, which is a novel operator
capturing the same interactions as the non-local block [3]
at a fraction of the computational cost in both space and
time. Next, we adapt its formulation for Vision Transformers
architectures :“Poly-SA” . Specifically, we first characterize
the specific set of 3rd order interactions associated with non-
local dependencies. Then, we define a method capable of
accessing them without the need to compute the expensive
pairwise similarity matrix. Lastly, we align the formulation
to self-attention for transformers and extend it to allow
spatial adaptivity.

4.1 Poly-NL layer
In [3], the authors introduce the “Non-local block”, a learn-
able layer used to extract long-range dependencies in the in-
put. This block operates on a folded feature map X ∈ RN×C

of N spatial positions and C channels and outputs a matrix
Z of the same dimensionality

Z = Y +X = f(X)g(X) +X (6)

where f : RN×C → RN×N is a pairwise function that
calculates the similarity for each pair of spatial positions,
and g : RN×C → RN×C , is a unary projection function com-
puting a new representation for the input. In the case where
g(X) is a linear embedding and f(X) is a dot-product, the
formulation of the Non-local block can be defined as

YNL =
(
XWθW

⊤
ϕX

⊤
)
(XWg) = XWfX

⊤XWg, (7)

where Wθ,Wϕ,Wg are learnable parameters of dimension
C×C . Formally, the dependencies singled-out by Eq. (7) are
visible by writing the element-wise formulation as:

yNL
(a,b) =

N∑
e

C∑
d,f,h

wf(d,f)
wg(h,b)

x(a,d)x(e,f)x(e,h), (8)

where the scalars wf(d,f)
and wg(h,b)

identify the elements of
the matrices Wf and Wg at given indexes d, f, h, b.
Note that the Non-local block in Eq. (7) can be viewed as
a special case of 3rd order polynomials defined in Eq. (4)
and can be alternatively computed using a special tensor of
parameters W [3]

NL block-sparse, low-rank, and decomposed
through the Wg and Wf matrices. In particular, Eq. (5) co-
incides with Eq. (8) upon choosing weights wNL

3(a,b,c,d,e,f,g,h)

null for every c different from a, g different from e, and
equal to the Non-local block weights in the remaining cases.
The major drawback of this module is its complexity. The
Non-local block generates the output Y by computing
the dot-product between a similarity matrix (XWfX

⊤) ∈
RN×N and the embedded input (XWg) ∈ RN×C . This
matrix multiplication recalibrates the features at all input
positions by aggregating information from all the others.

The pairwise function provides the similarity weights for
the contribution of each position and uses a matrix multipli-
cation along the N dimension. The matrix multiplication on
the N dimension is at the core of the non-local processing
but it introduces a quadratic term in computation that
makes the complexity of this module equal to O(N2).
To address this drawback we propose Poly-NL, a non-local
module that does not need any matrix multiplications along
the spatial dimension N . Analogously to Eq. (6), Poly-NL
takes in input a matrix X ∈ RN×C and outputs a matrix
of the same dimensionality Z, that can be computed as
Z = αX + βYPoly-NL, with the additional α and β learnable
scalars. The matrix YPoly-NL is the core of the Poly-NL layer
and can be written as follows

YPoly-NL =
(
Ψ
(
XW1 ⊙XW2

)
⊙X

)
W3, (9)

where Ψ: RN×C → RN×C is an average pooling fol-
lowed by an expansion function on the spatial positions,
W1,W2,W3 ∈ RC×C are matrices of learnable parameters
and ⊙ indicates an element-wise multiplication.
The set of spatial interactions associated with Poly-NL is
clearly highlighted in its element-wise formula as follows:

y
Poly-NL
(a,b) =

C∑
d,f,h

N∑
e

w′
1(h,d)

w2(f,d)w3(d,b)x(a,d)x(e,f)x(e,h),

(10)
where the values w′

1(h,d)
refer to the parameters of the matrix

W′
1 = W1/N . As visible from the comparison between the

two element-wise formulas, Poly-NL and Non-Local block
modules are closely connected. In the Non-local block, each
element of the output matrix yNL

