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Abstract

Conventional marker-based optical motion capture
methods rely on scene attenuation (e.g. by infrared-pass
�ltering). This renders the images useless for development
and testing of machine vision methods under natural condi-
tions. Unfortunately, combining, calibrating and synchro-
nising a system for motion capture with a separate camera
is a costly and cumbersome task. To overcome this problem,
we present a framework for ef�cient, omnidirectional head-
pose initialisation and tracking in the presence of missing
and false positive marker detections. As such, it �nally en-
ables easy, accurate and synchronous head-motion capture
as ground truth with or input for other machine vision algo-
rithms.

1. Introduction

Accurate and reliable motion capture is essential to many
applications in the �eld of robotics and natural human be-
haviour analysis. Of the many different methods for motion
capture, the marker-free, passive, computer-vision-based
approaches appear to be the most practical, as they do
not require a person to wear any special clothing, mark-
ers or other equipment [9]. However, there is still a lot
of progress to be made in the accuracy and robustness of
passive computer-vision-based motion capture. Accurate
ground truth pose information is essential for the develop-
ment of motion capture methods. Especially when it comes
to proper evaluation of performance [5]. Furthermore, with
a method to obtain head pose robustly and accurately, other
methods that may bene�t by this information - such as for
facial expression analysis - can already be developed and
tested more easily. This ground truth has to be obtained
using a suf�ciently accurate alternative motion capture sys-
tem.

When capturing naturalistic data for development of un-
obtrusive computer-vision-based motion capture methods,
the method to be used for obtaining the ground truth obvi-
ously has to work in such a naturalistic environment. Ide-

ally, the same camera will be used for obtaining the ground
truth motion as well as for capturing naturalistic recordings
of the target behaviour. Not only does this save the cost of
extra hardware, it also implicitly solves the dif�cult prob-
lem of accurate spatial calibration and time synchronisation
in case two separate data capture systems are used. Unfortu-
nately, optical marker-based methods are aversely affected
by the visual clutter in naturalistic environments. In exist-
ing motion capture systems, this is either solved by letting
the subjects wear black clothing and by using black back-
grounds, or by using markers that emit or re�ect infrared
light together with cameras that �lter out the visual light.
This compromises the usefulness of the obtained data for
research in computer vision aimed at naturalistic environ-
ments.

The framework that we present here attempts to over-
come this problem and achieve marker-based rigid head-
pose estimation in a cluttered, naturalistic environment,
without the need of attenuating visible light. Besides the
advantage that the proposed method works is not bounded
to near-infrared images, it is also not bounded to a speci�c
range of orientations. Provided that the markers are placed
in way that allows the non-occluded view of at least 4 mark-
ers simultaneously, pose can be estimated under any orien-
tation.

The rest of this article is organised as follows. First, we
will overview related work on maker-based motion capture
in section 2. Then our proposed framework is outlined and
described in section 3. In section 4 experimental results
are discussed. Our overall conclusions are summarised in
section 5.

2. Related work

The work that has already been done on optical motion
capture is extensive. An exhaustive overview cannot be pro-
vided here, therefore. Instead, we will limit this survey to
the most important work done on the speci�c problem of
marker-based head-pose estimation.

A practical implementation of marker-based head-pose
estimation has been proposed in [4]. It works with three in-



frared LED markers mounted on a set of glasses. The soft-
ware tool `FreeTrack' uses a similar method of head pose
tracking, and is available online [2]. For the database pre-
sented in [1], the ground truth of head pose was estimated
from 3 green LEDs placed around the face. This required
having a limited intensity of the ambient illumination, as
well as the absence of green colour in the background.

Apart from the method followed in [1], which works un-
der differently restricted conditions, the limitation of cur-
rently proposed methods of optical head motion capture is
that they rely on infrared-emitting markers and having the
visible light attenuated by optical �ltering. This means that
1) the methods will not work in environments with ambient
infrared light, such as the outdoors, and 2) that a separate
camera is needed for capturing ground head motion only.
Another limitation is that the way the LEDs are identi�ed in
the image plane limits the freedom of rotation. The meth-
ods cannot be extended to work with 360 degree rotation.
This is due to ambiguities that are inherent to solving the
2D to 3D pose inference from 3 points. However, merely
adding a forth marker would not help, due to another prob-
lem that the above approaches cannot solve for rotation of
90 degrees or more. This is the problem of 'marker identi�-
cation': To determine which detected marker location in the
image corresponds to which marker of the target structure.

