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Abstract. Incomplete patient data is a substantial problem that is not sufficiently
addressed in current clinical research. Many published methods assume both
completeness and validity of study data. However, this assumption is often vi-
olated as individual features might be unavailable due to missing patient exami-
nation or distorted/wrong due to inaccurate measurements or human error. In this
work we propose to use the Latent Tree (LT) generative model to address current
limitations due to missing data. We show on 491 subjects of a challenging de-
mentia dataset that LT feature estimation is more robust towards incomplete data
as compared to mean or Gaussian Mixture Model imputation and has a syner-
gistic effect when combined with common classifiers (we use SVM as example).
We show that LTs allow the inclusion of incomplete samples into classifier train-
ing. Using LTs, we obtain a balanced accuracy of 62% for the classification of
all patients into five distinct dementia types even though 20% of the features are
missing in both training and testing data (68% on complete data). Further, we
confirm the potential of LTs to detect outlier samples within the dataset.
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1 Introduction

The accurate diagnosis of neurodegenerative diseases is a prerequisite to apply efficient
treatment strategies, insofar as available, or recruit homogeneous study cohorts [6].
Many studies have shown that visually assessed criteria and a battery of quantitative
features extracted from brain magnetic resonance imaging (MRI) have the potential
to discriminate between different types of dementia [2]. Most published studies that
address this classification problem assume a complete data set in the sense that all fea-
tures are available for all samples. In practice this assumption does not hold as certain
examinations might have been missed due to high measurement cost or missing patient
consent [13]. However, many discriminative classifiers, such as SVMs, require training
and testing data where a full set of features is available for every sample.

A common strategy to account for unavailable features is the removal of incom-
plete samples from the study cohort [14, 13]. However, the exclusion of data does not



Fig. 1: A data model is trained using the mean (blue), GMMs (orange) or LTs (yellow)
to complete missing data (red). The trained models are employed to estimate miss-
ing features in the training/testing data. A discriminative classifier (e.g. SVM) is then
trained and employed for testing on samples with the complete feature set available.

only reduce statistical power, but is also of ethical concern as acquired subject data
remains unused. Other proposed approaches rely on feature imputation, such as replac-
ing a missing feature with the feature’s mean, or model-based feature estimation using
Gaussian Mixture Models (GMMs) [12, 14, 11, 7]. In so-called “hot-deck” imputation
missing features are replaced by those of similar complete samples [14]. Feature im-
putation can also be considered as a matrix completion problem [3, 13] or tackled with
genetic algorithms and neural networks [1, 11]. Care needs to be taken when features
are not missing at random to avoid the introduction of bias [7, 15]. The performance of
imputation approaches is ideally assessed by both the feature error and the classification
accuracy on the imputed features. The latter is usually the main objective [7, 15].

In this paper, we adapt the recently developed Latent Tree (LT) structure learning1

[9] to estimate missing features before applying a discriminative classifier. The pro-
posed approach is applicable to the two common scenarios where features are missing
in (1) the testing data or (2) both in the training and testing data. The basic idea of the
approach is summarised in Fig.1. LT learns a hierarchical model of latent variables and
thus is able to discover a hidden dependence structure within the features. In contrast,
GMMs assume that all features depend on a single latent variable. LTs can thus exploits
the learned structure to provide more accurate estimates of missing features. In com-
parison to other LT learning methods [8, 5], the approach of [9] poses less restrictions
on the features (distribution, tree structure) while allowing for an efficient optimisation.

The main contributions of this paper are a) formulation of the LT model to be train-
able on incomplete data; b) feature imputation using LTs and subsequent combination
with a discriminative classifier (SVM); c) evaluation on a novel dementia cohort for the
differential diagnosis of five dementia types under missing features; d) proof of concept
that LTs are suitable to detect candidate outlier samples within the data set.

In Sec.2, we describe a LT model that can handle missing data. In Sec.3 we compare
its performance to a baseline mean imputation and the widely used GMM estimation.

1 Implementation available at: https://github.com/kaltwang/2015latent



2 Method

This work addresses the classification problem of inferring the disease condition state y
from M features X = {x1, ...,xM}, while only an observed subset of the features O ⊆ X
is available. Each feature xm (m ∈ {1, ...,M}) can either be continuous (for attributes
like structural volumes) or categorical with the number of states Km (for attributes like
gender). Which features are observed, i.e. the composition of O, varies between samples
and is unknown a-priori for the testing data. Since any feature might be missing in any
of the samples, it is not possible to find a subset of features that is observed for all
samples. Only in case of complete data (i.e. O = X), we can use any of the established
classification methods (in this work we use SVM). Thus we propose to complete the
partial data O → X first using LT and then classify X → y using SVM.