(a,b) is computed using the
contribution of a set of triplets x(a,d)x(e,f)x(e,h), weighted
using the learnable parameters wf(d,f)

wg(h,b)
. In Poly-NL,

each element of the output matrix is computed using the
contribution of the exact same set of triplets, weighted using a
different set of learnable parameters. Moreover, Poly-NL is
a special case of 3rd order polynomials and can be computed
as in Eq. (4), upon choosing a W [3]

Poly-NL block-sparse and de-
composed by the matrices W1,W2,W3. Nevertheless, the
two modules differ considerably in terms of computational
efficiency. Poly-NL does not need to explicitly compute any
pairwise-function and can be therefore viewed as a linear
complexity alternative to the Non-Local blocks. A diagram
of the proposed module is presented in Figure 1.

4.2 Poly-SA layer
In this section, we discuss and extend our polynomial non-
local module from a transformer perspective. As introduced
in [2] a self-attention block shares the same underlying
attention mechanism with the non-local layer but differs
in the choice of embedding matrices and the similarity
function. The output Y of a self-attention block is computed
as follows:

Y = σ
(
QK⊤/

√
Cq

)
V. (11)

In particular, a self-attention block takes as input a feature
map X ∈ RN×C , of N tokens and C channels. The input is
projected into keys K = XWk, queries Q = XWq and val-
ues V = XWv by the learnable parameters Wk ∈ RC×Cq ,
Wq ∈ RC×Cq , Wv ∈ RC×Cq . In a standard self-attention
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layer, the keys and queries are used to compute an attention
matrix and a softmax normalization function σ is used to ob-
tain the weights on the values. Analogously to the non-local
block, the complexity of Eq. (11) is quadratic with respect to
the input size N and the matrix σ

(
QK⊤/

√
Cq

)
∈ RN×N

holds the similarity among every possible pair of spatial
positions xixj computed with an asymmetric softmax at-
tention kernel. In the remainder of this work, we omit
the channel-wise renormalization term 1/

√
Cq since we

can equivalently renormalize input keys and queries. The
element-wise form of Eq. (11) reads:

y(a,b)=
N∑
e

σ

 C∑
d,f,g

wq(f,g)wk(d,g)
x(a,d)x(e,f)

 C∑
h

x(e,h)wv(h,b)
.

(12)
In order to build a formulation that can consider the

same set of triplets as the original self-attention, while
having linear complexity with respect to both input dimen-
sions, we proceed in two consecutive steps. Firstly, we start
by viewing the attention mechanism of Eq. (11) through
kernelization. We follow the established literature of [64],
[59], [65], [66], [69] and consider a generalized self-attention

YSA = AV =
(
ϕ (Q)ϕ (K)

⊤
)
V, (13)

where the softmax attention matrix of the traditional self-
attention is replaced with a generic similarity matrix A ∈
RN×N . Specifically, here we consider A as a linear dot
product of the rows in Q and K mapped via function
ϕ designed to generate positive similarity measures. The
associative property of matrix multiplications can be used
to decrease the complexity of Eq. (13) :

YSA =
(
ϕ (Q)ϕ (K)

⊤
)
V = ϕ (Q)

(
ϕ (K)

⊤
V
)
= ϕ (Q)B ,

(14)
where the matrix B ∈ RCq×Cq characterizes the relation-
ships among channels. This approximation makes the self-
attention computation linear with respect to N , but also
comes with the disadvantage of losing spatial adaptivity.
In fact, Eq. (14) replaces a spatial mixing layer with an
additional channel mixing block, that can be seen as a
dynamic linear layer with weighting matrix B generated
on the fly. This makes the response of all the layers in
the ViT identical no matter the spatial position considered.
It other words, Eq. (14) has two main characteristics: i)
adapts the response of the layer depending on the input X
ii) mixes all channels contribution together. While the first
property allows for a switch from static to dynamic neural
network [70], the second one is potentially redundant: ViT
architectures already deploy a set of linear layers in their
MLPs. Therefore, as second step to reduce complexity, we
propose to consider only the diagonal of B, that estimates
the ”importance” of each channel, and use this information
to rescale the input:

YPoly−SA = ϕ (Q)Diag(B). (15)

This layer mantains the dynamic aspect of Eq. (14), but
reduces extra computations. Moreover, Eq. (15) has a direct
link with the Poly-NL formulation. Similarly to Eq. (9),

can be computed via average-pooling and element-wise
multiplications only:

YPoly−SA = ϕ (Q)⊙Ψ
(
ϕ (K)⊙V

)
, (16)

where we consider ϕ to be the identity function and there-
fore the similarity kernel to be a linear kernel. Under this
assumption, the element-wise form for Eq. (16) reads:

y
Poly-SA
(a,b) =

N∑
e

C∑
d

C∑
h,f

wk(d,b)
wq(f,b)wv(h,b)

x(e,f)x(e,h)x(a,d).

