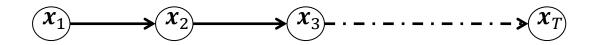
Linear Dynamical Systems (Kalman filter)

(a) Overview of HMMs

(b) From HMMs to Linear Dynamical Systems (LDS)

1

Markov Chains with Discrete Random Variables



Let's assume we have discrete random variables (e.g., taking 3 discrete values $\mathbf{x}_t = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \} \}$

Markov Property:
$$p(\mathbf{x}_t | \mathbf{x}_1, ..., \mathbf{x}_{t-1}) = p(\mathbf{x}_t | \mathbf{x}_{t-1})$$

e.g. $p(\mathbf{x}_t = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} | \mathbf{x}_{t-1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix})$

Stationary, Homogeneous or Time-Invariant if the distribution $p(\mathbf{x}_t | \mathbf{x}_{t-1})$ does not depend on t

2

Markov Chains with Discrete Random Variables

$$p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T) = p(\boldsymbol{x}_1) \prod_{t=2}^T p(\boldsymbol{x}_t | \boldsymbol{x}_{t-1})$$

What do we need in order to describe the whole procedure?

(1) A probability for the first frame/timestamp etc $p(x_1)$. In order to define the probability we need to define the vector $\boldsymbol{\pi} = (\pi_1, \pi_2, \dots, \pi_K)$ $n(x_1 | \boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k x_{1k}$

$$p(\boldsymbol{x}_1 | \boldsymbol{\pi}) = \prod_{c=1}^{n} \pi_c^{\boldsymbol{x}_{1c}}$$

(2) A transition probability $p(x_t | x_{t-1})$. In order to define it we need a *KxK* transition matrix $A = [a_{ij}]$

$$p(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{A}) = \prod_{j=1}^{K} \prod_{k=1}^{K} a_{jk}^{x_{t-1}jx_{tk}}$$

Markov Chains with Discrete Random Variables

(1) Using the transition matrix we can compute various probabilities regarding future

$$p(\mathbf{x}_{t+1}|\mathbf{x}_{t-1}, \mathbf{A}) = \mathbf{A}^{2}$$

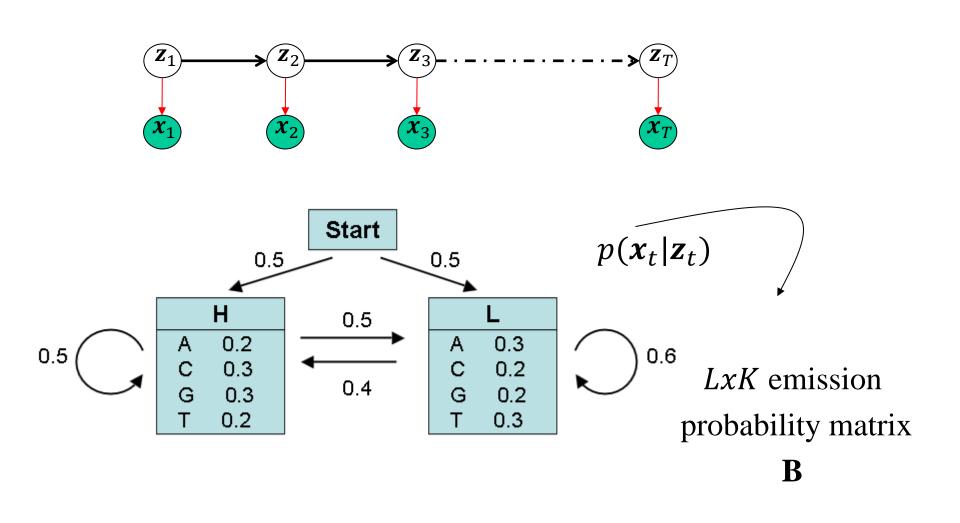
$$p(\mathbf{x}_{t+2}|\mathbf{x}_{t-1}, \mathbf{A}) = \mathbf{A}^{3}$$

$$p(\mathbf{x}_{t+2}|\mathbf{x}_{t-1}, \mathbf{A}) = \mathbf{A}^{3}$$

 The stationary probability of a Markov Chain is very important (it's an indication of how probable ending in one of states in random move) (Google Page Rank).