Let the unobserved set of features be U = X \O. We proceed by training LT to
model the density p(X), i.e. we treat each xm as a random variable. During testing, the
observed features O are completed by inferring the unseen features U using the maxi-
mum likelihood solution upred

m = argmaxum p(um|O) for each um ∈ U. Once all features
are completed, we can proceed with established classification methods to obtain y.

2.1 Latent Trees (LT)

LT specifies a graphical model to represent the distribution p(X), by introducing ad-
ditional latent random variables H = {h1, ...,hL}. Each node of the graphical model
corresponds to a single variable from X∪H and edges correspond to conditional prob-
ability distributions. In order to keep inference tractable, the graph structure is limited
to a tree. All xm are leaves of the tree and the distribution of each node xm or hl is con-
ditioned on its parent hP(m) or hP(l), respectively (l ∈ {1, ...,L}). The tree structure is
learned from data and represented by the function P(.), which assigns the parent to each
node or the empty set /0 if the node is a root. For discrete observed nodes and hidden
nodes hl , the conditional distribution is categorical:

p(hl |hP(l) = k) = Cat(hl ;µk,l), (1)

Here k ∈ {1, ...,K}, Cat(h;µ) is a categorical distribution over h ∈ {1, ...,K} with the
parameter µ ∈ RK , µ(k) ≥ 0 and ∑k µ(k) = 1. For observed nodes K is determined by
the feature type (cf. Sec. 3.1) and for all hidden nodes K is set to Khid. The conditional
distribution is Gaussian for continuous observed nodes xm:

p(xm|hP(m) = k) = N (xm;µk,m,σ
2
k,m), (2)

Here N (x;µ,σ2) is a Gaussian distribution over x ∈ R with mean µ ∈ R and variance
σ2 ∈ R+. The tree root hr has no parent and therefore is not conditioned on another
node, which means that the distribution is a prior: p(hr|hP(r)) = p(hr| /0) = Cat(hr;µr).
Then the joint distribution of the whole tree is

p(X,H) = ∏m,l p(xm|hP(m))p(hl |hP(l)) (3)
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Fig. 2: Example LT and GMM structure for four feature variables x1, ...,x4. Here, LT
has learned three latent variables, whereas GMM always includes only a single latent
variable. The rightmost edges are labeled with the conditional probability distributions.

Given N datapoints X(1), ...,X(N), the marginal log-likelihood of the complete data is

L = ∑n ln p(X(n)) = ∑n ln∑H p(X(n),H) (4)

LT training optimises L on the training data by applying a structural EM procedure, that
iteratively optimises the tree structure and the parameters of the conditional probability
distributions, for details see [9]. An example tree structure is shown in Fig.2.

The application of LT in this work differs from [9] in three ways: (1) we use LT
to predict features and not to classify the disease target (for this we use SVM), (2) we
adapt LT to handle missing features rather than noisy features that have been replaced
by a random value, and (3) we deal with missing features during both the training and
testing stages of the model. In contrast, [9] only induces noisy features in the test data.

2.2 Handling of Missing Data

LT (and GMM) handle missing variables U by treating them as latent variables (equiv-
alent to H) and derive p(um|O) during inference. For predicting the missing variables,
the maximum likelihood estimate is obtained as specified in Sec.2. Since the parameter
and structure learning algorithms only depend on the posterior marginal distributions
obtained from inference, it is sufficient for the LT algorithm to deal with missing vari-
ables at the inference step. Treating missing values U(n) as latent variables leads to the
modified log-likelihood optimisation target

L = ∑n ln∑H,U(n) p(O(n),U(n),H) (5)

In the complete data case (i.e. O(n) = X(n) and U(n) = /0,∀n) Eq.5 is equivalent to Eq.4.

3 Experiments

3.1 Data and Setup

We study a total of 491 patients2 from the Amsterdam Dementia Cohort who had visited
the Alzheimer center of the VU University Medical Center. Images were acquired on

2 The dataset consists of 504 patients, 13 patients were excluded due to missing reference fea-
tures that are required for the performed quantitative evaluation.



