Course 495: Advanced Statistical Machine Learning/Pattern Recognition

• Goal (Lecture): To present Kernel Principal Component Analysis (KPCA) (and give a small flavour of Auto-encoders).

1

Materials

- Pattern Recognition & Machine Learning by C. Bishop Chapter 12
- **KPCA:** Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. "Nonlinear component analysis as a kernel eigenvalue problem." Neural computation 10.5 (1998): 1299-1319.
- Auto-Encoder: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507.

Non-linear Component Analysis

H can be of arbitrary dimensionality (could be even infinite)

3

Kernel Principal Component Analysis

- $\varphi(.)$ may not be explicitly known or is extremely expensive to compute and store.
- What is explicitly known is the dot product in *H* (also known as kernel *k*)

$$\varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$$
$$\mathbf{x}_i, \mathbf{x}_j) \in R^F X R^F \longrightarrow k(.,.) \in R$$

• All positive (semi)-definite functions can be used as kernels

• Given a training population of *n* samples $[x_1, ..., x_n]$ we compute the training kernel matrix (also called Gram matrix).

$$\boldsymbol{K} = \left[\varphi(\boldsymbol{x}_i)^T \varphi(\boldsymbol{x}_j)\right] = \left[k(\boldsymbol{x}_i, \boldsymbol{x}_j)\right]$$

• All the computations are performed via the use of the kernel or the centralized kernel matrix.

$$\overline{\mathbf{K}} = \left(\varphi(\mathbf{x}_i) - \mathbf{m}^{\Phi}\right)^T \left(\varphi(\mathbf{x}_j) - \mathbf{m}^{\Phi}\right) \qquad \mathbf{m}^{\Phi} = \frac{1}{n} \sum_{i=1}^n \varphi(\mathbf{x}_i)$$

5

Adv. Statistical Machine Learning (course 495)

n

Gaussian Radial Basis Function (RBF) kernel:

$$k(x_i, x_j) = e^{-||x_i - x_j||^2/r^2}$$

Polynomial kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + b)^n$

Hyperbolic Tangent kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\mathbf{x}_i^T \mathbf{x}_j + b)$$

Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)

KPCA-kernel Matrix

Input space:
$$X = [x_1, ..., x_n]$$

Feature space: $X^{\Phi} = [\varphi(x_1), \dots, \varphi(x_n)]$

Centralised:

$$\overline{X}^{\Phi} = [\varphi(x_1) - m^{\Phi}, \dots, \varphi(x_n) - m^{\Phi}]$$
$$= X^{\Phi}(I - E) = X^{\Phi}M, \quad E = \frac{1}{n} \mathbf{1} \mathbf{1}^T$$

Kernel:
$$\boldsymbol{K} = \left[\varphi(\boldsymbol{x}_i)^T \varphi(\boldsymbol{x}_j)\right] = \left[k(\boldsymbol{x}_i, \boldsymbol{x}_j)\right] = \boldsymbol{X}^{\Phi^T} \boldsymbol{X}^{\Phi}$$

Centralised Kernel:

Imperial College

ondon

$$\overline{K} = [(\varphi(x_i) - m^{\Phi})^T (\varphi(x_j) - m^{\Phi})] = (I - E) X^{\Phi^T} X^{\Phi} (I - E) = (I - E) K (I - E) = K - EK - KE + EKE$$

KPCA-Optimization problem

• KPCA cost function

$$U^{\Phi}{}_{o} = \arg \max_{U^{\Phi}} \operatorname{tr}[U^{\Phi^{T}} S_{t}^{\Phi} U^{\Phi}]$$

= $\arg \max_{U^{\Phi}} \operatorname{tr}[U^{\Phi^{T}} \overline{X}^{\Phi} \overline{X}^{\Phi^{T}} U^{\Phi}]$

subject to
$$\boldsymbol{U}^{\Phi^T}\boldsymbol{U}^{\Phi} = \boldsymbol{I}$$

• The solution is given by the d eigenvectors that correspond to the d largest eigenvalues

$$\boldsymbol{S}_t^{\Phi} \boldsymbol{U}_{o}^{\Phi} = \boldsymbol{U}_{o}^{\Phi} \boldsymbol{\Lambda}$$

KPCA- Computing Principal Components

- Do you see any problem with that?
- How can we compute the eigenvectors of S_t^{Φ} ? We do not even know φ !!!!
- Remember our Lemma that links the eigenvectors and eigenvalues of matrices of the form AA^T and A^TA

$$\overline{K} = \overline{X}^{\Phi^T} \overline{X}^{\Phi} = V \Lambda V^T$$
 then $U^{\Phi}{}_o = \overline{X}^{\Phi} V \Lambda^{-\frac{1}{2}}$

• All computations are performed via the use of \overline{K} (so-called kernel trick)

KPCA- Computing Principal Components

- Still $U^{\Phi}{}_{o} = \overline{X}^{\Phi} V \Lambda^{-\frac{1}{2}}$ cannot be analytically computed.
- But we do not want to compute U^{Φ}_{o} .
- What we want is to compute latent features.
- That is, given a test sample x_t we want to compute $y = U_o^{\Phi} \varphi(x_t)$ (this can be performed via the kernel trick)

$$y = U_{o}^{\Phi} (\varphi(x_{t}) - m^{\Phi})$$

$$= \Lambda^{-\frac{1}{2}} V^{T} \overline{X}^{\Phi^{T}} (\varphi(x_{t}) - m^{\Phi})$$

$$= \Lambda^{-\frac{1}{2}} V^{T} (I - E) X^{\Phi^{T}} \left(\varphi(x_{t}) - \frac{1}{n} X^{\Phi} \mathbf{1} \right)$$

$$= \Lambda^{-\frac{1}{2}} V^{T} (I - E) (X^{\Phi^{T}} \varphi(x_{t}) - \frac{1}{n} X^{\Phi^{T}} X^{\Phi} \mathbf{1})$$

$$= \Lambda^{-\frac{1}{2}} V^{T} (I - E) (g(x_{t}) - \frac{1}{n} K\mathbf{1})$$

Imperial College

London

11

$$g(\mathbf{x}_t) = \mathbf{X}^{\Phi^T} \varphi(\mathbf{x}_t) = \begin{bmatrix} \varphi(\mathbf{x}_1)^T \varphi(\mathbf{x}_t) \\ \dots \\ \varphi(\mathbf{x}_n)^T \varphi(\mathbf{x}_t) \end{bmatrix} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_t) \\ \dots \\ k(\mathbf{x}_n, \mathbf{x}_t) \end{bmatrix}$$

Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)

KPCA- Example

Imperial College London

12

Stefanos Zafeiriou

Adv. Statistical Machine Learning (course 495)

Latent Feature Extraction with Neural Networks

Remember the PCA model?

13 Imperial Col

Stefanos Zafeiriou

Adv. Statistical Machine Learning (course 495)

Latent Feature Extraction with Neural Networks

14 Imperial Colleg

Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)

Latent Feature Extraction with Neural Networks

•G E Hinton, and R R Salakhutdinov Science 2006;313:504-507

Stefanos Zafeiriou

15

Adv. Statistical Machine Learning (course 495)

Matlab Toolbox for Dimensionality Reduction

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

Matlab 2013b has PPCA implemented

http://www.mathworks.co.uk/help/stats/ppca.html

ICA toolboxes for image and signal processing.

http://www.bsp.brain.riken.jp/ICALAB/

ICA for EEG Analysis.

http://mialab.mrn.org/software/

FastICA

http://research.ics.aalto.fi/ica/fastica/