In the OPTOTRAK system (www.ndigital.com), this is
solved by turning on one LED marker at a time. This means
the LED markers need to be synchronised with the camera
system and a series of images is required to estimate the
head-pose. Unless high-speed cameras are used, this ap-
proach reduces the capture speed and causes problems with
motion.

A more �exible solution to the marker-association prob-
lem is by searching for the best match between the known
rigid structure and the detected marker locations. Such
an approach has been adopted by Pintaric and Kaufmann
[7]. Their method allows the use of multiple rigid marker-
ensembles (“targets”) in the same environment. The method
assumes a high contrast of the markers in the infrared light
spectrum and triangulation of detected marker locations be-
tween cameras. Because of the marker identi�cation re-
lies on triangulated point depths, multiple cameras are re-
quired. And similar most of the monocular methods men-
tioned above, it also depends on attenuation of visible light
in order to segment the infrared-re�ecting markers from the
background.

The work presented here is based on the principle of
�nding a unique pattern of markers under a speci�c pose,
as also followed in [7]. However, contrary to [7], the way
we reduce the search space of marker identi�cations works
with a single camera view and is robust to false positive
marker detections. This means that our method is suitable
for monocular pose estimation in applications where visi-
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Figure 1. Head-wearable marker structure. (a) The metal frame.
(b) Detection of the passive white markers under a dif�cult lighting
condition. The estimated locations of markers are indicated with
`*'.

ble light needs to be captured (for other computer vision
methods) and/or ambient infrared light is present (such as
outdoors).

3. Motion Capture Framework

Our motion capture framework consists of several essen-
tial elements, being: (1) A light-weight structure with mark-
ers that can be easily and securely worn on the head, (2) a
camera and the parameters that model its perspective- and
non-linear distortion, (3) a marker-structure model that con-
tains the relative three-dimensional locations of the markers
that need to be tracked, (4) a marker-detection method that
can detect and accurately localise marker-like shapes in an
image with clutter, (5) an ef�cient perspective 3-point pose
estimation procedure, (6) an initialisation procedure that as-
signs the detected marker locations in the image to the cor-
rect markers of the marker-structure, without prior informa-
tion of pose, (7) an ef�cient tracking approach to limit the
complexity of identifying the detected markers when the ap-
proximate pose is already known and (8) a re�nement pro-
cedure to automatically adapt the marker-structure model
when it might be �exed or deformed with respect to the
original model.

3.1. The LightWeight marker structure

The marker structure is formed out of 1.35mm thick gal-
vanised metal wire and nine glued-on `paper balls' of 10mm
diameter. See �gure 1. To make it black and less cold to the
touch, it can be covered by black heat-shrink tubing.

The placement of markers is important, but does not re-
quire a high precision. In fact, a regularity in the placement
introduces ambiguity in point correspondences. Symmetry
causes an ambiguity in the direction from which the pattern
is viewed. The marker structure used in our experiments
has not been optimised for this purpose and has been de-
signed to be used only with angles up to 90 degrees from
frontal view. Fortunately, the imprecision of the structure's



symmetry is large enough for our pose estimation method
to distinguish front from back.

But probably most importantly, the markers should not
easily be occluded by each other, or by a person's head or
hair.

3.2. Obtaining the Prior Models

The initial marker structure model was obtained from a
close-up frontal �ash-photo on a dark background, without
self-occlusions, using a conventional, uncalibrated photo
camera. From this, the individual markers can be easily seg-
mented. The apparent sizes of the markers can be converted
into relative distances. This very rough model is used as
the seed for an iterative re�nement procedure, constrained
by accurately measured physical distances between pairs of
the markers. If a suf�cient amount of accurately measured
point-to-point distances are provided, the converged result
can be a highly accurate three-dimensional model.

