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Figure 1. FitMe reconstructs relightable shape and reflectance maps for facial avatars, from a single (left) or multiple (right) unconstrained
facial images, using a reflectance model and differentiable rendering. The results can be photorealistically rendered in common engines.

Abstract

In this paper, we introduce FitMe, a facial reflectance
model and a differentiable rendering optimization pipeline,
that can be used to acquire high-fidelity renderable hu-
man avatars from single or multiple images. The model
consists of a multi-modal style-based generator, that cap-
tures facial appearance in terms of diffuse and specular re-
flectance, and a PCA-based shape model. We employ a fast
differentiable rendering process that can be used in an op-
timization pipeline, while also achieving photorealistic fa-
cial shading. Our optimization process accurately captures
both the facial reflectance and shape in high-detail, by ex-
ploiting the expressivity of the style-based latent represen-
tation and of our shape model. FitMe achieves state-of-the-
art reflectance acquisition and identity preservation on sin-
gle “in-the-wild” facial images, while it produces impres-
sive scan-like results, when given multiple unconstrained
facial images pertaining to the same identity. In contrast
with recent implicit avatar reconstructions, FitMe requires
only one minute and produces relightable mesh and texture-
based avatars, that can be used by end-user applications.

1. Introduction

Despite the tremendous steps forward witnessed in the
last decade, 3D facial reconstruction from a single uncon-
strained image remains an important research problem with
an active presence in the computer vision community. Its
applications are now wide-ranging, including but not lim-
ited to human digitization for virtual and augmented real-
ity applications, social media and gaming, synthetic dataset
creation, and health applications. However, recent works
come short of accurately reconstructing the identity of dif-
ferent subjects and usually fail to produce assets that can be
used for photorealistic rendering. This can be attributed to
the lack of diverse and big datasets of scanned human geom-
etry and reflectance, the limited and ambiguous information
available on a single facial image, and the limitations of the
current statistical and machine learning methods.

3D Morhpable Models (3DMM) [18] have been a stan-
dard method of facial shape and appearance acquisition
from a single “in-the-wild” image. The seminal 3DMM
work in [7] used Principal Component Analysis (PCA), to
model facial shape and appearance with variable identity
and expression, learned from about 200 subjects. Since
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Figure 2. FitMe method overview. For a target image I0, we optimize the latent vector W of the generator G, and the shape identity
ps, expression pe, camera pc and illumination pl parameters, by combining 3DMM fitting and GAN inversion methods, through accurate
differentiable diffuse UD and specular US rendering R. Then, from the optimized Wp, we tune the generator G weights, through the same
rendering process. The reconstructed shape S and facial reflectance (diffuse albedo AD , specular albedo AS and normals NS), achieve
great identity similarity and can be directly used in typical renderers, to achieve photorealistic rendering, as shown on the right-hand side.

then, larger models have been introduced, .i.e. the LSFM
[10], Basel Face Model [52] and Facescape [71], with thou-
sands of subjects. Moreover, recent works have introduced
3DMMs of complete human heads [43, 54, 55] or other fa-
cial parts such as ears [54] and tongue [53]. Finally, recent
works have introduced extensions ranging from non-linear
models [49, 66, 67] to directly regressing 3DMM parame-
ters [61,68]. However, such models cannot produce textures
capable of photorealistic rendering.

During the last decade we have seen considerable im-
provements in deep generative models. Generative Adver-
sarial Networks (GANs) [30], and specifically progressive
GAN architectures [34] have achieved tremendous results
in learning distributions of high-resolution 2D images of
human faces. Recently, style-based progressive generative
networks [35–38] are able to learn meaningful latent spaces,
that can be traversed in order to reconstruct and manipulate
different attributes of the generated samples. Some methods
have also been shown effective in learning a 2D representa-
tion of 3D facial attributes, such as UV maps [21,23,24,45].

3D facial meshes generated by 3DMMs can be utilized
in rendering functions, in order to create 2D facial images.
Differentiating the rendering process is also required in or-
der to perform iterative optimization. Recent advances in
differentiable rasterization [44], photorealitic facial shad-
ing [41] and rendering libraries [20,25,56], enable the pho-
torealistic differentiable rendering of such assets. Unfor-
tunately, 3DMM [10, 23, 45] works rely on the lambertian
shading model which comes short of capturing the com-
plexity of facial reflectance. The issue being, photorealistic
facial rendering requires various facial reflectance param-
eters instead of a single RGB texture [41]. Such datasets
are scarce, small and difficult to capture [27,46,57], despite
recent attempts to simplify such setups [39].