(17)
From the above equations, it is easy to recognize this formu-
lation as a third-order polynomial block of linear complexity
with respect to N and C . Furthermore, the dependencies
captured by this module closely mimic those considered
in the original self-attention: a side-by-side comparison of
Eq. (12) and Eq. (17) shows how, for both modules, the
output is computed by considering a weighted sum of the
x(e,f)x(e,h)x(a,d) interactions of the input. Nevertheless, due
to its diagonal form, the block of Eq. (16) scales every spatial
position equally and, to be used as an efficient alternative to
self-attention in ViT, still lacks a way to re-introduce spatial
adaptivity in its formulation without losing its low runtime
and memory requirements. We propose to overcome this
problem by using two vectors of learnable parameters,
p1 ∈ RN and p2 ∈ RN , to automatically adjust the
attention quantities to each spatial position. Lastly, to avoid
convergence problems during training, we wrap the value of
the dynamic weights with a sigma normalization function.
In conclusion, the equation for Poly-SA reads

YPoly−SA = Q⊙ p1σ
(
p2

⊤ (K⊙V)
)
. (18)

Compared to Poly-NL, Poly-SA maintains the embed-
dings as proposed in the original self-attention block, it
keeps characteristics of spatial adaptivity, and use a σ nor-
malization functions to ensure training stability. Therefore,
its equation can be naturally extended to the multi-head
case described in [2]. Specifically, to create the multi-head
extensions, the self-attention formula of Poly-SA is first
applied in parallel h times, then the output of each attention
head is concatenated along the channel dimension (resulting
in feature dimension hCv), and finally the concatenated
tensor is projected by Wout ∈ RhCv×C to produce the
output Z = [Y0, . . . ,Yh]Wout ∈ RN×C having same
dimensionality as the input .

5 EXPERIMENTS

In this section, we demonstrate the ability of our modules to
work as a drop-in replacement in existing computer-vision
networks, while leaving the exploration of new transformer
architectures to future work. Specifically, we showcase the
capacity of Poly-NL and Poly-SA to enrich features on
established CNN and ViT backbones.

5.1 Poly-NL for CNNs

We evaluate the proposed Poly-NL on three different tasks:
object detection and instance segmentation on COCO [71],
image classification on ImageNet [72], and face detection
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Fig. 2: Runtime and Peak memory consumption performance comparison between Poly-NL and other non-local methods
executed on a RTX2080 GPU. Poly-NL exhibits lower computational overhead than competing methods, which is of
importance with an increasing number of spatial positions or channels.

Method Att-F (G) Att-P (M) Top-1 Top-5
ResNet-50 0.0 0.0 75.62 92.68
+ NL Block 0.47 2.1 76.09 93.00
+ TESA 0.94 1.0 76.49 93.05
+ LatentGNN 0.13 0.6 75.28 92.33
+ EA 0.11 0.5 75.86 93.02
+ Poly-NL 0.14 0.7 76.30 93.06

(a) ImageNet

Method APb APb
50 APb

75 APm APm50 APm75
MaskR-CNN 37.9 59.2 41.0 34.6 56.0 36.9
+ NL Block 38.8 60.6 42.0 35.4 57.3 37.7
+ TESA 39.5 60.9 43.1 35.4 57.2 37.5
+ LatentGNN 38.9 60.4 42.4 35.3 57.3 37.4
+ EA 38.9 60.3 42.2 35.4 57.2 37.7
+ Poly-NL 39.2 60.8 42.2 35.4 57.4 37.6

(b) COCO

TABLE 1: Results of non-local variants for image classification on ImageNet and instance segmentation on COCO.
Performance metrics are reported next to FLOPS count (Att-F) and parameters count (Att-P) for each attention module,
computed considering an input of size 14× 14× 1024 and using the fvcore package.

on the WIDER FACE dataset [73]. We provide empirical
evidence that Poly-NL outperforms previously proposed
non-local blocks for CNNs while maintaining an optimal
trade-off between efficiency and performance.

