Course 495: Advanced Statistical Machine
Learning/Pattern Recognition

 Goal (Lecture): To present Kernel Principal Component
Analysis (KPCA) (and give a small flavour of Auto-
encoders).
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Materials

Pattern Recognition & Machine Learning by C. Bishop Chapter 12
KPCA: Schélkopf, Bernhard, Alexander Smola, and Klaus-Robert
Muller. "Nonlinear component analysis as a kernel eigenvalue

problem." Neural computation 10.5 (1998): 1299-13109.

Auto-Encoder: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks." Science
313.5786 (2006): 504-507.
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Non-linear Component Analysis
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H can be of arbitrary dimensionality
(could be even infinite)
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Kernel Principal Component Analysis

* @(.) may not be explicitly known or is extremely
expensive to compute and store.

» What is explicitly known is the dot product in H
(also known as kernel k)

o(x)Tp(x;) = k(x;, x7)

(xi,xj)ERFXRF >k(.,.)ER

 All positive (semi)-definite functions can be used as kernels
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KPCA-Kernel Matrix

 Given a training population of n samples [x4, ..., x,,] we
compute the training kernel matrix (also called Gram matrix).

K = [p(x)To(x;)] = [k(x;, x;)]

 All the computations are performed via the use of the kernel
or the centralized kernel matrix.

1 n
K= (px) -m®) (p(x) -m®)  m®==> (x)
=1
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KPCA- Popular Kernels

Gaussian Radial Basis Function (RBF) kernel:

(e 2y) = e~
Polynomial kernel: k(x;,x;) = (x;7x; + b)"

Hyperbolic Tangent kernel:

k(x;, x;) = tanh(x;Tx; + b)
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KPCA-kernel Matrix

Input space: X =[xq1,..,X5]

Feature space: X% = [o(xy), ..., 0(x,)]

Centralised: X® =[pkx) —m?, .., 0(x,) —m®]
=X*U-E)=Xx"M, p_1 7
n
Kernel: K = [p(x)To(x;)] = [k(x;,x,)] = X*' x®

Centralised Kernel:

K =[(pa)-m®) (p(x;) —m®)] = U - HX® X*U - E)
= (I—E)K(I —E) =K — EK — KE + EKE
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KPCA-Optimization problem

« KPCA cost function

U®, =arg machptr[Uq’TStch‘D]

= arg maXUq>tr[Uq’T)_(q’)_(q’TUq’]
subject to U®" U® = I

« The solution Is given by the d eigenvectors that
correspond to the d largest eigenvalues

S, PU® =UP,A
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KPCA- Computing Principal Components

« Do you see any problem with that?

« How can we compute the eigenvectors of Stq’?
We do not even know ¢!!!!

« Remember our Lemma that links the eigenvectors and
eigenvalues of matrices of the form AA” and A" A

. _ _ . 1
K =X® X® =vVAVT thenU®, = X®VA2

 All computations are performed via the use of K (so-
called kernel trick)
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KPCA- Computing Principal Components

. 1
Still U®,, = X®VA ™z cannot be analytically computed.

But we do not want to compute U? .

« What we want is to compute latent features.

That Is, given a test sample x; we want to compute

y = U“’OTgo(xt) (this can be performed via the kernel trick)
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KPCA- Extracting Latent Features

y = U‘DOT(cp(xt) - m®)
= A 2R (p(xp) — m®)
— AT - E)X®T ((p(xt) - %an)
— AV - E) x®" o(x,) — %X‘DTX‘D 1)

1 1
=A 2V (I - E)(g9(xy) — ;Kl)

; o) px)|  [kG,x)
g(x) = X% o(x,) = =
P (xn)T(p(xt)_ k (Xn, xt)_
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KPCA- Example

Original Pohlmomial Kernel

Linear PCA
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Latent Feature Extraction with Neural Networks

Remember the PCA model?

X .XA.'JL = WWTxl-
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Latent Feature Extraction with Neural Networks

target: reconstruct ion

Deep Autoencoder

feature space

gradient descent

high-dimensional low-dimensional

e e

input: vector of pixel values
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Latent Feature Extraction with Neural Networks
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*G E Hinton, and R R Salakhutdinov Science 2006;313:504-507
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Toolboxes on Component Analysis

Matlab Toolbox for Dimensionality Reduction

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality Reduction.htmi

Matlab 2013b has PPCA implemented

http://www.mathworks.co.uk/help/stats/ppca.html
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Toolboxes on Component Analysis

| CA toolboxes for image and signal processing.
http://www.bsp.brain.riken.jp/ICALAB/
ICA for EEG Analysis.
http://mialab.mrn.org/software/

FastiICA

http://research.ics.aalto.fi/ica/fastica/
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