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Linear Dynamical Systems (Kalman filter) 

(a) Overview of HMMs 

(b) From HMMs to Linear Dynamical Systems (LDS) 
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𝒙1 𝒙2 𝒙3 𝒙𝑇 

Let’s assume we have discrete random variables (e.g., taking 3 discrete 

values 𝒙𝑡 = {
1
0
0
,
0
1
0
,
0
0
1
}) 

                              

 𝑝(𝒙𝑡 𝒙1, . . , 𝒙𝑡−1 = 𝑝(𝒙𝑡|𝒙𝑡−1) Markov Property:  

 

Stationary, Homogeneous or Time-Invariant if the distribution 𝑝 𝒙𝑡 𝒙𝑡−1  
does not depend on 𝑡 

  

 

e.g. 𝑝(𝒙𝑡 =
1
0
0
|𝒙𝑡−1 =

0
1
0
) 

Markov Chains with Discrete Random Variables 
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𝑝(𝒙1, . . , 𝒙𝑇) = 𝑝(𝒙1) 𝑝(𝒙𝑡|𝒙𝑡−1)

T

𝑡=2

 

What do we need in order to describe the whole procedure?  

 
(1) A probability for the first frame/timestamp etc 𝑝(𝒙1). In order to 

define the probability we need to define the vector 𝝅 =
(𝜋1, 𝜋2, … , 𝜋K) 

 

(2) A transition probability 𝑝 𝒙𝒕|𝒙𝒕−𝟏 . In order to define it we need a 

𝐾𝑥𝐾 transition matrix 𝑨 = 𝑎𝑖𝑗  

  

 

 

𝑝 𝒙1|𝝅 = 𝜋𝑐
𝑥1𝒄

𝐾

𝑐=1

 

𝑝 𝒙𝑡|𝒙𝑡−1, 𝑨 =  𝑎𝑗𝑘
𝑥𝑡−1𝑗𝑥𝑡𝑘

𝐾

𝑘=1

𝐾

𝑗=1

 

Markov Chains with Discrete Random Variables 
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(1) Using the transition matrix we can compute various probabilities 
regarding future   

𝑝 𝒙𝑡+1|𝒙𝑡−1, 𝑨 = 𝑨
2 

𝑝 𝒙𝑡+2|𝒙𝑡−1, 𝑨 = 𝑨
3 

𝑝 𝒙𝑡+𝑛|𝒙𝑡−1, 𝑨 = 𝑨
𝑛 

(1) The stationary probability of a Markov Chain is very important 
(it’s an indication of how probable ending in one of states in 
random move) (Google Page Rank). 

𝝅𝐓𝑨 = 𝝅𝑻 

Markov Chains with Discrete Random Variables 
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Latent Variables in Markov Chain 

𝒛1 

𝒙1 

𝒛2 

𝒙2 

𝒛3 

𝒙3 

𝒛𝑇 

𝒙𝑇 

𝑝(𝒙𝑡|𝒛𝑡) 

𝐿𝑥𝐾 emission  

probability matrix 

B  
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Latent Variables in a Markov Chain 

𝒛1 

𝒙1 

𝒛2 

𝒙2 

𝒛3 

𝒙3 

𝒛𝑇 

𝒙𝑇 
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𝑝 𝒙𝑡 𝒛𝑡 = 𝑁(𝒙𝑡|𝝁𝜅 , 𝚺𝜅)
𝑧𝑘

𝐾

𝑘=1

 

𝐾 Gaussian distributions 
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𝑝(𝒛1, . . , 𝒛𝑇) = 𝑝(𝒛1) 𝑝(𝒛𝑡|𝒛𝑡−1)

T

𝑡=2

 

𝑝 𝑿, 𝒁 𝜃

= 𝑝 𝒙1, 𝒙2, ⋯ , 𝒙𝑇 , 𝒛1,𝒛2, ⋯ , 𝒛𝑇|𝜃          

= 𝑝(𝒙𝑡|𝒛𝑡)

𝑇

𝑡=1

𝑝(𝒛1) 𝑝(𝒛𝑡|𝒛𝑡−1)

T

𝑡=2

 

Factorization of an HMM  
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Given a string of observations and parameters: 

(1) We want to find for a timestamp 𝑡 the probabilities of 𝒛𝑡 given  

the observations that far. 

This process is called Filtering: 𝑝 𝒛𝑡 𝒙1, 𝒙2, … , 𝒙𝑡  

(2) We want to find for a timestamp 𝑡 the probabilities of 𝒛𝑡 given  

the whole string. 

This process is called Smoothing: 𝑝 𝒛𝑡 𝒙1, 𝒙2, … , 𝒙𝑇  
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What can we do with an HMM ? 

(3) Given the observation string find the string of hidden variables that  

maximize the posterior.   

argmax𝒛1… 𝒛𝑡 𝑝 𝒛1, 𝒛2, … , 𝒛𝑡 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒕  

This process is called Decoding (Viterbi). 
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Hidden Markov Models 

Filtering Smoothing Decoding 
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Taken from Machine Learning: A Probabilistic Perspective by K. Murphy 
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(4) Find the probability of the model. 