5.1.1 Efficiency
We examine the performance of five different layers
(TESA [46], NL [3], LatentGNN [63], EA [62] and Poly-
NL) to showcase how the proposed solution is able to pro-
cess inputs with size unmanageable by other formulations.
Figure 2 depicts the complexity overhead of various non-
local blocks for different sizes of the input matrix X. In
the visualization, we examine both the number of spatial
positions (Figures 2b and 2c) and the number of channels
(as in Figure 2a). We report the runtime on GPU1 (Figure 2a,
2b) as a measure of time complexity and the peak memory
usage on GPU as indicator of space complexity (Figure 2c).
To highlight the impact of computing the non-local interac-
tions, we also include a baseline layer of similar number of
parameters (CONV), where no attention mechanism is used.
Specifically, we pass the input through the same convolution
layers used in a non-local block, but avoid the computation
of the attention formula. All benchmarks were executed on
single individual block for each method on an identical
hardware, under comparable implementations and hyper-
parameters. In particular, we highlight the efficiency trends
of different long-range interactions computations. In partic-
ular, to isolate the contribution of the attention mechanism
in the overall computations, we consider for all methods
a single block with a single head and a channel reduction

1. Test executed on an RTX2080 GPU

factor equal to 1. For each method, the values shown in the
charts are the median of 20 runs. Here, the median is used
to avoid the effect of potential outliers in the estimate. As
can be seen from Figures 2b and 2c, increasing the number
of spatial positions greatly impacts efficiency. Runtimes of
TESA and NL, which both depend quadratically on the
number of spatial positions N , quickly become imprac-
tical, even when N is relatively small. Efficient methods
(EA, LatentGNN, Poly-NL) scale better with increasing N .
Nonetheless, our method holds a competitive advantage in
all cases, due to its lack of any matrix dot-product multi-
plications. As shown in Figure 2a, the number of channels
is linearly proportional to the runtime performance of most
methods, with the notable exception of TESA. However note
that the proposed Poly-NL is considerably faster than the
compared methods especially when the number of channels
becomes significant. Finally, we highlight how Poly-NL is
able to retain access to third order interactions with a
complexity on par with the convolutional block (CONV)
since by design it extracts the set of non-local interactions by
avoiding the explicit computation of any attention matrix.

5.1.2 Classification
We evaluated our method on large-scale image classifica-
tion, using ImageNet dataset [72], counting 1.28M training
images split into 1000 classes. For all the experiments, we
modify a ResNet-50 architecture [34] by inserting a non-
local module at stage Res4 and then train from scratch with
8 GPUs for 90 epochs, using a batch size of 256 and an SGD
optimizer with an initial learning rate of 0.1 and weight-
decay as described in [74]. We compare our method against
four different spatial non-local layers, the original non-
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local block of [3], the efficient LatentGNN variant of [63],
the Efficient Attention of [62] and the recently proposed
TESA [46]. For the NL block we set the number of channels
for the embedding matrices to be half of the input channels.
Similarly, for TESA we a use a channel reduction factor of
2. For the LatentGNN block we use 2 latent kernels, latent
dimension equal 100 and a channel reduction factor of 8. For
EA we use a channel reduction factor of 8, a head count of 1
and softmax normalization. For Poly-NL we use a channel
reduction factor of 4 by placing the block between a con-
volutional bottleneck and a convolutional expansion layers.
Quantitative results are reported in Table (1a) and show the
Top-1 and the Top-5 accuracy for the compared methods.
Beyond the performance metrics, we also report the number
of parameters and FLOPS count for the evaluated methods
using the publicly available fvcore 2 package and assuming
input of N = 14 and C = 1024. Poly-NL achieves the best
performance on Top-5 accuracy, and on Top-1, outperforms
significantly all other non-local neural networks with the
exception of TESA [46], which is however computationally
very demanding.

