Course 495: Advanced Statistical Machine Learning/Pattern Recognition

• Lectures: Stefanos Zafeiriou

Imperial College

- Goal (Lectures): To present modern statistical machine learning/pattern recognition algorithms. The course focuses on statistical latent variable models (continuous & discrete).
- Goal (Tutorials): To provide the students the necessary mathematical tools for deeply understanding the models.
- Main Material: Pattern Recognition & Machine Learning by C. Bishop Chapters 1,2,12,13,8,9
- More materials in the website: http://ibug.doc.ic.ac.uk/courses/advanced-statistical-machine-learning-495/
- Email of the course: course495imperial@gmail.com

Statistical Machine Learning

Imperial College

The two main concepts are : machine learning and statistics

- **Machine Learning**: A branch of Artificial Intelligence (A.I.) that focuses on designing, developing and studying the properties of algorithms that **learn** from data.
- **Statistics**: A branch of applied mathematics that study collection, organization, analysis, interpretation, presentation and visualization of data and modelling their **randomness** and **uncertainty** using probability theory, as well as linear algebra and analysis.

Statistical Machine Learning

Learn:

Imperial College

• Learning is at the core of the problem of **Intelligence**. Models of learning are used for understanding the function of the brain. Learning is used to develop modern **intelligent machines**.

• In many disciplines learning is now one of the main lines of research, i.e. signal/speech/ (medical) image processing, computer vision, control/robotics, natural language processing, bioinfomatics etc.

- It starts to dominate other domains such as software engineering, security sciences, finance etc.
- Major players invest huge amount of money in modern learning systems (e.g., Deep Learning by Google and Facebook)
- Next 25 years will be the age of machine learning

Machine Learning in movies

Terminator 2

Imperial College London

Stefanos Zafeiriou

Machine Learning in movies

Movie: 2001: A Space Odyssey

Director: Stanley Kubrick

Hal 9000

Imperial College

Stefanos Zafeiriou

Statistical Machine Learning

Some applications of modern learning algorithms

- Face detection
- Object/Face tracking
- Biometrics
- Speech/Gesture recognition
- Image segmentation
- Finance
- Bioinformatics

Imperial College

Object & face detection (modern cameras)

Imperial College London

Stefanos Zafeiriou

Face/Iris/Fingerprint recognition (biometrics)

Imperial College London

Stefanos Zafeiriou

Object-target tracking

Imperial College London

Stefanos Zafeiriou

Imperial College

dol

Speech Recognition (voice Google search)

Waveform

Stefanos Zafeiriou

Gesture recognition (Kinect games)

Gestures

Imperial College London

Stefanos Zafeiriou

Image Segmentation

Imperial College London

Stefanos Zafeiriou

Biological data

Imperial College

ndo

What does the machine learn in each application?

Imperial College

Face Recognition: learn a classifier, i.e. a function (design of classifiers is covered in 424: Neural Computation)

$$[\mathbf{w}, \mathbf{w}] = \mathbf{w}^{T} \mathbf{x}_{i} + \mathbf{b}$$

$$[\mathbf{w}, \mathbf{w}] = \mathbf{w}^{T} \mathbf{x}_{i} + \mathbf{b}$$

$$[\mathbf{w}, \mathbf{w}] = \mathbf{w}^{T} \mathbf{x}_{i} + \mathbf{b}$$

$$[\mathbf{w}, \mathbf{w}] = \{\mathbf{w}, \mathbf{b}\}$$

$$[\mathbf{w}, \mathbf{w}] = \{\mathbf{w}, \mathbf{b}\}$$

$$[\mathbf{w}] = [\mathbf{w}, \mathbf{b}]$$

Stefanos Zafeiriou

•Deterministic model:

- \checkmark There is no randomness (uncertainty) associated with the model.
- \checkmark We can compute the actual values of the latent space.

•Probabilistic model:

Imperial College

- ✓ We assign probability distributions to the latent variables and model their dependencies.
- \checkmark We can compute only statistics of the latent variables.
- \checkmark More flexible than deterministic models.
- •Generative Probabilistic models:
 - Model observations drawn from a probability density function (pdf) (i.e., model the way data are "generated")

•Generative Probabilistic models:

 Model the complete (joint) likelihood of both the data and latent structure

{nose}

•But what is the latent (hidden) structure:

Intuitive. {left eyebrow} {right eyebrow} {left eye} {left eye} {right eye}

 Imperial College
 Stefanos Zafeiriou
 Adv. Statistical Machine Learning (course 495)

Latent structure

Imperial College **Stefanos Zafeiriou**

ndor

Latent Variable Models (Static)

