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Course 495: Advanced Statistical Machine 
Learning/Pattern Recognition 

 

• Goal (Lecture): To present Kernel Principal Component 
Analysis (KPCA) (and give a small flavour of Auto-
encoders). 
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• Pattern Recognition & Machine Learning by C. Bishop Chapter 12  

•    KPCA: Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert    

      Müller. "Nonlinear component analysis as a kernel eigenvalue  

      problem." Neural computation 10.5 (1998): 1299-1319. 

• Auto-Encoder: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. 
"Reducing the dimensionality of data with neural networks." Science 
313.5786 (2006): 504-507. 

Materials 
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Non-linear Component Analysis  

𝜑 

𝜑 𝒙𝑖 ∈ 𝐻 𝒙𝑖 ∈ 𝑅𝐹
 

 𝐻 can be of arbitrary dimensionality  

(could be even infinite) 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

Kernel Principal Component Analysis 

𝜑 𝒙𝑖
𝛵𝜑 𝒙𝑗 = 𝑘(𝒙𝑖 , 𝒙𝑗) 

• 𝜑(. ) may not be explicitly known or is extremely 

expensive to compute and store. 

• What is explicitly known is the dot product in 𝐻  

(also known as kernel 𝑘) 

(𝒙𝑖 , 𝒙𝑗) ∈ 𝑅𝐹X 𝑅𝐹 𝑘 . , . ∈ 𝑅 

• All positive (semi)-definite functions can be used as kernels 
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KPCA-Kernel Matrix 

• Given a training population of 𝑛 samples 𝒙1, … , 𝒙𝑛  we 

compute the training kernel matrix (also called Gram matrix). 

 

 𝑲 = 𝜑 𝒙𝑖
𝛵𝜑 𝒙𝑗 = [𝑘 𝒙𝑖 , 𝒙𝑗 ] 

• All the computations are performed via the use of the kernel 

or the centralized kernel matrix.  

𝚱 = 𝜑 𝒙𝑖 −𝒎Φ 𝛵
(𝜑 𝒙𝑗 −𝒎Φ) 𝒎Φ =

1

𝑛
 𝜑 𝒙𝑖

𝑛

𝑖=1
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𝑘 𝒙𝑖 , 𝒙𝑗 = 𝑒−| 𝒙𝑖−𝒙𝑗 |
2/𝑟2 

𝑘 𝒙𝑖 , 𝒙𝑗 = (𝒙𝑖
𝑇𝒙𝑗 + 𝑏)𝑛 

𝑘 𝒙𝑖 , 𝒙𝑗 = tanh(𝒙𝑖
𝑇𝒙𝑗 + 𝑏) 

KPCA- Popular Kernels 

Gaussian Radial Basis Function (RBF) kernel: 

Polynomial kernel: 

Hyperbolic Tangent kernel: 
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𝑿Φ = [𝜑 𝒙1 , … , 𝜑 𝒙𝑛 ] 

𝑿 Φ = 𝜑 𝒙1 −𝒎Φ, … , 𝜑 𝒙𝑛 −𝒎Φ  

         = 𝑿Φ 𝑰 − 𝑬 = 𝑿Φ𝑴, 𝑬 =
1

𝑛
 𝟏 𝟏𝑇 

𝑲 = 𝜑 𝒙𝑖
𝛵𝜑 𝒙𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗 = 𝑿Φ𝑇

𝑿Φ 

𝜥   = [ 𝜑 𝒙𝑖 −𝒎Φ 𝛵
𝜑 𝒙𝑗 −𝒎Φ ] = 𝑰 − 𝑬 𝑿Φ𝑇

𝑿Φ 𝑰 − 𝑬  
        = 𝑰 − 𝑬 𝑲 𝑰 − 𝑬 = 𝑲− 𝑬𝑲 −𝑲𝑬 + 𝑬𝑲𝑬 

Input space: 𝑿 = [𝒙1, … , 𝒙𝑛] 

Feature space: 

Centralised: 

Kernel: 

Centralised Kernel: 

KPCA-kernel Matrix  
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• KPCA cost function 