$$\pi^{\mathrm{T}}A=\pi^{T}$$

Latent Variables in Markov Chain



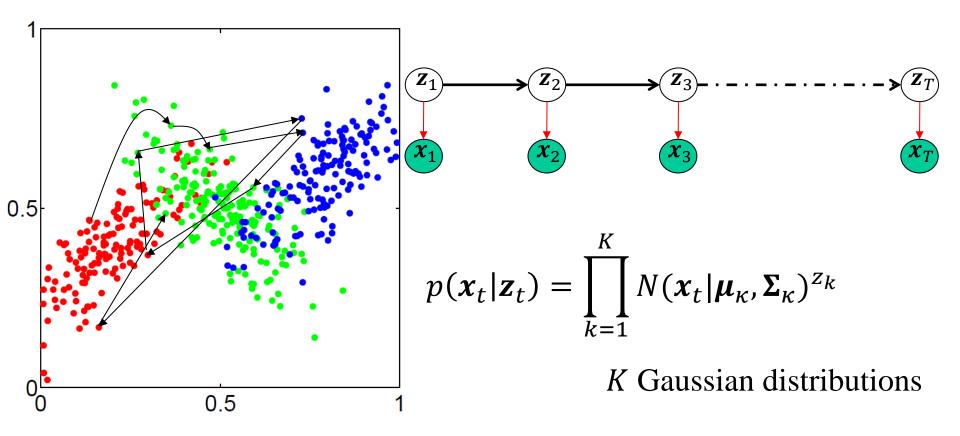
Stefanos Zafeiriou

Adv. Statistical Machine Learning (course 495)

5

ondon

Latent Variables in a Markov Chain



6

Factorization of an HMM

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_T) = p(\mathbf{z}_1) \prod_{t=2}^T p(\mathbf{z}_t | \mathbf{z}_{t-1})$$

$$p(\mathbf{X}, \mathbf{Z}|\theta) = p(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_T, \mathbf{z}_{1,} \mathbf{z}_2, \cdots, \mathbf{z}_T |\theta)$$
$$= \prod_{t=1}^T p(\mathbf{x}_t | \mathbf{z}_t) p(\mathbf{z}_1) \prod_{t=2}^T p(\mathbf{z}_t | \mathbf{z}_{t-1})$$

Stefanos ZafeiriouAdv. Statistical Machine Learning (course 495)

Imperial College

ondon

Given a string of observations and parameters:

(1) We want to find for a timestamp t the probabilities of z_t given the observations that far.

This process is called Filtering: $p(\mathbf{z}_t | \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_t)$

(2) We want to find for a timestamp t the probabilities of z_t given the whole string.

This process is called Smoothing: $p(\mathbf{z}_t | \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T)$ (3) Given the observation string find the string of hidden variables that maximize the posterior.

This process is called Decoding (Viterbi).

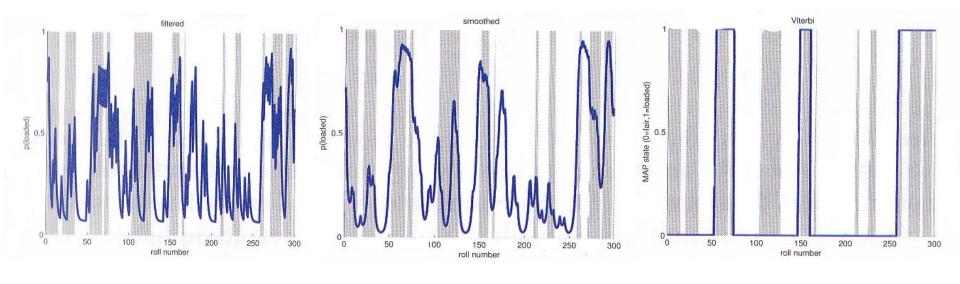
 $\operatorname{arg\,max}_{\boldsymbol{z}_1 \dots \, \boldsymbol{z}_t} p(\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_t | \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_t)$

Hidden Markov Models

Filtering

Imperial College

ondon



Taken from Machine Learning: A Probabilistic Perspective by K. Murphy

Stefanos Zafeiriou

Smoothing

Decoding

Adv. Statistical Machine Learning (course 495)

9

(4) Find the probability of the model.