The intrinsic calibration of the camera that will be used
for pose estimation can be obtained with a �at regular
checkerboard pattern and a toolbox such as Callab [8], or
the Camera Calibration Toolbox for Matlab of Jean-Yves
Bouguet. To accurately estimate focal length, the images of
the checkerboard pattern must contain signi�cant perspec-
tive distortion, while an accurate estimate of the non-linear
distortion requires that the pattern �lls the whole image.

3.3. Marker Detection and Localisaton

Figure 1 shows the markers and the detected marker lo-
cations in the images. The appearance of the passive mark-
ers depends highly on the illumination. In this example,
most of the light is coming from above, slightly backwards.
This changes the bright areas of the markers to a moon-
like shape on the edge, and causes the detected marker lo-
cations in the image to be shifted from the middle. Because
of this, the estimated 3D marker locations will be shifted by,
at most, 5mm towards the light source (within the radius of
the white spheres). However, such a shift does not neces-
sarily affect the estimation of the head orientation, sinceall
estimated marker locations are shifted similarly when the
markers are lit from the same direction.

The non-distinctive and variable appearance of the mark-
ers makes it dif�cult to rely on local image descriptions such
as SIFT or SURF features. Therefore, we have instead cho-
sen for a generic `bright-spot-�lter', based on the principle
of the Laplacian of Gaussian (LoG) �lter:
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Figure 2. (a) Filter responses for different settings of of the
adaptable marker �lterM (x; f; �;  ), for � = 20 and a dirac pulse
1D image functionf (x) = � (x). The response of the comparable
LoG �lter L (x; f; � ) with � = �=

p
3 is shown as well. (b) Root

mean square error (rmse) of marker detection and localisation,
measured from the two-dimensional euclidean distances between
estimated locationsps and the true marker location. Marker detec-
tion was done in synthetically generated images, of disk shapes on
randomised backgrounds. Results with the proposed marker �lter
M (x ; f; 20;  ) are shown for different values of . The result with
a comparable LoG �lterL � (x ; f; 12=

p
3) is shown as well.

M computes the difference between the value of the
Gaussian-�ltered imagef at positionx and the maximum
value at eight points on a circle with radius� aroundx.
� corresponds to the maximum radius of a disk-shape for
which this �lter is expected to work well.G(x; f; � ) is a
two-dimensional Gaussian �ltering of imagef with stan-
dard deviation� .

Figure 2 (a) shows the responses ofM (x; f; �;  ) to a
dirac pulse, for different values of and a� = 20 pixels,
compared to a LoG �lterL (x; f; � ) with scale� = �=

p
3.

The parameter allows a trade-off between invariance to
the size of a disk-shaped marker with a radius smaller than
� (when = 0 ), or having less in�uence of clutter around a
marker on the estimated location (when ! 1).

The optimal value of was determined experimentally



on synthetic images of disk shapes with random back-
ground clutter. The results of marker localisation with
M (x; f; �;  ) are shown in �gure 2 (b) for� = 20 pixels
and several values of . With a small , the accuracy for
smaller markers is increased. But if is too small, the �lter
becomes sensitive to the background clutter when it is ap-
plied to larger markers. We have repeated the experiments
for different values of� , and always found the best trade-off
around = 0 :3. � can be intuitively chosen as the maxi-
mum marker radius that can be expected in the image.

The precise locationpm of the local maximum of
M (x; f; �;  ) is still in�uenced by the surrounding back-
ground clutter. To get a better estimate, the closest local
maximumpg is found in the intermediate two-dimensional
Gaussian �lteringG(x; f; � ). A sub-pixel correctionc of
the marker location is determined separately for the hori-
zontal and vertical dimension, by �rst-order linear approxi-
mation, using the slopes ofG on both sides ofpg:

c = ( ca + cb)=2; (2)

ca = ( � b � � a)=2da ; (3)

cb = ( � b � � a)=2db; (4)

� a = ( g(� ) + g(� + 1)) =2; (5)

� b = ( g(� � ) + g(� � � 1))=2; (6)

da = g(� ) � g(� + 1) ; (7)

db = g(� � ) � g(� � � 1): (8)

Here, � 2 f 1; 2; : : :g is the distance at which both slopes
are measured andg(i ) is a measure from the output of the
two-dimensional Gaussian �ltering atpg + i , with pg being
the pixel location of the local peak inG. This estimation is
based on the assumption thatg(i ) is the shifted version of
a symmetrical functiong0(i ), strictly increasing and differ-
entiable fori < 0 and strictly decreasing and differentiable
for i > 0. For a small horizontal shift ofg0, the difference
between values at any symmetric pair of locations around 0,
approximates2� the local derivative on either side. Equa-
tion 2 reduces the effect of violating this assumption, by
averaging the two estimationsca andcb. Note that this es-
timation does not require concavity, nor differentiability, at
the peak location ofg.