5.1.3 Instance Segmentation
We tested our method on object detection and instance
segmentation, where the network processes an image and
produces a pixel-wise mask that identifies both the category
and the instance for each object. We use the Mask R-CNN
baseline of [75] trained on MS-COCO 2017 dataset [71],
which consists of 118k images as training set, 5k as valida-
tion set, and 20k as test set. The Mask R-CNN architecture is
composed of a ResNet-FPN backbone for feature extraction
followed by a stage that predicts class and box offsets. We
used as backbones ResNet-50 [34] architectures pre-trained
on ImageNet [72]. We trained with 8 Tesla V-100 GPUs and
2 images per GPU (effective batch size 16) using random
horizontal flip as augmentation during training. We use an
SGD solver with weight decay of 0.0001, momentum of 0.90,
and an initial learning rate of 0.02. All models are trained for
26 epochs with learning rate steps are executed at epoch 16
and 22 with gamma 0.1. In all the experiments, we report
the standard metrics of Average Precision AP , AP50, and
AP75 for both bounding boxes and segmentation masks.

Following prior work, we modify the Mask R-CNN
backbone by adding one non-local layer right before the
last residual block of Res4. This procedure highlights the
ability of non-local blocks to boost features representation
and consequently improve the quality of the candidate
object bounding boxes. We compare our method against
four different spatial non-local layers, the original non-
local block of [3], the efficient LatentGNN variant of [63],
the Efficient Attention of [62] and the recently proposed
TESA [46]. For a fair comparison, we report the results
from our training, achieved using public available source
codes and hyper-parameters as provided by the respective
authors. Quantitative results are summarized in Table 1b.
When compared to the best performing method, TESA [46],
Poly-NL exhibits identical performance in APmask and
slightly lower accuracy for APbox. However, we note that
our proposed method is nearly ×10 faster to compute than

2. https://github.com/facebookresearch/fvcore

TESA at the given resolution. Moreover, compared to the
non-local layer [3] and its efficient variants LatentGNN [63]
and Efficient-Net [62], our method improves performance
by 0.3% ↑ in APbox while keeping linear computational
complexity.

5.1.4 2nd and 3rd Order Methods

In this section we briefly discuss the link between our
polynomial framework for attention and popular building
blocks for neural networks that can be framed as 2nd order
polynomial blocks. We discuss how the use of 2nd order
interactions could boost results on instance segmentation as
well as classification but leave a more thorough exploration
of this link to future work.

As visible in the element-wise formula of Eq. (3), the
use of a block including all possible set of interactions
introduces an intractably high amount of parameters and,
for this reason, no existing layer can possibly implement
such complete formulation. Nevertheless, there are some
building blocks which use a low-rank parameter tensor
W [2] decomposed through smaller matrices, and thus
can be framed as special cases of this general formula.
Specifically, we focus on two blocks closest to our work:
Squeeze and Excitation [36] (SE) and the self-attention block
proposed Global Context Network [37] (GC). Differently
from Poly-NL, which is based on 3rd order interactions,
these blocks process only 2nd order interactions. While
2nd order methods avoid the quadratic complexity of
non-local layers by design, they consider a smaller set of
interactions (i.e.

∑N
c,e

∑C
d,f x(c,d)x(e,f)). To highlight the

importance of higher-level interactions, we provide an
ablation on instance segmentation on COCO in Table 2a.
We followed the protocol described in Section 5.1.3, and
modify a ResNet-50 backbone by adding one extra block
at stage Res4 and ablate on various possible choices. We
consider SE and GC blocks, together with a 2nd adaptation
of our method (as defined in Eq. (9)) obtained by replacing
(XW1 ⊙XW2) by only XW1 (Ours-2nd ord.). This change
makes our block close to SE, with the difference in the
use of non-linearities and pooling functions. It is evident
that in this task, where non-local patterns are crucial,
substituting Poly-NL with 2nd order methods causes a drop
in performance. As visible from Table 2a, our 2nd order
results are on par with SE, but lower than Poly-NL, thus
highlighting the importance of transitioning to 3rd order
interactions. Further, Poly-NL maintains better performance
when compared with GC, which uses the same contribution
for every position and thus lose part of the full interaction
patterns. In contrast to this method, Poly-NL retains access
to every triplet of the original NL providing in return better
performance.
Moreover, we showcase how 2nd and 3rd order interactions
can be used jointly to build more discriminative features.
A lot of possible choices exists of 2nd order blocks, and
the best possible combination of 2nd and 3rd blocks is left
to future work. Here, for the sake of simplicity, we choose
a formulation XWp ∗ X equivalent to ProdPoly block
introduced in [76]. We follow the design of the classification
experiment of Section 5.1.2 and test the contribution of each
layer separately as well as their impact combined together.
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Method APbox APbox50APbox75APmaskAPmask50APmask75

