Linear Dynamical Systems (Kalman filter)

(a) Overview of HMMs
(b) From HMMs to Linear Dynamical Systems (LDS)
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Markov Chains with Discrete Random Variables

@ @ @ ........... _),@

Let’s assume we have dlscrete random variables (e.g., taking 3 discrete

i

Markov Property: p(xt . 1) —P(xt|xt 1)

o[}

Stationary, Homogeneous or Time-Invariant if the distribution p(x;|x;_1)
does not depend on ¢t
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Markov Chains with Discrete Random Variables

T
pCeyxr) = p@) | [pCeelrey)
t=2

What do we need in order to describe the whole procedure?

(1) A probability for the first frame/timestamp etc p(x;). In order to
define the probability we need to define the vector T =

(7T1,7T2,...,7TK) K

o) = | [ e

c=1
(2) A transition probability p(x¢|x;_1). In order to define it we need a
KxK transition matrix A = |a;]
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Markov Chains with Discrete Random Variables

(1) Using the transition matrix we can compute various probabilities
regarding future

p(X¢pq|Xi—1,A) = A? .
p(xt+n|xt—11A) =A

p(Xeyz|xp-1,A) = A°

(1) The stationary probability of a Markov Chain is very important
(it’s an indication of how probable ending in one of states in
random move) (Google Page Rank).

T

nTA=m
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Latent Variables in Markov Chain
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Latent Variables in a Markov Chain

@ @ @ ........... -

K
p(x|zy) = 1_[ N(x¢|pye, Xy )%k
k=1

ok . K Gaussian distributions
0 0.5 1
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Factorization of an HMM

T
p(zi,..20) =p(z) | |p(zilze)
t=2

p(X,Z|0)
= p(xl'xZJ X7, 21,2y, 'ZTlg)

T T
= | [p@izoped | [peelze
t=1 t=2
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What can we do with an HMM ?

Given a string of observations and parameters:

(1) We want to find for a timestamp t the probabilities of z; given
the observations that far.

This process is called Filtering: p(z;|x4, x5, ..., X;)

(2) We want to find for a timestamp t the probabilities of z; given
the whole string.

This process is called Smoothing: p(z;|x¢, x5, ..., X7)
(3) Given the observation string find the string of hidden variables that

maximize the posterior.
This process is called Decoding (Viterbi).
argmaxy. ., P(Zq,2y, ..., Z¢|xq, X2, ..., X¢)
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Hidden Markov Models

filtered
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Filtering Smoothing Decoding

Taken from Machine Learning: A Probabilistic Perspective by K. Murphy

9 ~ndar Stefanos Zafeiriou Adv. Statistical Machine Learning (course 495)



Hidden Markov Models

(4) Find the probability of the model.

This process is called Evaluation

p(xl; X2y wee) xT)
(5) Prediction

P(Zislxq, X2, -, X¢) P(Xp 45|21, X2, 0, X¢)

(6) EM Parameter estimation (Baum-Welch algorithm)
Am6
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Hidden Markov Models

11

filtering ] P(Zt|x1,xz, ""xt)
1
Viterbi _t argmax, , p(Zy, ..., Z¢|xq, ..., X¢)
1
t
prediction ] p(zt+5|x11 x2) '--)xt)
ﬁﬂ p(xt+5|x1'x2' ""xt)
t
fixed-lng (NN P(Ze—c]X1, X3, ..., X¢)
smoothing _tau
o t T
Eﬁ&lﬁ;ﬂl 1_ p(Zt|x1, X9, e xT)
{offline)
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Linear Dynamical Systems (LDS)

@ @ @ ........... _@

« Up until now we had Markov Chains with discrete variables

« How can define a transition relationship with continuous valued
variables?

x1=”0+u xt=Axt_1+‘Ut
u~N(ul0, P,) v~N(|0,T)
or
xX1~N(x1| o, Po) or Xe~N(x¢|Axi_4,T)
p(x1) = N(x1|to, Py) p(x¢|x¢—1) = N(Ax;_4|0,T)
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Latent Variable Models (Dynamic, Continuous)
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Linear Dynamical Systems (LDS)

Share a common linear structure

x=@y+u+e

e~N(e|0,0°I)

Q y~N(y|0,1)

We want to find the parameters:

0 ={W,u o°}
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Linear Dynamical Systems (LDS)

? ,@l} ,%'} ........... _,,%@

=
Xe = Wy, + e e~N(e|0,X)
Transition model
Yi=HUoTU u~N((u|0, P,)
Yy = Ay._1 + v, v~N(v|0,T)

Parameters: 6 = {W,A, u,, X, T, Py}
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Linear Dynamical Systems (LDS)
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First timestamp: p(y1) = N(y41|uo, Po)

Transition Probability : p(y:|y;—1) = N(y¢|Ay;_1,T)
Emission: p(x:|y:) = N(x:|Wy., )
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HMM vs LDS

HMM LDS
Markov Chain Markov Chain
with discrete latent variables with continuous latent variables
p(y1) w Kx1 p(y1) = N(y1lmo, Py)
p(ytlyt_l) A KxK p(ytlyt—l) — N(Ayt—ll()J F)
p(x¢|ye) B LxK p(x¢lye) = N(x|Wy, )
or

p(x:|y:) K distributions
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What can we do with LDS?
Global Positioning System (GPS)

Photo courtesy NASA Photo courtesy U.S. Department of Defense
NAVSTAR GPS satellite Artist's concept of the GPS satellite constellation
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What can we do with LDS?

Xt Yer 2t }
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What can we do with LDS?

We still have noisy measurements

Noisy path
Filtered path

Stefanos Zafeiriou

@ Noisy measurements

Actual path \/\/\/k/\
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What can we do with LDS?

Given a string of observations and parameters:
(1) We want to find for a timestamp ¢ the probabilities of z; given
the observations that far.

This process is called Filtering: p(y¢|x4, x5, ..., X¢)
(2) We want to find for a timestamp t the probabilities of z; given

the whole time series.
This process is called Smoothing: p(y;|x¢, X5, ..., X7)

All above probabilities are Gaussians. Means and covariance matrices
are computed recursively!!!!
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What can we do with LDS?

(3) Find the probability of the model.

This process is called Evaluation: p(X1,X2, ..., XT)

(5) Prediction

p(yt+5|x1Jx21 ""xt) p('xt+5|x11x2' "'th)

(6) EM Parameter estimation (Baum-Welch algorithm)

6 = {W,A,ﬂo,z, F, Po}
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