Several recent approaches have achieved either high-
fidelity facial reconstructions [6,23,45] or relightable facial

reflectance reconstructions [16,17,19,40,41,65], including
infra-red [47], however, high-fidelity and relightable recon-
struction still remains elusive. Moreover, powerful mod-
els have been shown to capture facial appearance with deep
models [22, 42], but they fail to show single or multi image
reconstructions. A recent alternative paradigm uses implicit
representations to capture avatar appearance and geometry
[11, 69], the rendering of which depends on a learned neu-
ral rendering. Despite their impressive results, such implicit
representations cannot be used by common renderers and
are not usually relightable. Finally, the recently introduced
Albedo Morphable Model (AlbedoMM) [65] captures fa-
cial reflectance and shape with a linear PCA model, but per-
vertex color and normal reconstruction is too low-resolution
for photorealistic rendering. AvatarMe++ [40, 41] recon-
structs high-resolution facial reflectance texture maps from
a single “in-the-wild” image, however, its 3-step process
(reconstruction, upsampling, reflectance), cannot be opti-
mized directly with the input image.

In this work, we introduce FitMe, a fully renderable
3DMM with high-resolution facial reflectance texture maps,
which can be fit on unconstrained facial images using ac-
curate differentiable renderings. FitMe achieves identity
similarity and high-detailed, fully renderable reconstruc-
tions, which are directly usable by off-the-shelf rendering
applications. The texture model is designed as a multi-
modal style-based progressive generator, which concur-
rently generates the facial diffuse-albedo, specular-albedo
and surface-normals. A meticulously designed branched
discriminator enables smooth training with modalities of
different statistics. To train the model we create a capture-
quality facial reflectance dataset of 5k subjects, by fine-
tuning AvatarMe++ on the MimicMe [50] public dataset,
which we also augment in order to balance skin-tone rep-
resentation. For the shape, we use interchangeably a face
and head PCA model [54], both trained on large-scale ge-
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ometry datasets. We design a single or multi-image fitting
method, based on style-based generator projection [35] and
3DMM fitting. To perform efficient iterative fitting (in un-
der 1 minute), the rendering function needs to be differen-
tiable and fast, which makes models such as path tracing un-
usable. Prior works in the field [10,12,23] use simpler shad-
ing models (e.g. Lambertian), or much slower optimiza-
tion [16]. We add a more photorealistic shading than prior
work, with plausible diffuse and specular rendering, which
can acquire shape and reflectance capable of photorealistic
rendering in standard rendering engines (Fig. 1). The flexi-
bility of the generator’s extended latent space and the pho-
torealistic fitting, enables FitMe to reconstruct high-fidelity
facial reflectance and achieve impressive identity similar-
ity, while accurately capturing details in diffuse, specular
albedo and normals. Overall, in this work we present:

• the first 3DMM capable of generating high-resolution
facial reflectance and shape, with an increasing level
of detail, that can be photorealistically rendered,

• the first branched multi-modal style-based progressive
generator of high-resolution 3D facial assets (diffuse
albedo, specular albedo and normals), and a suitable
multi-modal branched discriminator,

• a method to acquire and augment a vast facial re-
flectance dataset of, using assets from a public dataset,

• a multi-modal generator projection, optimized with
diffuse and specular differentiable rendering.

2. Related Work

2.1. 3D Morphable Models

Early facial modeling and fitting methods, starting from
the seminal 3DMM work of Blanz and Vetter in [7], have
always used a linear model for facial shape and appear-
ance [10, 52]. They are thoroughly analyzed in the recent
review of Egger et al. [18]. Moreover, 3DMMs have also
been extended to the entire head in [54]. Finally, the recent
AlbedoMM [65] uses separate PCA models of the diffuse
and specular albedo, however the per-vertex albedo is low
resolution and inadequate for photorealistic rendering.