MaskR-CNN (R50) 37.9 59.2 41.0 34.6 56.0 36.9
+SE 38.1 59.5 40.8 34.8 56.3 36.8
+Ours-2nd ord. 38.1 59.3 41.3 34.7 56.1 36.9
+GC 38.8 60.3 42.1 35.2 56.9 37.4
+ Poly-NL 39.2 60.8 42.2 35.4 57.4 37.6

(a) Instance Segmentation (COCO)

Method Top-1 Top-5
ResNet-50 75.62 92.68
+ Poly-NL 76.30 93.06
+ ProdPoly 76.24 93.16
+ both 76.57 93.25

(b) Classification (ImageNet)

TABLE 2: Comparison between Poly-NL and various 2nd order methods on Instance Segmentation (COCO) 2a. Poly-NL
outperforms competitors thanks to the use of 3rd order interactions. On the right 2b, the combinations of Poly-NL and a
2nd order method (Pi-Nets) improve results on ImageNet .

As visible from the results in Table 2b, the use of both 2nd

and 3rd order interactions improve performance over the
baseline, but it is their combination that achieves the best
results, with a 0.95% ↑ in Top − 1 and 0.57% ↑ in Top − 5.
Note that the increase in network complexity is negligible
in this case.

5.2 Poly-SA for Transformers

In a transformer architecture, MLP-based neural networks
are equipped with self-attention blocks, capable of routing
information among distant tokens and integrating long-
range interactions in their output. In this section, we use
the proposed Poly-SA to replace the standard (and more
expensive) formulation of self-attention in various trans-
former architectures. We discuss the differences with respect
to standard self-attention in term of efficiency and present
its application on two different computer vision tasks.

5.2.1 Efficiency
Next, we discuss the time-complexity of Poly-SA and
compare its efficiency with the standard multi-head self-
attention SA [2], the efficient variant XCA [60] and LA [59],
as these are closely related to our work. As a measure of
time-complexity, we report runtime on GPU1 together with
floating-point operations per second, both expressed as a
function of input sizes. Similar to the previous section, we
define the absolute lower complexity bound in this scenario
by reporting the complexity of a linear layer of compara-
ble size (No-SA). In this scenario, XCA, LA and, Poly-SA
keep a linear trend with respect to the input size, while a
standard SA mechanism scales its complexity quadratically.
Nonetheless, as can be seen from Figures 3c and 3b, Poly-SA
outperforms other efficient variants by avoiding the need to
access elements outside the cross-covariance diagonal and
keeps a complexity on par with No-SA, the baseline linear
layer where no attention mechanism is used. In addition,
we showcase the scalability of our method by analyzing
runtime on GPU as a function of the number of channels.
As apparent in Figure 3a, while XCA and LA outperform
standard SA only for C < N , the performance of Poly-
SA is still adjacent to the No-SA lower bound even for
a high number of channels. Nonetheless, compared to an
MLP, Poly-SA is still able to access the same 3rd order
dependencies as a traditional multi-head self-attention.

5.2.2 Classification
We evaluated our Poly-SA block on a set of different state-
of-the-art Vision Transformers. As a setup, we used the