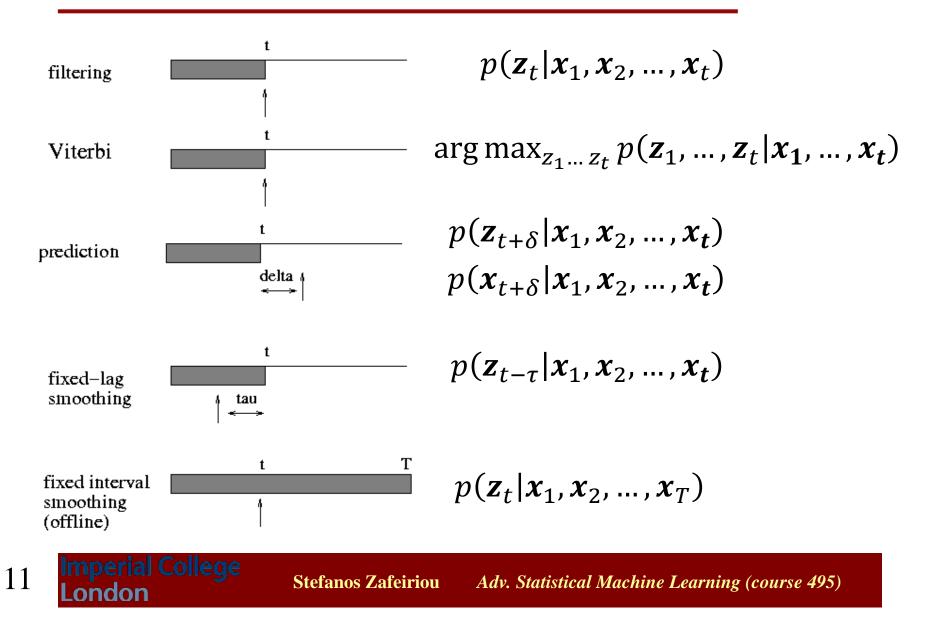
This process is called Evaluation $p(x_1, x_2, ..., x_T)$

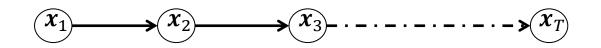
(5) Prediction

 $p(\mathbf{z}_{t+\delta}|\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t) \qquad p(\mathbf{x}_{t+\delta}|\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t)$

(6) EM Parameter estimation (Baum-Welch algorithm) A, π, θ

Hidden Markov Models





- Up until now we had Markov Chains with discrete variables
- How can define a transition relationship with continuous valued variables?

$$x_{1} = \mu_{0} + u \qquad x_{t} = Ax_{t-1} + v_{t}$$

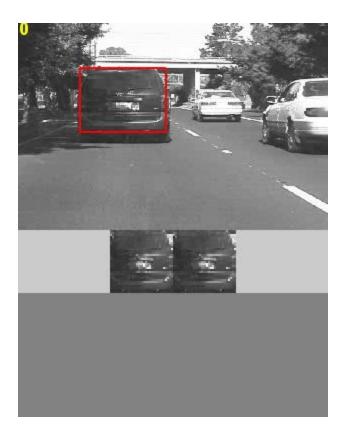
$$u \sim N(u|0, P_{0}) \qquad v \sim N(v|0, \Gamma)$$

or

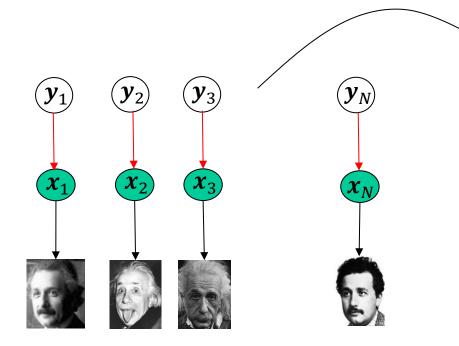
$$x_{1} \sim N(x_{1}|\mu_{0}, P_{0}) \qquad or \qquad x_{t} \sim N(x_{t}|Ax_{t-1}, \Gamma)$$

$$p(x_{1}) = N(x_{1}|\mu_{0}, P_{0}) \qquad p(x_{t}|x_{t-1}) = N(Ax_{t-1}|0, \Gamma)$$