Recent works have been replacing parts of the linear
shape/texture models with neural networks in order to cap-
ture non-linearities. Bagautdinov et al. [5] introduced the
first method for non-linear facial shape modeling based
on variational autoencoders. 3DFaceGAN [49] introduced
a GAN-based approach for facial geometry based on UV
maps which captured important non-linearities of the facial
shape. Closest to our work, [22, 42] designed models that
combines facial albedo, shape, and normals.

2.2. Deep Generative Networks

GANs [30] first achieved high-resolution facial gener-
ation with the progressive growing of GANs [34], which
introduced a generator-discriminator pair trained on pro-
gressively growing resolutions. StyleGAN [37] also in-
troduced a noise-injection technique and a mapping net-
work that learns meaningful latent representations. Style-
GAN2 [38] further optimized the architecture and projec-
tion method, while StyleGAN2ADA [35] introduced online
data augmentation methods, that help when training with
limited data, where the discriminator overfits. Finally, [36]
improved the signal flow in the generator. In our work, we
build upon these powerful models in order to achieve multi-
modal reflectance generation.

2.3. Facial Reflectance Acquisition

The first device to accurately acquire 3D facial scans was
the LightStage [13], a room-sized dome equipped with pro-
grammable illumination and high-end cameras. The diffuse
and specular components of the reflectance can be separated
by exploiting polarization in multiple captures of gradient
illumination [27]. Simplified methods have also been pro-
posed, using unpolarized binary patterns [33] or passive il-
lumination [57]. Although highly accurate, the above meth-
ods require large and expensive equipment. A recent practi-
cal system made of commodity devices [39] enables signif-
icantly faster and cheaper facial reflectance acquisition.

Inverse Rendering approaches have also been successful
in acquiring facial reflectance. Recent works employ differ-
entiable ray tracing algorithms [16, 17], to solve an inverse
rendering optimization that yields facial diffuse and spec-
ular components, as well as specular roughness. However,
such methods are computationally expensive and the opti-
mization is susceptible to ambiguity in the subject images.

To overcome such ambiguities, multiple approaches use
linear or deep models as priors, or directly regress the fa-
cial reflectance. Early approaches proposed deep image-
translation models [12, 62, 63], while later methods [32, 60,
70] first acquired realistic facial albedos and displacement
textures, using one or more deep neural networks. GANFIT
[23] was the first method to use a linear shape model in com-
bination with a GAN-based texture model. Nevertheless,
the inferred texture contained baked environment illumina-
tion, making photorealistic rendering impossible. AvatarMe
[40] introduced a super-resolution and an image-translation
network that transformed textures generated from GAN-
FIT into high-resolution facial reflectance. Its extension
AvatarMe++ [41] introduced a generalized facial model that
works with arbitrary 3DMM fitting algorithms or scanning
methods, by using a differentiable shader. However, both
methods are separated from the initial fitting method and
cannot pick-up all the facial and illumination cues of the in-
put image. An alternative approach [6] produces highly re-
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alistic facial shape and albedo, but requires a video stream
of RGB and depth data for optimization. Moreover, TRUST
[19] propose a method to overcome the ambiguity between
skin-tone and illumination optimization, by using cues from
the background illumination or multiple faces in the same
image. Closest to our work, Luo et al. [45] acquire nor-
malized avatars using a style-based generator together with
an iterative optimization. Although similar, our approach
has the following advantages: a) our generative model is
extended to complete facial reflectance, and our renderer
is extended with a more photorealistic shading model, b)
our branched generator and discriminator approach gener-
ates additional modalities, c) our fitting pipeline introduces
a latent space and shading regularization, as well as iden-
tity loss, and d) our fine-tuning results in an editable latent
space, which can be further optimized through rendering.

3. Method

In this work, we present FitMe, a deep facial reflectance
3DMM, which is based on a branched multi-modal style-
based generative network (Sec. 3.1). It is trained on a
big capture-quality facial reflectance dataset, which is aug-
mented to balance skin tones (Sec. 3.2). The nature of
the data allows accurate diffuse and specular differentiable
rendering, using an appropriate shader (Sec. 3.3). Finally,
we combine a style-based generator latent space projection
with 3DMM fitting methods (Sec. 3.4) and achieve high fi-
delity facial reconstruction, from a single or multiple im-
ages. The acquired shape and reflectance avatars achieve
high identity similarity (given the model’s flexibility, di-
verse dataset and rendering), have expression blendshapes
and can be directly used by common rendering applications.

