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ABSTRACT

Finding landmarks on objects like faces is a challenging
computer vision problem, especially in real life conditions
(or in-the-wild) and Active Appearance Models have been
widely used to solve it. State-of-the-art algorithms for fitting
an AAM to a new image are based on Gauss-Newton (GN)
optimization. Recently fast GN algorithms have been pro-
posed for both forward additive and inverse compositional
fitting frameworks. In this paper, we propose a fast and exact
bi-directional (Fast-Bd) approach to AAM fitting by combin-
ing both approaches. Although such a method might appear
to increase computational burden, we show that by capital-
izing on results from optimization theory, an exact solution,
as computationally efficient as the original forward or inverse
formulation, can be derived. Our proposed bi-directional
approach achieves state-of-the-art performance and superior
convergence properties. These findings are validated on two
challenging, in-the-wild data sets, LFPW and Helen, and
comparison is provided to the state-of-the art methods for
Active Appearance Models fitting.

Index Terms— Active Appearance Models, Gauss-
Newton, forward additive, inverse compositional, bi-directional
fitting.

1. INTRODUCTION

Active Appearance Models are generative deformable mod-
els of shape and appearance widely used in computer vision
and in particular for face and medical image analysis [1]. Fit-
ting an AAM to a new image is usually formulated as a non-
linear least-squares problem which is typically solved using
iterative methods. State-of-the-art methods for AAM fitting
are based on analytic gradient descent and, in particular, on
Gauss-Newton (GN) optimization [2]. The problem can also
be solved efficiently using fast full-Newton method as pre-
sented in [3].

GN optimization in computer vision goes back to the
classical Lukas-Kanade image alignment algorithm [4] and
the appearance-based tracking framework of Hager and Bel-
humeur [5]. In the context of AAM fitting, GN optimization
was introduced in the seminal work of Matthews and Baker

Fig. 1. Examples of images taken from the LFPW dataset and
fitted with our proposed bi-directional method.

[2]. In this work, the authors proposed a very efficient GN
algorithm for AAM fitting which was coined project-out in-
verse compositional algorithm (POIC). POIC has two main
features: (a) it decouples shape from appearance by pro-
jecting out appearance variations and (b) applies the so-called
inverse composition by computing a warp update in the model
coordinate frame which is then composed to the current warp
estimate. This is in contrast to the standard LK algorithm in
which the warp parameters are updated in a forward additive
fashion. Although being an approximate algorithm, owing
to its efficiency, POIC has become the standard approach for
fitting person specific AAMs.

Following the seminal work of [6], inverse algorithms
have gained increased popularity. Note however that not
all inverse algorithms are computationally efficient. This is
particularly true for the simultaneous inverse compositional
(SIC) algorithm which, albeit exact and very robust, has
a computational cost which is almost prohibitive for most
current systems [7, 8].

Recently, the authors of [9] proposed Fast-SIC, an effi-
cient algorithm for solving the original SIC problem without
resorting to any approximations at all. In the same work, the
authors have shown that one can actually devise a GN for-
ward additive algorithm, called Fast-Forward, which is also
very computationally efficient. In this work, we build upon



[9] to propose an algorithm which simultaneously solves
the forward and inverse problems, and hence is called ”bi-
directional”. Although such an approach might appear to
increase computational burden, we show that one can come
up with an exact solution which is as computationally ef-
ficient as the original forward or inverse formulation. At
the same time, the proposed Fast Bi-Directional approach
achieves state-of-the art performance and superior conver-
gence properties. We verify these findings on two in-the-wild
data sets, namely LFPW [10] and Helen [11]. Finally, we
emphasize that although a somewhat similar Bi-Directional
approach was proposed in [12], our method capitalizes on
optimization theory to provide a both exact and computation-
ally efficient solution. In contrast, the method in [12] is both
inexact and slower.

2. ACTIVE APPEARANCE MODELS

Models. Active Appearance Models are generative models
of shape and appearance. The shape model is obtained by
first annotating the location of u landmarks across a training
set of objects belonging to the same class (e.g. faces in our
case) before normalizing the resulting annotated shapes us-
ing Procrustes Analysis. This step removes variations due to
translation, scaling and rotation. PCA is then performed on
these normalized shapes and the first n shape eigenvectors are
kept as the column of S ∈ R2u,n to define the shape model,
along with the mean shape s0 ∈ R2u. A shape can then be
generated from ŝ = s0 + Sp, where p ∈ Rn is a vector
representing the shape parameters. Similarly, the appearance
model is obtained from the texture of the training images,
after appearance variation due to shape deformation has been
removed by warping each texture into the mean shape s0

using the motion model W, which in this work is assumed to
be a piecewise affine warp. After PCA has been applied to all
training shape-free textures, the resulting texture eigenvectors
are stacked as columns of A ∈ RN,m and the mean texture
is noted A0 ∈ RN . This constitutes the appearance model
which can be used to generate a texture from Î = A0 + Ac,
where c ∈ Rm is a vector representing the texture parame-
ters. Finally, a model instance is synthesized to represent a
test object by warping a texture instance from the mean shape
s0 to a shape instance s using the piecewise affine warp W
defined by s0 and s. Please see [2] for more details on AAMs.

