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Abstract Psychological evidence has emphasized the
importance of eye gaze analysis in human computer inter-
action and emotion interpretation. To this end, current image
analysis algorithms take into consideration eye-lid and iris
motion detection using colour information and edge detec-
tors. However, eye movement is fast and and hence difficult
to use to obtain a precise and robust tracking. Instead, our
method proposed to describe eyelid and iris movements as
continuous variables using appearance-based tracking. This
approach combines the strengths of adaptive appearance mod-
els, optimization methods and backtracking techniques. Thus,
in the proposed method textures are learned on-line from near
frontal images and illumination changes, occlusions and fast
movements are managed. The method achieves real-time per-
formance by combining two appearance-based trackers to a
backtracking algorithm for eyelid estimation and another for
iris estimation. These contributions represent a significant
advance towards a reliable gaze motion description for HCI
and expression analysis, where the strength of complemen-
tary methodologies are combined to avoid using high quality
images, colour information, texture training, camera settings
and other time-consuming processes.
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1 Introduction

Gaze information is important for the psychological analysis
of deceit, truth detection and emotion evaluation [4]. Ekman
and Frisen [10] have already shown that there are perceptible
human emotions, which can be detected early by analysing
eyelid and iris motion, see Fig. 1.

Human Computer Interaction (HCI) applications require
gaze analysis in real-time. Existing techniques are evaluated
according to robustness and accuracy [8]. On one hand, gaze
tracking is approached as an eyelid and iris detection prob-
lem by applying edge detectors, Hough transform, optical
flow and thresholding techniques [17,19]. These methods are
time-consuming and depend on both the image quality and
acquisition, for example by IR cameras [20]. On the other
hand, restricted detailed textures and templates have been
proposed for template matching, skin colour detection and
image energy minimization [1,15]. Moriyama et al. [15], for
example, use three eyelid states: open, closed and fluttering.
They have created detailed templates of skin textures for the
eyelid, the iris and the sclera. Their approach needs training
and texture matching.

Tan and Zhang [18] applied segmentation and colour space
transformations for iris tracking using a valley-peak field
approach to obtain a binary image for the iris region. How-
ever, the accuracy of the results is strongly affected by illu-
mination and skin colour. Therefore, it is difficult to use these
methods into different images and environment conditions.

By constructing a low-dimensional representation of non-
rigid objects, the Appearance-Based Models (ABM) provide
an accurate statistical analysis of complex shapes [9]. ABMs
are commonly used for face tracking because of their robust-
ness to handle changes in imaging conditions and different
skin colours. However, they have not been used for eyelid
and iris tracking yet.
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Angry Sad Happy

Fig. 1 Psychological studies interpret eyes movements as early and
spontaneous facial expressions [10]

In this paper, we propose a gaze tracking method, which
combines two Appearance-Based Trackers (ABT), one for
eyelid and another one for iris tracking. The first one excludes
the sclera and iris information, while achieving fast and accu-
rate eyelid adaptation for blinking and any fluttering motion.
The second one is able to track iris movements and recover
the correct adaptation, even in cases of eyelid occlusions and
iris saccade movements. Both trackers agree with the best
3D mesh pose that depends on the head position. The head
pose estimation enhances the system capabilities for eyelid
and iris tracking in different head positions.

We model appearance-textures as a multivariate normal
distribution. The Gaussian parameters are estimated by a
recursive filtering technique. This is an on-line learning pro-
cess of any facial texture. Once the expected appearance is
calculated, we estimate the facial actions by applying gradi-
ent descent methods and backtracking. Thus, the algorithm
converges faster to the best adaptation.

Our method has several advantages over existing meth-
ods. Firstly, we can handle occlusions, illumination changes
and faster saccade and blinking movements, while it is suit-
able for real-time applications. Existing methods, which are
predominantly created for medical image analysis, require
specific image quality, training and camera set-tings. Sec-
ondly, eyelid and iris movements are represented as continu-
ous variables according to the Facial Animation Parameters
(FAP) of MPEG4, whereas previous methods deal only open,
closed and fluttering state of eyelids.

The paper is organized as follows Section 2 describes the
theoretical foundations of deformable models, appearance
models and appearance-based trackers. Section 3 describes
the tracking system. Section 4 presents the experimental
results and the discussion. Finally, Sect. 5 is the conclusion
and future avenues of research.