3.1. The FitMe Deep 3D Morphable Model

Mapping Network Branched Generator Branched Discriminator

Figure 3. Overview of BRDF-GAN, a style-based generator [38],
consisting of a mapping network M which translates the latent
vector z, to style W. The branched, multi-modal synthesis net-
work G generates a diffuse albedo AD , specular albedo AS and
normals NS at 1024 × 1024 resolution. The model is trained
in tandem with a a branched multi-modal discriminator D. Each
branch enables D to model the distribution of the albedo and nor-
mals separately The output of each branch is concatenated before
entering the last convolutional block and the fully connected layers
of D, in order to maintain feature consistency between modalities.

We introduce BRDF-GAN, a multi-modal style-based
generative network, which concurrently generates facial
diffuse albedo AD, specular albedo AS and surface nor-
mals NS in a UV parameterisation, at 1024 × 1024 reso-
lution. The model is trained by a novel branched discrimi-
nator, that ensures the consistency between the modalities.
The shape is modeled with a 3DMM and we model both the
facial and the head mesh topology similar to [54].

Generating the shape as another branch of BRDF-GAN,
requires many redundant parameters, is prone to quantiza-
tion, and its fitting is problematic. A recent approach gen-
erates 3DMM offsets as a UV texture map, but still requires
3DMM projection to generate the final shape [45]. We opt
instead to use a 3DMM with a mesh representation. We use
the Universal Head Model [54], with a facial UV topology,
which is completed after fitting. For a set of identity ps

and expression pe parameters, with identity and expression
bases Us and Ue, respectively, and mean ms, the facial
geometry S(ps,pe) ∈ R106317×3 can be reconstructed as:

S(ps,pe) = ms +Usps +Uepe (1)

Based on StyleGAN2 [38], BRDF-GAN consists of a
mapping network M : z → W, which translates a la-
tent vector z ∈ R512 into the latent space W ∈ R16×512,
a multi-modal branched synthesis network G : W → T,
where TR = {AD,AS ,NS} ∈ R7×1024×1024. Both
the diffuse albedo and normals have 3 channels, however,
we use a monochrome specular albedo, which is typical
practice in shading [33, 41]. The synthesis network G fol-
lows the skip-connection convolutional blocks architecture
of StyleGAN2ADA [35], however, the last block of each
up-sampled resolution is branched per reflectance mode, as
shown in Fig. 3. For resolutions of 512×512 and up, we find
this necessary, in order to achieve satisfactory FID scores.
Using a single generator, while branching the final block for
each modality, enables the details to be accurately captured
between modalities and ensures the final output corresponds
to the same identity.

BRDF-GAN is also trained using a branched discrimi-
nator D. We observed that the distributions of the albedos
AD, AS with mean 0.24 and std. 0.12, and the normals
NS with mean 0.61 and std 0.24, were significantly differ-
ent, something which inhibited the GAN training using a
vanilla D (i.e., a discriminator with no branches). There-
fore, we designed D as a long-branched network, based on
the residual-based discriminator of StyleGAN2-ADA [35].
One branch DA receives as input the concatenation of the
diffuse and specular albedos AD

⊕
AS , which have sim-

ilar statistics, while the other branch DN receives the sur-
face normals NS . After running all-but-the-last convolu-
tional blocks, the output of both branches is concatenated
and given to the last convolutional block and the fully con-
nected layers of D. This ensures that D can accurately cap-
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ture the much different distribution of the albedo and nor-
mals, while ensuring consistent facial features per generated
subject. A detailed visualization is shown in Fig. 2. Luo et
al. [45] recently proposed a similar model, where the gen-
erator outputs an albedo and a shape, and is trained by three
complete and separate discriminators. Our approach, not
only requires a smaller network, but is also able to gener-
ate facial reflectance modalities of highly different distribu-
tions, and, as we demonstrate in the experiments, outper-
forms their generalization capabilities.