large-scale classification task on the ImageNet dataset, con-
sisting of 1.3M training images, 50K validation images, and
1K object classes. We considered two well-known isotropic
architectures with no downsampling layers and three hi-
erarchical Vision transformer architectures. Concretely, as
isotropic networks, we considered the traditional ViT [50]
trained as in [50] (i.e. DeiT) and the XCiT architecture
of [60]. As hierarchical networks, we selected two pop-
ular 4-stages Transformers, the Swin architecture of [51]
and the MetaFormer architecture of [77]. Lastly, we con-
sidered the popular 3-stages Transformer of CvT [52]. For
every network, we replace all the self-attention (or cross-
covariance self-attention) with our Poly-SA block, leaving
the remaining architecture unchanged. We used the publicly
available code to replicate the original training setup. For
CvT, we considered a stride equal to 1 for the Convolutional
Projection VK. For DeiT and Swin Transformers, we use a
3x3 depthwise convolution as projection layer to mix heads
content together. In the Metaformer architecture SA is used
only in the last two stages. To ensure a fair comparison, we
also implement Poly-SA only on the last two stages in our
variant. We refer to the original papers for the rest of the
architectural hyperparameters and training setup details.
Table 3 reports architecture size, type of the attention block,
parameters count of the architecture and FLOPS used to
compute the attention blocks. It also reports performance
for all the evaluated methods in terms of Top1 accuracy
and shows how, without any hyperparameter and macro-
design change, Poly-SA is capable of working as a drop-in
replacement of traditional blocks in a variety of different
cases. As apparent from the table, Poly-SA reduces the
complexity without drastically compromising performance
in all five architectures. It saves up to 58% of Flops with less
than 2% drop in performance, showing consistent results
among the evaluated architectures. Next, we evaluate the
capacity of our method to provide consistent results across
datasets and architectural sizes. To do so, we fix an archi-
tecture design and evaluate our method on the classification
task using both the small scale dataset of CIFAR-100 and
the large scale dataset of ImageNet. We select the state-
of-the-art architecture XCiT [60] as baseline comparison.
This transformer variant builds on top of the CaiT [53]
network, and integrates convolution, layer-scale and class-
attention modules to the traditional ViT [10]. Moreover, it
replaces traditional self-attention with a cross-covariance
self-attention, which is closely related to our work. As
suggested by the authors, we followed the training setup
as in DeiT [50] and trained for 400 epochs with the AdamW
optimizer. We refer to the original paper for a detailed de-
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Fig. 3: Runtime and Flops comparison between Poly-SA and two other self-attention method executed on a RTX2080 GPU.
Poly-SA exhibits lower computational overhead than competing methods, with a complexity comparable to a linear layer
using no attention mechanism.

Arch Method Size Param (M) Att-Flops (G) Accuracy (T1)

Swin SA Tiny 28.3 2.05 81.28
Swin Poly-SA Tiny 26.1 1.60 (-22%) 80.66 (-1.0%)

XCiT XCA Tiny 6.7 0.57 75.66
XCiT Poly-SA Tiny 6.7 0.39 (-31%) 75.21 (-0.6%)

MetaF. SA Small 16.5 0.74 80.97
MetaF. Poly-SA Small 15.4 0.46 (-38%) 79.57 (-1.7%)

DeiT SA Small 5.7 0.52 72.16
DeiT Poly-SA Small 5.4 0.28 (-46%) 71.48 (-1.0%)

CvT SA Tiny 20.0 3.50 82.3
CvT Poly-SA Tiny 20.0 1.50 (-58%) 81.2 (-1.3%)

TABLE 3: Classification Results of Poly-SA in ViT for Large Scale Classification on Imagenet Dataset. Poly-SA is tested as
a replacement for self-attention (SA) and cross-covariance attention (XCA) in five different transformer architectures: Swin
Transformer [51], XCiT [60], DeiT [50], MetaFormer [77] (MetaF.), CvT [52]. Top1 accuracy is reported next to parameters
count for each architecture (Params) and Flops count for the attention modules (Att-Flops). Poly-SA substantially reduces
complexity of attention block in various ViT architecture while keeping performance close to baseline.