2 Problem definition

We use boldface upper-case letters for matrices (e.g. Dk,l )
and the corresponding dimensions as sub index. Vectors are
written using boldface lower-case letters (e.g. x, r) and the
corresponding components with lower-case letters with the
sub-indices (e.g. x0, . . . , xn). Greek letters are used for func-
tions or constants (e.g. �(q)), where vector q is the indepen-
dent variable.

Fig. 2 The 3D mesh (a) is placed on the input image to model the eye
region (b). According to FAP codes, this shape model encodes 3D mesh
pose, eyelids, iris yaw and iris pitch

We model left and right eyes using a 3D deformable model
composed of 36 vertices and 53 triangles, see Fig. 2a. This
wire-frame covers eyeballs, upper and lower eyelids, sclera
and iris, see Fig. 2b. The nxi matrix F determines the mesh
deformation:

Fn,i = Dn,i + An,i,k ∗ gk (1)

where n is the number of vertices and i indicates the Carte-
sian coordinates in the image. Matrix Dn,i encodes the biom-
etry of each person according to eyes width, eyeballs height,
eyes separation, eyes vertical difference, eyes outer corner,
iris size, and iris asymmetry. Matrix An,i,k deforms the mesh
depending on eyelid and iris movements. Vector g =
(g0, g1, g2) encodes three facial actions, eyelids, iris yaw,
and iris pitch. Each component follows the MPEG-4 encod-
ing for FAPs as continuous values in the range [−1.0,1.0].

Facial feature detectors may give an automatic tracking
initialization [7]. However, manual placement of the mesh
guarantees a better tracking performance, since the biometry
is kept along the sequence providing accurate estimations.

Consequently, tracking parameters are encoded in vec-
tor q = [r, g] to adjust the mesh to the eye region. Vector
r = [θx , θy, θz, x, y, s] contains the 3D orientation of the
appearance according to three Euler’s angles (the head pose),
the image plane position and the scale. Tracking initializa-
tion provides q0 for the first frame to estimate the respective
vectors along the image sequence.

An appearance model x = (x0, ..., xl)
T , is created to rep-

resent the eye region [5], where l is a number of pixels in the
appearance. The 3D mesh provides the shape and a warping
function �(I, q) allows to construct the texture. Each pixel
from the input image I is mapped on a reference texture patch
x, according to shape deformation, q, see Fig. 2b.

Assuming a weak perspective, the 3D mesh is projected
onto the image plane according to vector q. Similarly, a
reduced mesh in frontal position is placed onto the reference
texture. Regarding photometric transformations, we use a
zero-mean-unit-variance normalization to partially compen-
sate contrast variations. For the sake of clarity, from now on,
all appearances are normalized.

Using two appearance resolutions of l = 170 and l = 580
pixels, the complete image transformation is implemented as
follows: (a) Adapt the shape model F to image I, see Fig. 2a.
(b) Construct texture x using warping function �(I, q).
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(c) Perform zero-mean-unit-variance normalization on the
obtained patch.

3 Appearance-based tracking

Identifying head and facial movements is challenging for
marker-less approaches and appearance-based trackers
(ABT). 3D head motion involves six degrees of freedom.
Moreover, eyelids and irises are non-rigid surfaces that move
fast and are more sensitive to illumination changes and self-
occlusions.

In a given image sequence showing the eye region motion
with small head movements, tracking consists of estimating
the eyelid and iris positions in 3D for each frame. Therefore,
the goal of ABTs is estimating vector q=[r, g] at each frame
t, where r is the 3D shape pose and g is the facial action vec-
tor. In the context of tracking, adaptation results associated
with the current frame will be propagated to the next frame.

We represent the estimated vector as q̂t and the respective
estimated appearance as x̂t (q̂t ) [5]. With a view to make it
succinct, we assume that xt (qt ) and xt are equivalent.

3.1 Observation process

Let us consider an appearance sequence Xl,t , corresponding
to input image sequence I:

X =
⎡
⎢⎣

x0,0 · · · x0,t
...

. . .
...

xl,0 · · · xl,t

⎤
⎥⎦ = [x0, . . . , xt ] (2)

where column vectors xi,t = (x0,t , . . . , xl,t )
T are appear-

ances of l pixels and row vectors xl, j = (xl,0, . . . , xl,t ), con-
tain the pixel variation at the position l over time. We assume
that row vectors xl, j , which are the values at the same position
in the appearance, follow single Normal Distributions. There-
fore, we can assume that appearance xi,t follows a Multivar-
iate Normal Distribution over time, xi,t ∼ Nl(µ,�2).