3.2. Dataset Acquisition and Augmentation

Captured 
Dataset

Albedo AugmentationAvatarMe++

Figure 4. Dataset and augmentation. Left: creation of diffuse
AD and specular AS albedo and normals NS , using finetuned a
AvatarMe++ [41] network A on the MimicMe dataset [50] of tex-
tures T. Right: albedo skin-tone augmentation using our masked
histogram matching h on different target albedos A∗

D (Sec. 3.2).

State-of-the-art 3DMMs and GANs require thousands of
data samples [10,35], however no facial relfectance datasets
exist at this scale. Instead, we utilize a recently published
large dataset of facial captures [50], and a state-of-the-art
facial appearance generation model [41], to create such a
dataset at capture-like quality and high-resolution. Finally,
we alleviate the skin-tone imbalance in the dataset, by aug-
menting the resulting data with histogram matching [29].

Firstly, we acquire the MimicMe dataset [50], consist-
ing of T = {T0, . . . ,TnT

}, nT = 4, 700 neutral fa-
cial textures, which are projected to a common UV map
parameterization. These textures include diverse subjects
and expressions [50], however, they have baked illumi-
nation from the capturing system and do not constitute
an albedo. We train an image-to-image translation net-
work A : T → {AD,AS ,NS} that transforms textures
from T to reflectance textures {AD,AS ,NS}, following
AvatarMe++ [41], while making the following changes: (a)
we approximate the capturing environment of [50] using
AvatarMe++ [41], and train the AvatarMe++ network A
for this environment only, (b) we generate only the surface
(i.e., specular) normals NS , in tangent space, which aids
the FitMe fitting, as discussed in 3.3 and (c) we do not use a
super-resolution network, since the textures in T are high-
resolution captured textures. In this manner, we can use A
to transform T into a dataset of reflectance textures TR.

Regarding the shape, we choose not to represent it as a
UV map, and instead we use an existing PCA model. Al-
though we can extract the shape from the above datasets,
our experiments show no improvement over using PCA,
while also making the network training more challenging.
Therefore, with our method being shape-model agnostic,
we use the public UHM head shape model [54].

Biased skin tone prediction is a significant problem
[19], and therefore balanced skin tone representation in
the dataset is of paramount importance. Skin tone aug-
mentation can be done by manipulating the melanin and
hemoglobin values of the albedo, which requires expensive
data collection [28], pre-training [3] or potentially noisy
inverse rendering [4]. Instead, we propose an alternative
method based on histogram matching [29] (Overview in
Fig. 4), which is trivial to use and noise-free. We acquire
10 scanned albedos [27], with each subject matched to the
Monk Skin-Tone Scale (MST) [48] and transform them to
our facial UV topology. Then, for each albedo AD in the
reflectance dataset, we perform histogram matching h [29]
with a number of randomly selected target albedos A∗

D

from the MST scale albedos. To avoid non-skin features
that could affect the transformation, we calculate a mask M
using the distance of each pixel from the average skin tone
ĀD in the forehead region M =

∣∣∣∣AD − ĀD

∣∣∣∣. Then, we
acquire an augmented albedo ÂD as:

ÂD = M⊙ h(AD,A∗
D) + (1−M)⊙AD (2)

3.3. Fast Differentiable Photorealistic Rendering

Typically, 3DMM models rely on a single RGB per-
vertex texture color, a pinhole camera projection model and
a diffuse-only lambertian shading model, based on spheri-
cal harmonics illumination [18]. Although such modeling
provides enough cues to the fitting function for the shape
and texture parameters to be optimized, the texture model
cannot capture the facial reflectance parameters required for
photorealistic rendering and the lambertian shading model
cannot handle both the diffuse and specular components.

On the contrary, differentiable local-reflection models
such as Blinn-Phong [8] can achieve more accurate facial
shading [41]. We define a viewing direction v, an ambi-
ent intensity ca, and a set of nl light sources with direc-
tion lj and intensity cj. For a rasterized pixel i with dif-
fuse albedo AD, diffuse normals ND, specular albedo SA

and surface normals NS , the diffuse UiD and specular UiS

shading components are defined as:

UDi
= caADi

nl∑
j=1

(NDi
· lj)cj (3)

USi
= ASi

nl∑
j=1

(χ+(NSi
·hj))

scj, hj =
lj + vj

||lj + vj||
(4)
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where χ+(x) is a piece-wise function that returns
max {0, x}, and s is the shininess coefficient. The final
shading is acquired by addition Ui = UiD + UiS . We
also perform subsurface scattering using [41].