Latent Variable Models (Dynamic, Continuous)



Stefanos Zafeiriou



14

ndon

Share a common linear structure

$$x = Wy + \mu + e$$

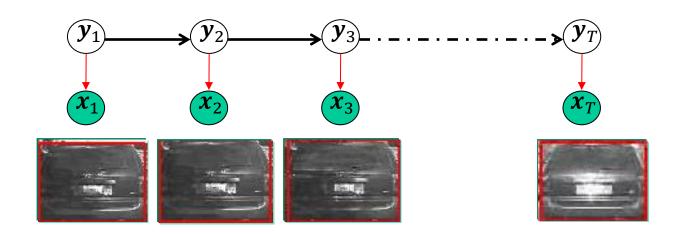
$$e \sim N(e|\mathbf{0}, \sigma^2 \mathbf{I})$$

$$y \sim N(y|\mathbf{0}, \mathbf{I})$$

We want to find the parameters:

 $\boldsymbol{\theta} = \{\boldsymbol{W}, \boldsymbol{\mu}, \sigma^2\}$

Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)



$$\boldsymbol{x}_t = \mathbf{W}\boldsymbol{y}_t + \boldsymbol{e}_t$$

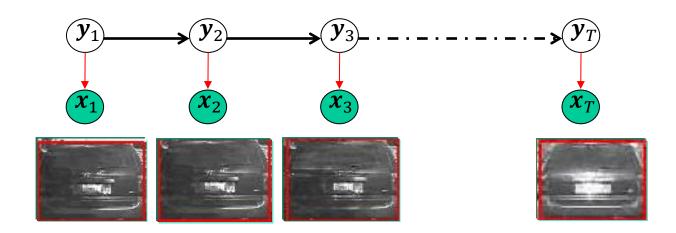
 $\mathbf{e} \sim N(\boldsymbol{e} | \mathbf{0}, \boldsymbol{\Sigma})$

Transition model

ndon

 $y_{1} = \mu_{0} + u \qquad u \sim N(u|0, P_{0})$ $y_{t} = Ay_{t-1} + v_{t} \qquad v \sim N(v|0, \Gamma)$ Parameters: $\theta = \{W, A, \mu_{0}, \Sigma, \Gamma, P_{0}\}$

16



First timestamp: $p(y_1) = N(y_1 | \mu_0, P_0)$ Transition Probability : $p(y_t | y_{t-1}) = N(y_t | Ay_{t-1}, \Gamma)$ Emission: $p(x_t | y_t) = N(x_t | Wy_t, \Sigma)$

HMM vs LDS

HMM

Markov Chain with discrete latent variables

 $p(\mathbf{y_1}) \qquad \boldsymbol{\pi} \quad Kx1$

 $p(y_t|y_{t-1}) \quad A \quad KxK$

 $p(\boldsymbol{x_t}|\boldsymbol{y_t}) \quad \boldsymbol{B} \quad LxK$

 $p(\mathbf{x}_t | \mathbf{y}_t)$ K distributions

LDS

Markov Chain with continuous latent variables

 $p(\boldsymbol{y}_1) = N(\boldsymbol{y}_1 | \boldsymbol{\mu}_0, \boldsymbol{P}_0)$

- $p(\mathbf{y}_t | \mathbf{y}_{t-1}) = N(\mathbf{A}\mathbf{y}_{t-1} | \mathbf{0}, \mathbf{\Gamma})$
 - $p(\mathbf{x}_t | \mathbf{y}_t) = N(\mathbf{x}_t | \mathbf{W} \mathbf{y}_t, \mathbf{\Sigma})$

Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)

Global Positioning System (GPS)