Since we assume that the variation in the intensity of pix-
els is mutually independent among them, there is no corre-
lation � between them. Hence, the covariance matrix � =
diag(σ0, σ1). Consequently, we collect means and standard
deviations of all Gaussians in vectors µ= (µ0, . . . , µl)

T and
σ 2 = (σ 2

0 , . . . , σ 2
l )T . Therefore, xi,t ∼ Nl(µ, σ 2) and the

probability for each observation is given by the conditional
likelihood function:

P(xt |qt ) =
l∏

i=0

e−(xi −µi )
2/2σ 2

i

σi
√

2π
(3)

To obtain the expected appearance, we assume all esti-
mations under an exponential envelope. Subsequently, we

calculate both Gaussian parameters µ and σ 2, by applying a
linear recursive combination based on previous adaptations,
the current estimation and a learning coefficient λ:

µt+1 = (1 − λ)µt + λx̂t

σ 2
t+1 = (1 − λ)σ 2

t + λ(x̂t − µt )
2 (4)

where µ is initialized with the first patch x0 and a constant
value for the standard deviation σ . Gaussian parameters gain
significance after 50 frames, in accordance to the binomial
distribution approximation and the central limit theorem for
big sets of data. Learning factor λ is 1/t until the 50th frame,
otherwise, it is a constant value.

3.2 Registration process

New pixel values are registered into the cumulative Mul-
tivariate Gaussian X, according to shape deformation F. Vec-
tor qt+1, shape deformation parameters, is estimated for the
next frame using an adaptive velocity model. This is a deter-
ministic function that consists of the last estimated vector
and the increment vector δq̂t as follows:

qt+1 ≈ q̂t + δq̂t (5)

where δq̂t is the increment vector for the mesh deformation.
The registration quality depends on estimating the opti-

mal increment vector, which minimizes the error function
between expected µ, and estimated x appearances.

ξ(qt ) = 1

2

l∑
i=0

(xi − µi )
2

σ 2
i

= 1

2
||e(qt )||2 (6)

where e(qt ) is the residual appearance vector.
Let us consider the minimization problem of ξ(qt ): Rl →

R, which is a convex and a twice continuously differentiable
function (Eq. (6)). The condition for vector q to be an opti-
mal solution is ∇ξ(qt ) = 0. This problem is usually solved
using an iterative first-order linear approximation based on
the updated Gauss–Newton Iteration (GNI) algorithm [16]:

ξ(qt ) = 1

2
||∇ξ(qt ) + e(0)||2 (7)

where ∇ξ(qt ) is the Jacobian matrix Jl,i , containing the
derivatives of the distance function. This matrix is defined
as J(q) = ∂e j

∂qi
(1 ≤ j ≤ l, 1 ≤ i ≤ 9), according to the

number of pixels in the appearance and to the number of
facial actions in vector q.

The Vanilla method is the simplest and the most intuitive
technique to find the optimal solutions for (Eq. (7)) [2];

qt+1 = qt − δ∇ξ(qt ) (8)

where δ gives the size step of descent in the search direc-
tion of the negative gradient ∇ξ(qt ). Gradient descent suf-
fers convergence problems such as heavy time-consumption
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finding the optimal δ according to the slope. Another issue
is that curvature of the error surface may not be the same in
all directions.

Given the Jacobian matrix J, we can essentially get the
Hessian (∇2ξ(qt )) by neglecting the highest order terms in
the Taylor series of the distance function. The Hessian in this
case becomes

∇2ξ(qt ) = J(qt )
T J(qt ) (9)

To provide a faster convergence, we propose to use an updated
GNI, which includes information about the curvature. With
a quadratic assumption for ξ(qt ) around qt , convergence is
rapid but sensitive to the starting location, more precisely, to
the linearity around the starting location:

qt+1 = qt − δ[J(qt )
T J(qt )]−1∇ξ(qt ) (10)

For facial actions such as eyelids and irises, linearity has
low probability. Nevertheless, we avoid local minima using
backtracking procedures.