For photorealistic shading, separate diffuse and surface
normals are required [27, 41, 46], so that the diffuse com-
ponent approximates the smoother subsurface scattering.
In order to correctly optimize the shape mesh during fit-
ting, we use the smoother geometric normals as diffuse nor-
mals ND. The detailed specular normals are generated by
BRDF-GAN in tangent space NS , and during rendering are
added to the shape normals N, to acquire the specular nor-
mals in object space.

Our differentiable rendering implementation, not only
renders skin photorealistically compared to recent fitting
methods [23, 45, 65], but it is also implemented directly in
image-space, compared to [41], so that direct supervision
can be achieved. Moreover, the 3DMM shape S and GAN-
generated reflectance texture maps TR = {AD,AS ,NS}
can be efficiently optimized by photometric, identity and
perceptual losses. The rendering function R with optimiz-
able camera pc and illumination pl can be formulated as:

IR = R (S,TR,pc,pl) (5)

3.4. Fitting by Inversion through Rendering

Following conventional 3DMM fitting approaches [7,10,
18,23,59], we build an optimization pipeline with two major
improvements: (a) we replace the statistical texture model
and its PCA-based optimization, with BRDF-GAN textures
and GAN inversion optimization [38, 58], b) we implement
an accurate differentiable renderer in the image-space, to
enable BRDF-GAN inversion, by rendering its results in
high-fidelity. As described below, our optimization pipeline
combines the merits of both 3DMM fitting and GAN inver-
sion and achieves photorealistic reflectance reconstruction.

3.4.1 BRDF-GAN Inversion

Generator inversion refers to the acquisition of latent code
that recreates the target image and its application on style-
based generators is a widely studied problem [38,58]. How-
ever, all the above assume a 2D target image and can di-
rectly optimize the generator’s output on it. Moreover,
FitMe requires to pass the generated reflectance through
rasterization and rendering, while preserving the meaning-
ful properties of the texture map, for which a standard in-
version does not suffice. Inspired by both previous 3DMM
fitting methods [10, 16, 23, 41], and inversion [35, 58], we
design a rendering-based inversion method for our multi-
modal generator.

Style-based generators [35, 38] feed a latent code z into
a mapping network, to acquire the native latent space W,

which is fed to the synthesis network. Inversion methods
optimize W directly, whilst also optimizing the noise vector
n [35,58], by using a perceptual LPIPS loss [72]. However,
the multi-modal generator faces three challenges: a) being
multi-modal makes the concurrent optimization of the dif-
ferent modes more difficult, b) requires rasterization and as
such not all pixels are visible to the loss function and c)
requires shading, shape, camera and light source optimiza-
tion, which all remain sensitive to the optimization with
LPIPS. We find that an additional set of losses make the
inversion more accurate and stable:

The terms of our objective function includes both prim-
itive supervision such as landmark, photometric, and regu-
larization loss functions, as well as identity and perceptual
losses. For a target image I0 and a rendered reconstruc-
tion IR, we used the following losses to optimize the shape
3DMM, the camera and illumination parameters, and also
to guide the rasterized BRDF-GAN results:
Landmark Loss: We estimate 3D landmarks using a deep
alignment network [14] M(I) : RH×W×C → R68×2 and
penalize the distance by Llan = ||M(I0)−M(IR)||2.
Photometric Loss: It is defined as the distance between
per-pixel color intensity values, to capture the skin color and
illumination from the target image as Lph = ||I0 − IR||1.
Identity Loss: Following [24, 26], we supervise fitting
by identity features extracted by a face recognition net-
work [15] with n layers, Fn(I) : RH×W×C → R512 to
provide strong identity similarity to the target image:

LID = 1− Fn(I0) · Fn(IR)

||Fn(I0)||2 · ||Fn(IR)||2
(6)

Along with the abstract level supervision provided by iden-
tity features, we also optimize for intermediate activations
of the face recognition network to ensure mid-level percep-
tual information can be reconstructed as well:

Lper =

n∑
j

||F j(I0)−F j(IR)||2
HFj ·WFj · CFj

(7)

BRDF-GAN Regularization: Rasterization results in vari-
ous pixels and facial areas not being used during optimiza-
tion, while shading may be imperfect in complex illumina-
tion environments, both of which introduce noise and envi-
ronmental features to our albedo and normals during W’s
optimization. To avoid such artifacts, we follow the W ini-
tialization protocol introduced in [37], and on top we apply
an L2 constraint to make sure W’s values do not greatly
deviate from their feasible space.
Shape Regularization: We follow the literature [9] in con-
straining the shape parameters weighted by their inverse
eigenvalues: Ls = ||ps||2Σ−1

s
and Le = ||pe||2Σ−1

e
, where

Σ denotes a diagonal matrix with the eigenvalues.
Overall loss: It is defined as follows, where all λ’s are
hyper-parameters suitably chosen to balance the different
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Ground Truth [2] Ours, 3 input images Ours, 1 input image AvatarMe++ [41] AlbedoMM [65] Dib et al. 2021 [17]

Figure 5. Comparison of diffuse and specular albedo reconstruction and rendering, of Digital Emily [2] with prior works. Both our single
and three images reconstruction, achieve similar results to the captured data, which need specialized hardware and hundreds of images.

loss terms during optimization:

L =λ1Llan + λ2Lph + λ3LID + λ4Lper

+ λ5LW + λ6Ls + λ7Le, (8)

3.4.2 BRDF-GAN Tuning

Recent works show that W-based inversion cannot fully re-
cover the target image [58]. One approach is to optimize
the extended latent space W+ [1,45], however this inhibits
latent code manipulations [58], while, in our experiments,
ends up in an outright copy of the target image into the
albedo, inhibiting also the re-rendering of the avatar. On the
other hand, Pivotal Tuning Inversion (PTI) [58], fine-tunes
the generator on the target image, after finding and freezing
W. We find this approach much more accurate in our case,
as only the visible texture parts produce gradients and are
optimized. Again, given imperfect illumination optimiza-
tion and shape fitting, PTI transfers high-frequency noise,
illumination and non-skin features on the albedo, when tun-
ing the whole generator.

Our experiments show that during fine-tuning, the first
layers of BRDF-GAN change the color of the albedo but ab-
sorb illumination, the middle layers change the mesostruc-
ture of the skin, while the last layers change fine details,
but absorb noise from the target image. Therefore, we
found that it is optimal to only tune the 4 middle layers,
while keeping the rest frozen. We use the proposed LPIPS
LLP [72], using a pre-trained VGG network [64], and pho-
tometric Lph losses. Moreover, we add two regularization
losses often used in inverse rendering [17]: i) a horizontal
flip loss Lflip, and ii) a chromaticity loss Lκ, in order re-
strict the fine-tuning to add shadows and highlights, that are
not reproduced by the rendering, to the albedo:

LPTI = λ8LLP + λ9Lph + λ10Lflip + λ11Lκ (9)

where λ’s are hyper-params chosen before the fine-tuning.

4. Experiments
4.1. Implementation Details

Our generator code builds on the public repository of
StyleGAN2-ADA [35]. The branches follow the same ar-

chitecture, and are connected through concatenation. For
the differentiable rendering, we use a blinn-phong shader
on Pytorch3D [56] following [41]. Our fitting code requires
on average 50 seconds on a machine with one NVIDIA
2080 GPU. We run the fitting for 200 iterations for inversion
(Sec. 3.4) and 20 iterations for tuning (Sec. 3.4). Detailed
loss parameters are included in the supplemental.

4.2. Single-Image Reconstruction

Figure 6. Left: Cosine similarity distributions between real image
and rendered reconstruction of LFW [31], using VGG-Face [51].
Right: Cosine similarity distribution between same and different
pairs of reconstructions. Compared with [23–25, 68].