Table 1: Overview over patient data with reference diagnosis and age.
Total SCD AD FTD DLB VaD

N (♀) 491 (217) 116 (44) 219 (118) 89 (40) 47 (6) 20 (9)
Age (SD) 64 (± 8) 60 (±9) 66 (± 7) 63 (±7) 68 (±9) 69 (±6)

MRI scanners at the field strengths 1, 1.5 or 3 T. All patients underwent a standardised
work-up including a lumbar puncture and a battery of neurological and neuropsycho-
logical markers. Patients were subsequently diagnosed in a multidisciplinary consen-
sus meeting in 5 categories: subjective cognitive decline (SCD), Alzheimer’s Dementia
(AD), Frontotemporal-Lobe Dementia (FTD), Dementia with Lewy Bodies (DLB) and
Vascular Dementia (VaD) according to standardised criteria. A detailed description of
the data and the employed clinical disease criteria can be found in [10]. A brief overview
and the distribution of the data is summarised in Tab.1. For our experiments we con-
sider 31 features in total, which are grouped in two sets: The first set (VIS) contains
13 biomarkers assessed during the clinical visit, and the second set (IMG) includes 18
features automatically derived from the MRI scans. In detail, the sets contain:

– VIS: Age, Gender (Categorical variable: K=2), Verhage 7-point scale for educa-
tion (K=7), years of education (YoE), mini-mental state examination (MMSE),
Amyloid-β42, ApoE4 genotype (K=5), Fazekas Score (K=4), presence of lacunes
in basal ganglia (K=2), presence of infarcts (K=2), 3 manually assessed atrophy
measures (K=5, for left/right medial temporal lobe and global cortex)

– IMG: 15 unnormalised volume measures (left/right/total HC, l/r Amy, l/r Ent, l/r
inf lat Vent, l/r lat Vent, 3rd/4th Vent, l/r WM), 3 vascular burden measures (WM
hyper-intensities total/adj., lacunar infarcts volume)

The data contains dependencies between features (e.g. between structural volumes),
which LT is able to encode to enable an improved imputation.

All experiments were evaluated with five repetitions (to account for random model
initialisation) of five configurations (to account for randomly removed features) of a
10-fold cross-validation (CV), leading to 250 evaluations in total. Paired, two-sided
Student’s t-tests were calculated on the results of the five configurations averaged over
the five repetitions. Significant differences between LT/GMM and mean imputation
(p < 0.05m/0.001M) or between LT and GMM (g/G) are indicated respectively.

For the 5-class classification problem we employ libSVM [4] (linear, cost=0.1) and
calculate the balanced accuracy as bACC = 1

5 ∑rows
Mr,r

∑columns Mr,c
from the confusion ma-

trix M. Here, features were normalised (zero-mean, unit-variance) based on the respec-
tive training data. The model parameter Khid ∈ [2;20] was chosen for εtest=0.5 (cf. Sec.
3.2) and set to the optimum value of Khid = 16 for GMM and Khid = 5 for LT. We
compare LT with the baseline methods (1) mean imputation (Mean) and (2) GMM.

3.2 Predicting Missing Features

In a first experiment we investigate the performance of LTs to predict missing features.
We simulated missing features by randomly removing a fraction εtest of features of the



Table 2: Prediction error as σall
m × NRMSEm of selected features using mean, GMM or

LT for feature completion with 20/50/70% missing features in testing data.
MMSE YofE HC [mm3]

Mean 5.2 2.8 651.8
GMM 4.7 m 2.7 476.0 M

LT 4.6 m 1.2 M ,G 226.6 M ,G

20% missing in testing

MMSE YofE HC [mm3]

Mean 5.1 2.9 669.8
GMM 4.7 M 2.8 m 488.6 M

LT 4.6 M 2.0 M ,G 305.3 M ,G

50% missing in testing

MMSE YofE HC [mm3]

Mean 5.1 2.9 671.2
GMM 4.7 M 2.8 m 488.0 M

LT 4.7 M 2.4 M ,G 404.0 M ,G

70% missing in testing

testing data. The random selection of features to remove is applied per sample, i.e. each
sample now includes different features. We measure the prediction error with respect
to the true value of the removed features (utrue

n,m) by the normalised root mean squared
error (NRMSE). The NRMSE is calculated for each feature xm over all N samples as

NRMSEm=
√

1
N ∑n(ũtrue

n,m − ũpred
n,m )2, where ũn,m = (un,m −µall

m )/σall
m denotes feature m of

sample n normalised by the feature statistics (µall
m ,σall

m ) calculated on the whole dataset.
The NRMSE is an error measure relative to the standard deviation σall

m of each feature.
E.g. an NRMSE of 0.5 means that the expected prediction error is 50% of σall

m . For
selected features the NRMSE is summarised in Tab.2. The prediction error with respect
to εtest is illustrated in Fig.3. LT significantly improves feature imputation as compared
to mean replacement and GMMs. The advantage of LT reduces with increasing εtest as
not sufficient information remains to leverage the learned structure.