Objective function. Given the shape and appearance
models, the problem of finding facial landmarks in a new
image can be formulated as finding the shape and appearance
parameters such that a model instance is “close” to the given
image usually in a least-squares sense. This is equivalent to
solving the following non-linear least-squares problem:

arg min
p,c
‖I[p]−A0 −Ac‖2. (1)

We vectorise the computation over all N pixels x of the

image and denote I[p] the warped image I(W(x,p)) rear-
ranged as a vector of size N . The above cost function can be
optimized iteratively using Gauss-Newton in two coordinate
frames. In the forward algorithm, the image I is linearized
around p, an update ∆p is found using least-squares, and p
is updated from p ← p + ∆p. In the inverse algorithm, the
model {A0,A} is linearized around p = 0 using the fact that
W(x;p) is the identity for p = 0. An update ∆p is then
found using least-squares and p is updated in a compositional
fashion p ← p ◦ ∆p−1. Please see [6] for more details on
AAMs.

SIC. At each iteration SIC (Simultaneous Inverse Com-
positional) linearizes (1) with respect to both c and p = 0.
This is equivalent to solving, at each iteration, the following
optimization problem:

arg min
∆p,∆c

‖I−A0 −Ac−A∆c− JT ∆p‖2, (2)

where JT ∈ RN,n is the Jacobian matrix of the template,
JT = J0 +

∑m
i=1 ciJi, with Ji = [Ai,x Ai,y]∂W(x;p)

∂p .
Ai,x and Ai,y ∈ R1,N are the x and y gradients of Ai and
∂W(x;p)

∂p ∈ R2,n is the Jacobian matrix of the piecewise affine
warp. All of these are defined in the model coordinate frame
for p = 0 and can be pre-computed. One can show that the
cost per iteration for SIC is O((n + m)2N) and hence this
algorithm is very slow [7]. For more detail refer to [9].

POIC. POIC (Project Out Inverse Compositional) re-
duces the cost of SIC by solving (2) in the subspace or-
thogonal to A. Let us define the projection operator P =
E−AAT , where E is the identity matrix. Then, ‖I−A0 −
Ac‖2P = ‖I − A0‖2P, where we write ‖x‖2P to denote the
weighted `2-norm xTPx. Based on this, POIC computes an
update for ∆p by optimizing

arg min
∆p
‖I−A0 − J0∆p‖2P. (3)

One can show that solving the above optimization problem
has a cost of O(nN) only [6].

Fast-SIC. Fast-SIC capitalizes on optimization theory
[13]

min
x,y

f(x, y) = min
x

[min
y
f(x, y)] (4)

to solve (2) in a computationally efficient way. Using (4), we
can firstly optimize (2) with respect to ∆c:

∆c = AT (I−A0 −Ac− JT ∆p). (5)

Plugging the above into (2), we get

arg min
∆p
‖I−A0 − JT ∆p‖2P. (6)

One can show that solving the above optimization prob-
lem has a cost O(nmN + n2N) which is much less than



O((n+m)2N) for the original SIC algorithm [9].

Fast-Forward. Fast-Forward capitalizes on (4) to solve
problem (1) efficiently by linearizing the test image rather
than the model:

arg min
{∆p,c}

‖I + JI∆p−A0 −Ac‖2, (7)

where p ∈ Rn and JI is the Jacobian matrix of the image I,

JI =
∂I[p]

∂p
∈ RN,n.

At each iteration, the optimal c is given by

c = AT (I + JI∆p−A0). (8)

Plugging the above into (7), we get

arg min
∆p
‖I + JI∆p−A0‖2P. (9)

Similarly, one can show that solving the above optimization
problem has a cost O(nmN + n2N) [9].

Bi-directional. In [12], an approximate bi-bidirectional
approach is presented where the similarity parameters are up-
dated in a forward additive fashion while the appearance and
shape parameters are optimised jointly in an inverse compo-
sitional fashion. However, the solution proposed does not use
the structure of the problem resulting in a computationally
complex algorithm in O(N(m + n)2). In addition, the solu-
tion presented is approximate as second order terms are ne-
glected.