We want to find the parameters:

$$\theta = \{\boldsymbol{W}, \boldsymbol{\mu}, \sigma^2\}$$

Joint likelihood maximization:

Imperial College

$$p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_{N, \boldsymbol{y}_1}, \dots, \boldsymbol{y}_N | \boldsymbol{\theta}) = \prod_{i=1}^N p(\boldsymbol{x}_i | \boldsymbol{y}_i, \boldsymbol{W}, \boldsymbol{\mu}, \boldsymbol{\sigma}) \prod_{i=1}^N \boldsymbol{p}(\boldsymbol{y}_i)$$

Latent Variable Models (Dynamic, Continuous)

Imperial College London

Latent Variable Models (Dynamic, Continuous)

Generative Model

Imperial College

$$x_n = Wy_n + e_n$$
$$y_1 = \mu_0 + u$$
$$y_n = Ay_{n-1} + v_n$$

Noise distribution

 $\mathbf{e} \sim N(\boldsymbol{e}|\mathbf{0}, \boldsymbol{\Sigma})$ $\boldsymbol{u} \sim N(\boldsymbol{u}|\mathbf{0}, \boldsymbol{P}_0)$ $\boldsymbol{v} \sim N(\boldsymbol{v}|\mathbf{0}, \boldsymbol{\Gamma})$

Parameters: $\theta = \{W, A, \mu_0, \Sigma, \Gamma, P_0\}$

Latent Variable Models (Dynamic, Continuous)

Markov Property: $p(\mathbf{y}_i, | \mathbf{y}_1, ..., \mathbf{y}_{i-1}) = p(\mathbf{y}_i | \mathbf{y}_{i-1})$ Joint likelihood:

Imperial College

$$p(\mathbf{x}_1, \dots, \mathbf{x}_{T, \mathbf{y}_1}, \dots, \mathbf{y}_T)$$

= $\prod_{i=1}^N p(\mathbf{x}_i | \mathbf{y}_i, \mathbf{W}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}) p(\mathbf{y}_1 | \boldsymbol{\mu}_0, \boldsymbol{P}_0) \prod_{l=2}^N p(\mathbf{y}_i | \mathbf{y}_{l-1}, \mathbf{A}, \boldsymbol{\Gamma})$

Stefanos Zafeiriou

Imperial College

 $\boldsymbol{A} = [\boldsymbol{a}_{ij}] = [\boldsymbol{p}(\boldsymbol{y}_t | \boldsymbol{y}_{t-1})]$ y_{t-1} $p(y_t|y_{t-1}) \mid s \quad n \quad iy \quad d$ e $\boldsymbol{\pi} = [p(\mathbf{y}_1)]$ a_{12} $a_{13} a_{14}$ a_{15} a_{11} S $a_{22} \quad a_{23} \quad a_{24}$ n a_{21} a_{25} y_t iy a_{32} a_{33} a_{34} a_{35} a_{31} a_{41} a_{42} a_{43} a_{44} d a_{45} a_{51} a_{52} a_{53} a_{54} e a_{55}

Stefanos Zafeiriou

Imperial College

dor

Data generation: e.g. if the latent variable is $y_t = b$ $x_t \sim N(x_t | m_b, S_b)$

Imperial College

Parameters $\theta = \{A, \{m_b, S_b\}_b, \pi\}$

Imperial College

Latent Variable Models (Spatial)

Image Segmentation

Brain tumour segmentation

Imperial College

ndor

Stefanos Zafeiriou

Latent Variable Models (Spatial)

Undirected spatial dependencies

Stefanos Zafeiriou

Imperial College

Latent Variable Models (Spatial)

Markov Random fields

$$p(\boldsymbol{y}_{11},\ldots,\boldsymbol{y}_{nm}) = \frac{1}{Z} \prod_{C} \psi(\boldsymbol{y}_{C})$$

C is the maximal clique.

Potential function: $\psi(\mathbf{y}_C) = e^{(-E(\mathbf{y}_C))}$

Partition function:
$$Z = \sum_{y} \prod_{c} \psi(y_{c})$$

Markov blanket:

$$p(\mathbf{y}_{ul}, \mathbf{y}_{vk} | \mathbf{Y}_{/\mathbf{y}_{ul}, \mathbf{y}_{vk}}) = p(\mathbf{y}_{ul} | \mathbf{Y}_{\mathbf{y}_{ul}}) p(\mathbf{y}_{vk} | \mathbf{Y}_{\mathbf{y}_{vk}})$$

Complete likelihood:

$$p(\mathbf{X}, \mathbf{Y}|\theta) = \frac{1}{Z} \prod_{uv} p(\mathbf{x}_{uv} | \mathbf{y}_{uv}, \theta) \prod_{c} \psi(\mathbf{y}_{c} | \theta)$$

Imperial College

Stefanos Zafeiriou

Deterministic Component Analysis (3 weeks)

Unsupervised approaches:

• Principal Component Analysis, Independent Component Analysis, Graph-based Component Analysis, Slow feature Analysis

х

Supervised approaches:

• Linear discriminant analysis

What we will learn?:

Imperial College

- How to find the latent space directly $\, y$.
- How to find the latent space via linear projections $y = W^T x$.