3.3 Disease Classification

We explored the effect of improved feature imputation on classification accuracy. We
simulated missing features as in Sec.3.2, but now either in the testing set εtest or in
all available data εall. Classification results and NRMSE for varying εtest are shown in
Fig.3 for mean, GMM and LT feature imputation. All approaches yield 68% accuracy
on complete data and drop to 20% when all features are missing, equivalent to a random
guess of five classes. For an increasing εtest the NRMSE approaches 1, which means that
the standard deviation of the error becomes equivalent to σall

m of the respective feature.
Classification accuracies for varying εtest and εall are shown in Tab. 3. With 50% of
the features missing in both training and testing data, LT imputation still allows a high
accuracy of 56.6% (58.6% if trained on complete data). The SVM model can better
account for mean replacement during testing when it is also trained on mean-replaced
data. This leads to a 8% increase at εall=50% in comparison to clean training data, even
outperforming GMM. LT consistently outperforms both reference methods.

3.4 Application: Detection of Samples with Inconsistent Features

The LT model allows the calculation of L (Eq.5), which measures the likelihood that
a given sample belongs to the distribution of the trained model. This is used to detect
samples that contain inconsistent features. We suggest to calculate L for all samples in
the training data to estimate µL

train and σL
train. We then calculate the Z-score for each test-

ing sample as a measure for how well a sample fits the training distribution. Specifically
we classify each sample n as outlier if (Ln −µL

train)/σL
train ≤ ZLimit.



Table 3: Balanced accuracy [%] with missing features in testing data (left) or in all data
(middle) and the confusion matrix corresponding to εall=0% (right).

Err. rate εtest 0% 20% 50% 70%

Mean+SVM 67.9 58.0 45.7 33.7
GMM+SVM 67.9 62.5m 56.2M 50.2M

LT+SVM 67.9 63.5m 58.6M ,g 52.8M ,g

Missing features in test data

Err. rate εall 20% 50% 70%

Mean+SVM 59.9 53.7 41.8
GMM+SVM 62.1 52.6m 39.9m

LT+SVM 62.4 56.6m,G 42.7,g

Missing features in all data

SCD AD FTD DLB VaD

SCD 105 4 5 2 0
AD 3 201 9 4 2
FTD 10 19 57 2 1
DLB 11 19 6 11 0
VaD 0 5 1 0 14

Complete data

Fig. 3: Classification accuracy (bACC, left) and prediction error (NRMSE, right) for an
increasing factor of missing features in testing data for compared methods.

To investigate the applicability of this approach we simulated erroneous samples by
swapping two random features within 50% of the testing samples (intra-sample swaps).
This simulates the common human error of inserting values in the wrong data field.
Then we employed the proposed method to detect the samples with swapped features.
The results are summarised in Fig.4. Balanced accuracies are high (around 80%) for
a wide range of possible thresholds ZLimit and consistently higher using the LT model
as compared to the reference GMM model. A high AUC ≈87% (GMM AUC ≈83%)
confirms the feasibility to detect outlier candidates. Note that there is an upper bound to
the possible accuracy as feature swapping might lead to valid samples (e.g. swapping
left and right hippocampal volumes), which are consistent with the training distribution.

Fig. 4: Performance for detecting outlier samples after swapping two random features
within 50% of the testing samples (intra-sample swaps).



4 Conclusion

We have shown that LT is a powerful model to incorporate incomplete data for dif-
ferential dementia diagnosis. The generative nature of LT allows the classification of
arbitrary, a-priori unknown targets and substantially boosts the performance of discrim-
inative classifiers under missing data. LT can reveal candidate outlier samples and is
superior to the comparison data imputation strategies in all conducted experiments. An
open source implementation of LT is available (cf. Sec. 1).
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