To prevent erratic results when numerical derivativesda

or da are close to 0,c is clipped to[� 0:5; 0:5]. Robustness
of c to such errors depends on the choice of� . We have
found� = 2 to be a good trade-off between robustness and
accuracy, although the differences from using different�
are small.

3.4. Ef�cient Perspective 3Point Pose Estimation

Three is the minimum amount of points necessary to
estimate three-dimensional pose (location and orientation)
from two-dimensional image locations. Closed-form solu-

(a)

(b)

Figure 3. Reference camera orientations for triplets of points of the
marker structure model. The six camera views for each triplet are
centered around the mean location of the three points and perpen-
dicular to the three different edges, from both sides in the plane
spanned by the triangle. (a) shows the six views for the most equi-
lateral triangle, (b) the 72 views for the 12 most equilateral trian-
gles

tions can narrow the estimation down to, at most, four pos-
sible poses. However, they are known to be inef�cient [6].
On the other hand, iterative algorithms require a good initial
estimate.

Our approach to 3-point pose estimation is based on two
important observations. First of all, out-of-camera-plane ro-
tation cannot be estimated accurately when the three points
are equidistant to the camera plane, since, from such a pose,
any out-of-plane orientation change contributes to negligi-
ble change in image locations. Secondly, (near) co-linearity
of the points causes pose ambiguity. This means that the
computational effort can best be spent on the sets of three
points that form (near) equilateral triangles with their face
oriented dominantly along the camera viewing axis.

To obtain an initial pose estimate, a reference view is
chosen from one of six pre-de�ned views for the respective
triplet of points, as shown in �gure 3 (a). The choice is nar-
rowed to two views, by choosing the views perpendicular
to the triplet's edge that appears the largest in the image. A



deviation from the reference pose is estimated using sim-
ple geometry that neglects perspective distortion. This ini-
tial guess is re�ned using the iterative Levenberg-Marquardt
method.

The validity of both options is tested against one or more
additional detected marker locations in the image. The loca-
tions of the nine points of the marker structure model should
correspond to detected marker locations in the image, when
the model is projected using the estimated pose. More de-
tails follow in section 3.5.

3.5. Pose Initialisation

Because the associations of detected marker candidates
in the images with the marker structure model are not
known initially, a search strategy should be applied to
choose from all possible associations. Because all markers
look similar in the image, they cannot be directly related
to the correct points of the three-dimensional marker struc-
ture. Instead, we use a sampling consensus approach based
on the 3-point method described in paragraph 3.4.

A minimal number of inliers must be set to ensure the
validity of a sample, while preventing to confuse any incor-
rect association with detected marker locations in the image.
This number can be anywhere between 4 and the number
of markers in the structure. The minimum required num-
ber of non-occluded markers depends on the set range for
inlier detection in the image. The more strict this can be
set, the lower the number of inliers are required to prevent
false point-association. The required tolerance for inlier de-
tection depends on the accuracy of marker localisation in
the image, the accuracy of the camera calibration and the
accuracy of the marker-structure model. Especially before
re�nement of the marker-structure model, the tolerance for
image locations needs to be set high, which consequently
requires to raise the limit on the number of non-occluded
markers.

The 84 possible combinations of 3 points out of 9 mark-
ers is reduced to a smaller set, between 10 or 20 triplets. As
shown in �gure 3 (b), 12 triplets already give a full cover-
age of the sphere of possible viewing directions and even
some redundancy to handle occlusions. Still, the number
of possible correspondences with image points is large. To
reduce the number of image points, only moving points are
considered during the initialisation step. This excludes false
marker detections in a static background.