Method Arch Size Top-1 Top-5
XCA XCiT Nano 68.30 88.92
Poly-SA XCiT Nano 68.52 88.88
XCA XCiT Tiny 75.66 92.99
Poly-SA XCiT Tiny 75.21 92.82
XCA XCiT Small 82.11 95.89
Poly-SA XCiT Small 81.50 95.77
XCA XCiT Medium 82.52 95.82
Poly-SA XCiT Medium 82.19 95.79

(a) ImageNet

Method Arch Size Top-1 Top-5
XCA XCiT Nano 71.72 92.78
Poly-SA XCiT Nano 71.27 92.50
XCA XCiT Tiny 76.16 94.57
Poly-SA XCiT Tiny 75.56 94.07
XCA XCiT Small 81.89 95.83
Poly-SA XCiT Small 81.21 95.53
XCA XCiT Medium 81.53 95.45
Poly-SA XCiT Medium 80.70 95.29

(b) CIFAR-100

TABLE 4: Classification Results of Poly-SA tested as a replacement for cross-covariance attention (XCA) in XCiT
transformer architecture [60] of various sizes on two different computer vision datasets. Poly-SA achieves comparable
performance to baseline while reducing complexity of attention mechanism by up to 58%.

scription of this architecture and the related training setup.
We ablate four different network sizes for XCiT and replace
the original XCA block with the proposed Poly-SA, keeping
the remaining architecture unchanged. We experiment with
the “Nano” size (associated with 12 layers 128 channels
and 4 attention heads), the “Tiny” size (with 12 layers
192 channels and 4 attention heads), “Small” (12 layers
384 channels and 8 attention heads) and “Medium” (24
layers 512 channels and 8 attention heads). In addition, we
experiment with the CIFAR-100 dataset with a network of
similar structure where the number of layers fixed at 6 and
the number of channels is: Nano=128, Tiny = 192, Small=384

and Medium=512. The results for CIFAR-100 and ImageNet
are reported on Table 4b and Table 4a, respectively. As
visible from the results, despite using only the information
on the main diagonal, Poly-SA still maintains performances
comparable with XCA, and exhibits consistent performance
across datasets and network sizes.

6 DISCUSSION

This work is the first to link self-attention layers and polyno-
mial blocks. We have provided a comprehensive theoretical
framework for linear complexity attention and extensive
empirical evidence that shows how the proposed Poly-NL
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and Poly-SA modules can replace more-complex non-local
and self-attention layers. Nevertheless, extensions to our
work are still possible. In this section we briefly discuss
potential directions, hoping to open a new interesting line
of research around this topic.

Firstly, the use of different types of interactions within
the self-attention formula is a promising direction. The
spatial self-attention blocks only include NC3 triplets which
is actually a small subset of all the N3C3 possible 3rd order
interactions. For example, even for inputs with small size
N = 82, the percentage of utilized triplets would be less
than 0.025% of the total. Among these, many might not be
very informative, so the question becomes how to efficiently
extract the most meaningful interactions from this expo-
nential space. Moreover, our experiments show how the
inclusion of interactions of order different than the 3rd can
lead to performance improvement. This idea could be fully
developed by exploring how different orders of interactions
interact with each other and whether or not their best config-
uration is related to the specific task at hand. We also want to
use Poly-NL on MindSpore (https://www.mindspore.cn/),
which is a new deep learning computing framework. This
exploration is left for future work. Second, spatial self-
attention only involves one variant of 3rd order polyno-
mials. Future work could explore its relations with other
instances of the general formula or even investigate strate-
gies to automatically decompose the tensor of parameters
W [3] into tractable and meaningful factorizations. Lastly, at
their core, polynomials compute non-linear dependencies
through multiplicative interactions. A complete analysis of
the relation between non-linear interactions and non-linear
activations for deep learning remains an interesting topic to
explore.

7 CONCLUSION

In this work, we cast the non-local block as a 3rd order
polynomial in the form of multiplicative interactions be-
tween spatial locations of the input. Based on this fact, we
propose a novel and fast embodiment of non-local layers
named Poly-NL which is able to capture long-range depen-
dencies equivalently to NL with a complexity that scales
linearly with the size of the input in both computational
complexity and memory requirements. Then, we extend our
formulation to fit in Transformers literature and propose a
multi-head self-attention module named Poly-SA. Poly-NL
consistently outperforms other non-local modules on image
recognition, instance segmentation, and face detection. Poly-
SA achieves an equivalent, if not better, performance than
traditional attention modules for ViT on image recognition
and jigsaw puzzle reconstruction, while significantly reduc-
ing complexity up to the point of being equivalent to a
standard linear layer. We expect our proposed framework
to make a difference on applications where reducing FLOPs
count is of critical importance, such as edge-devices or large-
scale training with low ecological impact.
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