𝑼Φ
𝑜     = arg max𝑼Φtr[𝑼Φ𝑇

𝑺𝑡
Φ𝑼Φ]

= arg max𝑼Φtr[𝑼Φ𝑇
𝑿 Φ𝑿 Φ

𝑇
𝑼Φ] 

subject to 𝑼Φ𝑇
𝑼Φ = 𝑰 

𝑺𝑡
Φ𝑼Φ

𝑜
= 𝑼Φ

𝑜𝚲 

• The solution is given by the d eigenvectors that 

correspond to the d largest eigenvalues  

KPCA-Optimization problem 
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• How can we compute the eigenvectors of 𝑺𝑡
Φ? 

     We do not even know 𝜑‼‼ 

 

• Do you see any problem with that?  

• Remember our Lemma that links the eigenvectors and 

eigenvalues of matrices of the form 𝑨𝑨𝑇 and 𝑨𝑇𝑨 

𝜥   = 𝑿 Φ
𝑇
𝑿 Φ = 𝑽𝚲𝐕𝑇 then 𝑼Φ

𝑜 = 𝑿 Φ𝑽𝚲−
1

2 

• All computations are performed via the use of 𝜥  (so-

called kernel trick)  

KPCA- Computing Principal Components 
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• Still 𝑼Φ
𝑜 = 𝑿 Φ𝑽𝚲−

1

2 cannot be analytically computed.  

• But we do not want to compute 𝑼Φ
𝑜.    

• What we want is to compute latent features.  

 

• That is, given a test sample 𝒙𝑡  we want to compute 

𝒚 = 𝑼Φ
𝑜

𝑇
𝜑(𝒙𝒕) (this can be performed via the kernel trick) 

KPCA- Computing Principal Components 
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𝒚 = 𝑼Φ
𝑜

𝑇
(𝜑 𝒙𝒕 −𝒎Φ) 

    = 𝚲−
1
2𝑽𝑇𝑿 Φ

𝑇
(𝜑 𝒙𝒕 −𝒎Φ) 

    = 𝚲−
1
2𝑽𝑇 𝑰 − 𝑬 𝑿Φ𝑇

𝜑 𝒙𝒕 −
1

𝑛
𝑿Φ𝟏  

    = 𝚲−
1
2𝑽𝑇 𝑰 − 𝑬 (𝑿Φ𝑇

𝜑 𝒙𝒕 −
1

𝑛
𝑿Φ𝑇

𝑿Φ𝟏) 

    = 𝚲−
1
2𝑽𝑇 𝑰 − 𝑬 (𝑔 𝒙𝒕 −

1

𝑛
𝑲𝟏) 

 

 
𝑔 𝒙𝒕 = 𝑿Φ𝑇

𝜑 𝒙𝒕 =
𝜑 𝒙1

𝛵𝜑 𝒙𝑡
…

𝜑 𝒙𝑛
𝛵𝜑 𝒙𝑡

=
𝑘 𝒙1, 𝒙𝑡

…
𝑘 𝒙𝑛, 𝒙𝑡

 

KPCA- Extracting Latent Features 
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KPCA- Example 
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Remember the PCA model? 

𝒚𝑖 = 𝑾𝑇𝒙𝑖 

𝒙𝑖 𝒙𝑖 = 𝑾𝑾𝑇𝒙𝑖 

Latent Feature Extraction with Neural Networks 
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Latent Feature Extraction with Neural Networks 
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•G E Hinton, and R R Salakhutdinov Science 2006;313:504-507 

Latent Feature Extraction with Neural Networks 
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http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 

Matlab Toolbox for Dimensionality Reduction 

http://www.mathworks.co.uk/help/stats/ppca.html 

Matlab 2013b has PPCA implemented 

Toolboxes on Component Analysis 
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http://www.bsp.brain.riken.jp/ICALAB/ 

ICA toolboxes for image and signal processing: 

http://mialab.mrn.org/software/ 

ICA for EEG Analysis: 

http://research.ics.aalto.fi/ica/fastica/ 

FastICA  

Toolboxes on Component Analysis 
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