Imperial College

ndor

What we will learn?:

Imperial College

- *How to formulate probabilistically the problem.*
- How to find both data moments $E[y_i]$, $E[yy^T]$ and parameters θ

What are the models?:

- The Kalman filter (1 week)/ the particle filter (1 week).
- The Hidden Markov Model (1 week).

What we will learn?:

Imperial College

• *How to formulate probabilistically the problems and learn parameters.*

Spatial data (2-3 weeks):

What we will learn?:

Imperial College

• *How to formulate probabilistically the problems and learn parameters.*

What are the tools we need?

• We need elements from differential/integral calculus using vectors and matrices (e.g., $\nabla_{uv} f(W) = \frac{\partial f(W)}{\partial f(W)}$)

e.g.,
$$\nabla_{\boldsymbol{W}} f(\boldsymbol{W}) = \frac{f(\boldsymbol{v})}{dw_{ij}}$$

- ✓ Matrix cookbook (by Michael Syskind Pedersen & Kaare Brandt Petersen)
- ✓ Mike Brookes (EEE) has a nice page

Imperial College

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html

- We need linear algebra (matrix multiplications, matrix inversion etc). Special focus on eigenanalysis.
- ✓ Excellent book is *Matrix Computation by Gene H. Golub, & Charles F. Van Loan*

What are the tools we need?

Imperial College

- We need elements of optimization (mainly simple quadratic optimization problems with constraints which result to generalized eigenvalue problems). Refresh memory on how Lagrangian multipliers are used etc.
- We need tools from probability/statistics: random variable, probability density/mass function, marginalization
 - ✓ Assume pdf p(x) the probability is computed $P(x \in A) = \int_A p(x) dx$
 - ✓ Marginal distributions $p(x) = \int_x p(x, y) dx$

$$p(y) = \int_{y} p(x, y) dy$$

✓ First and second order moments $E(x) = \int_x xp(x)dx$

$$E(\mathbf{x}\mathbf{x}^T) = \int_{\mathbf{x}} \mathbf{x}\mathbf{x}^T p(\mathbf{x}) d\mathbf{x}$$

What are the tools we need?

• Bayes rule and conditional independence.

Imperial College

p(x,y) = p(x|y)p(y) Bayes rule Conditional independence p(x,z,y) = p(x|y)p(z|y)p(y)

• Finally, we need tools from algorithms recursion and dynamic programming

What to have always in mind?

• What is my model?

- What are my model's parameters? $\theta = \{W, \mu, \sigma^2\}$
- How do I find them?

Imperial College

Maximum Likelihood Expectation Maximization

θ

• How do I use the model?

Assignments

• Assessment (90% from written exams & 10% from assignments)

• Two assignments:

Imperial College

One will be given next week and should be delivered by 21st of February

The second will be given 24th of February and should be delivered 17th of March

Adv. Statistical Machine Learning – Lectures

- Lecture 1-2: Introduction
- Lecture 3-4: A primer on calculus, linear algebra, probability/statistics
- Lecture 5-6: Deterministic Component Analysis (1)
- Lecture 7-8: Deterministic Component Analysis (2)
- Lecture 9-10: Deterministic Component Analysis (3)
- Lecture 11-12: Probabilistic Principal Component Analysis
- Lecture 13-14: Sequential Data: Kalman Filter (1)
- Lecture 15-16: Sequential Data: Kalman Filter (2)
- Lecture 17-18: Sequential Data: Hidden Markov Model (1)
- Lecture 18-19: Sequential Data: Hidden Markov Model (2)
- Lecture 19-20: Sequential Data: Particle Filtering (1)
- Lecture 20-21: Sequential Data: Particle Filtering (2)
- Lecture 22-23: Spatial Data: Gaussian Markov Random Field (GMRF)
- Lecture 23-24: Spatial Data: GMRF (2)

Imperial College

• Lecture 25-28: Spatial Data: Discrete MRF (Mean Field)

Machine Learning (models/parameters)

Stefanos Zafeiriou

Imperial College

What does the machine learn in each application (parameters of a model)?

• Object detection: learn classifier, i.e. a function (design of classifiers is covered in Neural Computation)