3. FAST AND EXACT BI-DIRECTIONAL FITTING
OF ACTIVE APPEARANCE MODELS

In this paper, we propose a fast and exact bi-directional
Gauss-Newton algorithm for AAM fitting by deforming at
each iteration both the image and the template while also
optimising the appearance parameters. To achieve this, we
linearize both the image as in (7) and the template as in (2)
and optimize jointly over all three parameters ∆q,∆p and
∆c:

arg min
∆q,∆p,∆c

‖I + JI∆q−A0 −Ac−A∆c− JT ∆p‖2.
(10)

To solve (10) in a computationally efficient way, we addition-
ally propose to capitalize on

min
x,y,z

f(x, y, z) = min
x

[min
y

[min
z
f(x, y, z)]]. (11)

In particular, we can firstly optimize (10) with respect to ∆c
which yields

∆c = AT (I + JI∆q−A0 −Ac− JT ∆p). (12)

Plugging the result back into (10) gives the following opti-
mization problem:

arg min
∆q,∆p

‖I + JI∆q−A0 − JT ∆p‖2P, (13)

using the projection operator P = E − AAT , where E is
the identity matrix (as specified in the introduction, we write
‖x‖2P to denote the weighted `2-norm xTPx). We go on by
optimizing (13) with respect to ∆q. This gives

∆q = −H−1
q JT

q (I−A0 − JT ∆p), (14)

where the projected-out Jacobian and Hessian matrices are
given by Jq = PJI ∈ RN,n and Hq = JT

q Jq ∈ Rn,n, re-
spectively. Next, we plug (14) into (13), to get the following
optimization problem

arg min
∆p
‖I−A0 − JT ∆p‖2R, (15)

where R = P(E−Q) and Q = JqH
−1
q JT

q . The final step is
to optimize (15) with respect to ∆p. This gives:

∆p = H−1
p JT

p (I−A0), (16)

where the projected-out Jacobian and Hessian matrices are
given by Jp = RJT ∈ RN,n and Hp = JT

p Jp ∈ Rn,n,
respectively. Finally the shape and appearance parameters are
updated as q← q ◦∆p−1 + ∆q and c← c + ∆c.

The complexity of computing the above updates per iter-
ation is readily given by O(nmN + n2N).

4. EXPERIMENTS

We tested the proposed Fast-Bd algorithm on two very chal-
lenging data sets and compared it to the state of the art for
AAM fitting (Fast SIC and Fast Forward), as well as to [12]
which we implemented. For training, we used the training
set of LFPW data set [10]. For testing, we used the test set
of LFPW and also verified our findings on Helen [11]. For
both data sets, we used the 68-point landmark annotations
provided in [14, 15]. In all cases, fitting was initialized by
the face detector recently proposed in [16]. Finally, we fitted
AAMs in two scales with 7 and 14 shape eigenvectors and 50
and 400 texture eigenvectors, respectively.

We measured fitting accuracy by producing the familiar
cumulative curve corresponding to the percentage of test im-
ages for which the error between the ground truth landmarks
and the fitted shape was less than a specific value. As er-
ror metric, we used the point-to-point error normalized by the
face size [16]. To measure speed of convergence, we consid-
ered that an algorithm converged when

∣∣∣ek−ek+1

ek

∣∣∣ < ε, with
ε ∈ R∗+ a convergence threshold and ek the value of the ob-
jective function (‖I−A0 −Ac‖2) at iteration k.



(a) error

(b) convergence

Fig. 2. Results on the LFPW dataset.

Fig.2 shows the obtained results on LFPW. Our bi-
directional version (Fast Bd) performs the same as the Fast-
SIC and better than the Fast-Forward and [12] while converg-
ing much faster. The same can be observed on Helen (Fig.3),
although this time our method performs slightly worse than
the Fast-SIC, but still better than the Fast-Forward and [12].
Again, our method has the fastest convergence rate by far.

5. CONCLUSION

We introduced a new fast and exact way of solving bi-
directionally the AAM problem. We tested our method on
two challenging datasets, compared it to state of the art al-
gorithms for AAM fitting and provided the derivation of
the update rule, as well as the algorithmic complexity. Our
method yields state-of-the-art results while converging much
faster and offering the same computational complexity as the

(a) error

(b) convergence

Fig. 3. Results on the Helen dataset.

Fast-SIC. In the future we aim to combine our Fast-Bd fitting
approach with the generative deformable part model of [17],
explore the use of robust features [18, 19, 20], and try to
apply bidirectional fitting to regression-based methods [21].
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