A further reduction in computation time per frame is
achieved by spreading the search for triplets over multiple
frames. It is better to take more frames to do the pose initial-
isation than to spend a long time on the correct initialisation
in one frame. An initialisation will be useless if it does not
represent an accurate prior for tracking in the next frame
that is processed. The upper right image in �gure 4 shows
the �rst frame in which the pose has succesfully initialised

(frame number 16). Frame number 15 is shown to the left.

3.6. Pose Tracking

Contrary to the pose initialisation explained in paragraph
3.5, during tracking, all of the 84 combinations of three
markers are considered. Instead, the search for the cor-
rect associations of triplets is reduced in two different ways.
First of all, for each of the three points in a marker triplet,
only those detected marker locations are considered that
are close to the back-projected locations of the estimated
marker locations in the previous frame. Secondly, the es-
timated 3-point pose is rejected before even considering to
validate it, if it is not close to the previous pose, both in
location as well as orientation. This does not only reduce
the possibility of false matches, but also reduces the valu-
able step of comparing back-projected model points to im-
age point locations to evaluate the number of inliers.

Instead of pre-computing a rough pose estimate, the pose
of the previous frame is now used as the initial pose for the
Levenberg-Marquardt optimisation.

3.7. Marker Structure Re�nement

Because the marker structure is �exible to allow a com-
fortable �t on different heads, the marker structure will be
slightly different every time it is used. To ensure accurate
and robust tracking, the marker-structure model has to be
re�ned automatically. This is done by collecting poses and
corresponding image locations where all markers are visible
and detected in the image. The estimated poses and the orig-
inal (imprecise) marker structure are then used as an initial
guess for multi-view bundle adjustment that re�nes both the
estimated poses as well as the structure. If necessary, this
process can be repeated several times, or the marker struc-
ture can be updated continuously during tracking.

4. Results and Discussion

The robustness and accuracy of our proposed motion
capture framework is demonstrated in �gure 4. The results
of head pose tracking are shown for 15 frames in a video
sequence of 9.4 seconds, recorded at 60 frames per second
at a resolution of 780x580 pixels. The video sequence can
be viewed online at [3]. The tracking was successfully ini-
tialised in frame 16, shown in the top right (with frame 15
to its left). Although the marker structure was designed for
frontal view estimation, it works for a 360 degree rotation.
The current suboptimal implementation in Matlab runs at
17 frames per second on a 2GHz quad core PC. This al-
ready allows for real-time motion capture of some slower
movements.

Many improvements can be added to the proposed
framework to increase accuracy or robustness. First of all,
the sequence of estimated poses can be �ltered to eliminate
jitter that comes from changes in the set of markers that are



Figure 4. Frame results of head motion capture in a 9.4 seconds sequence, recorded at 60 frames per second and 780x580 pixels. Chrono-
logical order is from left to right and top to bottom. The 30 orless brightest detected marker locations are indicated with the smallest,
yellow asterisks. The trails of moving markers are marked with larger, red asterisks. The 9 back-projected locations ofthe posed marker
structure are indicated with the largest, blue asterisks. Awhite square indicates the estimated 3D pose of the face, relative to the marker
structure and back-projected onto the image. The video sequence can be viewed online at [3].



included in the pose estimation. Secondly, an odd-one-out
veri�cation step may be added that rejects proposed marker
locations with a deviating image-appearance. Thirdly, an
automatic registration has to be added that accurately aligns
facial points to the marker structure. When rigid facial
points are detected and tracked in several frames under dif-
ferent head poses, their three-dimensional locations can be
estimated using the estimated rigid head motion.

5. Conclusions

We have proposed a framework for monocular marker-
based head-pose estimation that works under natural illu-
mination and any orientation that leaves at least 4 mark-
ers unoccluded. The framework combines an ef�cient auto-
matic pose initialisation with an ef�cient and robust track-
ing approach, as well as an automatic model-re�nement
procedure. We have discussed considerations and choices
of how to reduce complexity or increase accuracy and ro-
bustness in each of the framework elements. Furthermore,
we have demonstrated successful tracking under fast 360
degree head motion.
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