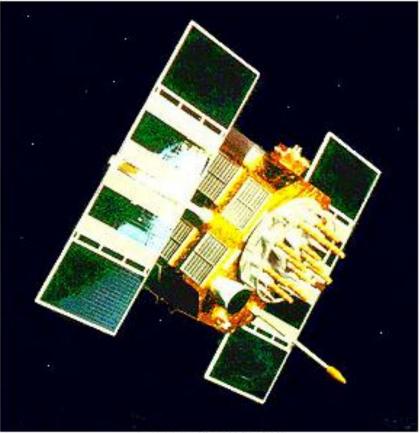


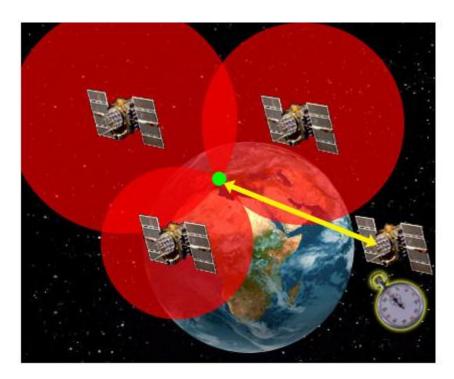
Photo courtesy NASA NAVSTAR GPS satellite

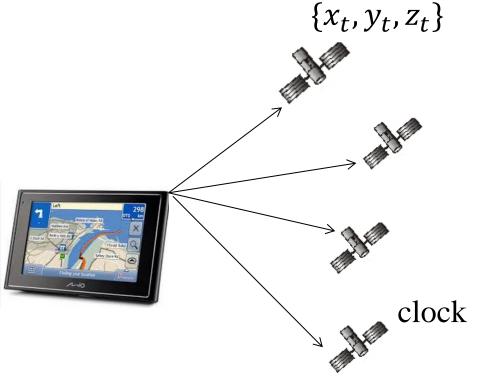
Imperial College

ndon

Photo courtesy U.S. Department of Defense Artist's concept of the GPS satellite constellation

Stefanos Zafeiriou



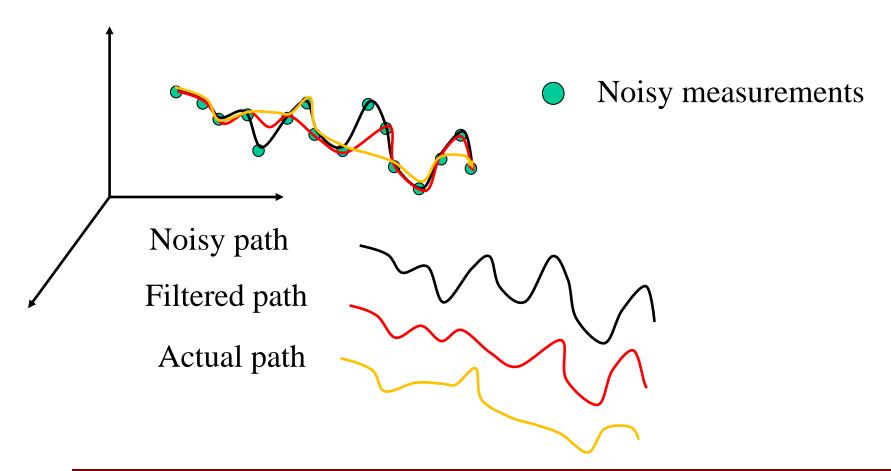


19 Imperial College London

Stefanos Zafeiriou

We still have noisy measurements

20



Given a string of observations and parameters:

(1) We want to find for a timestamp t the probabilities of z_t given the observations that far.

This process is called Filtering: $p(y_t | x_1, x_2, ..., x_t)$

(2) We want to find for a timestamp *t* the probabilities of z_t given the whole time series.

This process is called Smoothing: $p(y_t | x_1, x_2, ..., x_T)$

All above probabilities are Gaussians. Means and covariance matrices are computed recursively!!!!

(3) Find the probability of the model.

This process is called Evaluation: $p(x_1, x_2, ..., x_T)$

(5) Prediction

22

$$p(\mathbf{y}_{t+\delta}|\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t) \qquad p(\mathbf{x}_{t+\delta}|\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t)$$

(6) EM Parameter estimation (Baum-Welch algorithm)

$$\theta = \{\boldsymbol{W}, \boldsymbol{A}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{P}_0\}$$