We evaluate the identity preservation of our single-image
reconstruction, by comparing our results in the LFW dataset
[31] with previous literature [23–25, 68]. Using a pre-
trained face recognition network [51], we measure the co-
sine similarity between real image and rendering, and plot
the results in Fig. 6, which clearly illustrates the effective-
ness of our method. We additionally plot the cosine simi-
larity of between reconstruction pairs of the same identity
versus different identity. Moreover, in Fig. 8, we show a
qualitative comparison with prior work on single-image re-
construction and in Fig. 9, with single-image reflectance ac-
quisition methods [16,40,41,65]. Finally, in Fig. 7 we show
our results on challenging examples. All the above show our
method’s ability to preserve the identity of the subject and
produce high-quality shape and reflectance.

Additionally, to show the capabilities of the learned la-
tent space, we perform interpolations between different fit-

Input (hairband) Input (glasses) Input (make-up)Result (hairband) Result (glasses) Result (make-up)

Figure 7. Results of our method on challenging examples.
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Figure 8. Comparison with single-image reconstruction methods
[23, 26, 41, 45] Rows 3,5,6 acquired from [45] benchmark. FitMe
achieves higher likeness and acquires relightable reconstructions.

Input Ours AvatarMe [41] AlbedoMM [65] Dib et al. [17]

Figure 9. Comparison with single-image reflectance acquisition
[17, 41, 65]. Top: rendering, bottom: diffuse and specular albedo.

tings, which we visualize in Fig. 10, by linearly blending
their parameters. Our model is able to transition smoothly
between fittings, even after generator tuning. In supplemen-
tal, we also show PCA-based editing of the latent space.

4.3. Multi-Image Reconstruction

So far, we have been assuming a single target image,
however, our method can be used as is for multi-view recon-
struction. To do so, we optimize along a batch of N images
I0i , i = 0, 1, . . . , N . For each batch, we separately opti-
mize the camera pei , and illumination pli parameters, while
optimizing a single latent vector W, and shape vector ps.
The expression vector pe can be varied if needed. More-
over, we only use one instance of the generator G. During
optimization, we average the loss across the batch.

We find that a frontal and two side images produce high
quality reconstructions that resemble facial capture. Fig. 5
shows a comparison of our 3-image reconstruction and our
1-image reconstruction, with a Light Stage captured Digi-
tal Emily [2], and prior work [17, 41, 65]. As can be seen,
our method can successfully be used for fast shape and re-
flectance acquisition from multi-view sets. Finally, Fig. 1
and multiple supplemental figures, show examples of our

reconstruction, using unconstrained mobile phone images,
enabling quick avatar generation.

a) Input A b) A f) 0.4 A + 0.6 B h) B i) Input Bc) 0.8 A + 0.2 B e) 0.5 A + 0.5 Bd) 0.6 A + 0.4 B g) 0.2 A + 0.8 B

Figure 10. Interpolation of the latent parameters between fittings.
For each row, we interpolate the latent W, and shape parameters
ps, pe, between the left-most (A) and the right-most fitting (B).

4.4. Dataset Augmentation

Our dataset augmentation achieves comparable perfor-
mance to physics-based skin models [3,28], without requir-
ing the calculation of such complex interactions. More-
over, compared to the more practical method [4], we avoid
inverse-rendering based noise and achieve similar results in
2.5 seconds per 1024 × 1024 albedo map, compared to the
46.1 seconds of [4]. We provide a comparison in the sup-
plemental materials.

5. Limitations
Our method is limited in certain aspects pertaining the

data and the fitting process. The data limitations include a)
the imbalance of features in the training data, which we at-
tempt to overcome by the proposed augmentation and gen-
erator tuning. Moreover, the reflectance data are captured
with the assumption of skin-like materials and therefore the
eyes exhibit noisy reflections. Finally, there exists ambi-
guity between skin-tone and illumination intensity during
fitting, which could be alleviated by combining our method
with the findings of TRUST [19] in future work.

6. Conclusion
In this paper we introduced FitMe, a method that is able

to produce highly accurate, renderable human avatars based
on a single or multiple “in-the-wild” images. To achieve
this, we introduced a deep facial reflectance model that
consists of a multi-branched style-based GAN and a PCA-
based shape model, as well as an easy skin-tone augmen-
tation method. Moreover, we presented a novel iterative
optimization procedure that is based on a differential ren-
dering process. As we showed in a series of experiments,
our method helps to bridge the uncanny valley and creates
pleasing results, directly renderable in common renderers.
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