𝑝(𝒙1, 𝒙2, … , 𝒙𝑇) 

This process is called Evaluation 

Hidden Markov Models 
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(5) Prediction 

𝑝 𝒛𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  𝑝 𝒙𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  

(6) EM Parameter estimation (Baum-Welch algorithm) 

𝑨,𝝅, 𝜃 
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𝑝 𝒛𝑡 𝒙1, 𝒙2, … , 𝒙𝑡  

𝑝 𝒛𝑡 𝒙1, 𝒙2, … , 𝒙𝑇  

argmax𝑧1… 𝑧𝑡 𝑝 𝒛1, … , 𝒛𝑡 𝒙𝟏, … , 𝒙𝒕  

𝑝 𝒛𝑡−𝜏 𝒙1, 𝒙2, … , 𝒙𝒕  

𝑝 𝒛𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  

𝑝 𝒙𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  

Hidden Markov Models 
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• Up until now we had Markov Chains with discrete variables  

𝒙1 𝒙2 𝒙3 𝒙𝑇 

Linear Dynamical Systems (LDS) 

• How can define a transition relationship with continuous valued 

variables? 

𝒙𝑡 = 𝑨𝒙𝑡−1 + 𝒗𝑡 𝒙1 = 𝝁0 + 𝒖 

𝒗~𝑁(𝒗|𝟎, 𝚪) 𝒖~𝑁 𝒖 𝟎,𝑷0  

or  

𝒙1~𝑁(𝒙1|𝝁0, 𝑷0) 𝒙𝑡~𝑁(𝒙𝑡|𝑨𝒙𝑡−1, 𝚪) or  

𝑝(𝒙1) = 𝑁(𝒙1|𝝁0, 𝑷0) 𝒑(𝒙𝑡 𝒙𝑡−1 = 𝑁(𝑨𝒙𝑡−1|𝟎, 𝚪) 
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Latent Variable Models (Dynamic, Continuous) 
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𝒙1 𝒙2 𝒙3 

𝒚1 𝒚2 𝒚3 𝒚𝑁 

Share a common linear structure 

We want to find the parameters: 

 

𝒙𝑁 𝒙𝑁 
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Linear Dynamical Systems (LDS) 
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𝜃 = {𝑾,𝑨, 𝝁0, 𝚺, 𝚪, 𝑷0} 

𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒚1 𝒚2 𝒚3 𝒚𝑇 

𝒙𝑡 = 𝐖𝒚𝑡 + 𝒆𝑡 

𝒚𝑡 = 𝑨𝒚𝑡−1 + 𝒗𝑡 

𝒚1 = 𝝁0 + 𝒖 

𝐞~𝑁(𝒆|𝟎, 𝚺) 

𝒗~𝑁(𝒗|𝟎, 𝚪) 

𝒖~𝑁 𝒖 𝟎,𝑷0  

Parameters: 
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Transition model 

Linear Dynamical Systems (LDS) 
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𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒚1 𝒚2 𝒚3 𝒚𝑇 

Linear Dynamical Systems (LDS) 

𝑝(𝒚1) = 𝑁(𝒚1|𝝁0, 𝑷0) 

𝑝(𝒚𝑡 𝒚𝑡−1 = 𝑁(𝒚𝑡|𝑨𝒚𝑡−1, 𝚪) 

𝑝(𝒙𝑡 𝒚𝑡 = 𝑁(𝒙𝑡|𝑾𝒚𝑡 , 𝚺) Emission:  

Transition Probability :  

First timestamp:  
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HMM LDS 

Markov Chain  

with discrete latent variables    

Markov Chain  

with continuous latent variables    

𝑝 𝒚𝒕|𝒚𝒕−𝟏  

𝝅 𝑝 𝒚𝟏  

𝑝 𝒙𝒕|𝒚𝒕  

𝑨 

𝑩 

𝐾 distributions 𝑝 𝒙𝒕|𝒚𝒕  

or 

𝐿𝑥𝐾 

𝐾𝑥𝐾 

𝐾𝑥1 𝑝(𝒚1) = 𝑁(𝒚1|𝝁0, 𝑷0) 

𝑝(𝒚𝑡 𝒚𝑡−1 = 𝑁(𝑨𝒚𝑡−1|𝟎, 𝚪) 

𝑝(𝒙𝑡 𝒚𝑡 = 𝑁(𝒙𝑡|𝑾𝒚𝑡 , 𝚺) 

HMM vs LDS 
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What can we do with LDS? 

Global Positioning System (GPS) 
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{𝑥𝑡 , 𝑦𝑡, 𝑧𝑡} 

clock 

What can we do with LDS? 
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Noisy measurements 

Filtered path 

Noisy path 

Actual path 

We still have noisy measurements 

What can we do with LDS? 
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What can we do with LDS? 

Given a string of observations and parameters: 

(1) We want to find for a timestamp 𝑡 the probabilities of 𝒛𝑡 given  

the observations that far. 

This process is called Filtering: 𝑝 𝒚𝑡 𝒙1, 𝒙2, … , 𝒙𝑡  

(2) We want to find for a timestamp 𝑡 the probabilities of 𝒛𝑡 given  

the whole time series. 

This process is called Smoothing: 𝑝 𝒚𝑡 𝒙1, 𝒙2, … , 𝒙𝑇  

All above probabilities are Gaussians. Means and covariance matrices   

are computed recursively!!!! 
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(5) Prediction 

𝑝 𝒚𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  𝑝 𝒙𝑡+𝛿 𝒙1, 𝒙2, … , 𝒙𝒕  

(6) EM Parameter estimation (Baum-Welch algorithm) 

𝜃 = {𝑾,𝑨, 𝝁0, 𝚺, 𝚪, 𝑷0} 

What can we do with LDS? 

(3) Find the probability of the model. 

𝑝(𝒙1, 𝒙2, … , 𝒙𝑇) This process is called Evaluation: 
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