3.3 Handling outliers

By combining the observation and the registration processes,
appearance textures are learnt on-line. The correct adapta-
tion of an image agrees with the best match between shape F
and image I according to vector q. Therefore, the respective
appearance is the closet estimation to the expected one.

However, illumination changes, occlusions, perturbing
objects, and fast movements may introduce outlier pixels to
the statistical model and learnt textures. Drifting problems
occur when the ABT learns outliers by introducing them into
the Gaussian distribution and the gradient estimation.

In order to handle outliers, occlusions and faster move-
ments, we constrain texture learning and gradient descent
using Huber’s function [14,3], which is as follows:

η(x) =
{

x2

2 if |x | ≤ c

c|x | − c2

2 if |x | > c
(11)

where x is the normalized pixel value in the appearance xt

and c is a constant outlier threshold equivalent to 3*σ . Pixel
xi is an outlier when ||xi || > c.

Subsequently, we combine the η(x) function with the
observation process to lessen the influence of outlier pixels:

P(xt |qt ) =
l∏

i=0

e−η(x)

σi
√

2π
(12)

Similarly, to down-weight the influence of outlier pixels in
the registration process, we combine the GNI algorithm with
the diagonal matrix �(x), whose terms are:

�(xi ) = 1

xi

∂η(x)

∂xi
=

{
1 if |x | ≤ c
c

|x | if |x | > c
(13)

Fig. 3 Shape and appearance for the eyelid tracker (a). Shape and
appearance for the iris tracker (b)

Consequently, we obtain the modified GNI:

qt+1 = qt − δ[J(qt )
T J(qt )]−1�(xt )∇ξ(qt ) (14)

3.4 Sequential tracking

Eyelids and irises have both smooth and spontaneous
movements, which are difficult to track using statistical and
deformable models. Eye region images are small and with
low resolution when using monocular cameras. Eyelids and
irises have a special interaction, suggesting correlation
between them. On one hand, iris motion deforms the eyelid
surface, which demands additional adaptation for ABTs. On
the other hand, eye blinking occludes the iris region, forcing
the iris tracker to recover the correct position after the occlu-
sion. These small iris movements are called saccade and they
are difficult to predict.

Tracking eyelids and irises with the same appearance mod-
els may produce drifting problems due to different intensity
textures and occlusions. Therefore, we propose to construct
two appearances for two independent trackers. Firstly, an
appearance x(w) for eyelid tracking, excluding iris’ FAP with
vector w = [r, g0] from the shape. Those pixels in the inner
eye region are warped as eyelid pixels in the appearance
texture, see Fig. 3a.

Secondly, an appearance x(q) for iris tracking includes
eyelid and iris pixels, see Fig. 3b. However, this tracker has
special strengths to estimate irises rather than eyelids. Once
the eyelid tracker gives its estimation, the iris tracker can
estimate iris movements while refining the previous eyelid
position.

3.4.1 Eyelid tracker

Using the current shape Ft based on the geometrical vector
w = [r, g0], we construct an ABT for eyelids, Tw, taking the
following steps, see Fig. 3a:

1. Construct the appearance xt (w) for the image I0:

(a) Obtain Shape, Ft = D + A ∗ g0

(b) Project the shape according to w = [r, g0]
(c) Apply the warping function, �(I, w) = xt (w)

2. Obtain Gaussian parameters using the likelihood func-
tion:

(a) µt+1 = (1 − λ)µt + λxt (w)
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(b) σ 2
t+1 = (1 − λ)σ 2

t + λ(xt (w) − µt )
2

3. Calculate the Jacobian and Hessian matrices:

(a) Calculate the residual appearance,
ξ(wt ) = 1

2 ||e(wt )||2
(b) Compute the partial derivatives,

J(wt ) = [∂e j/∂wi ], 1 ≤ j ≤ l, 1 ≤ i ≤ 7
(c) Obtain the Hessian, ∇2ξ(wt ) = J(wt )

T J(wt )

The eyelid FAP g0, may vary in ± 2.0 in two succes-
sive frames. Therefore, the partial differences include
the whole range [−1.0,1.0].

4. Estimate the new shape Ft applying GNI algorithm:

(a) Construct the diagonal matrix �(xt )

(b) Compute the search direction,
dk = −[J(wt )

T J(wt )]−1�(xt )∇ξ(wt )

(c) Choose the step length δ via backtracking line-
search procedure:

(i) Consider the search direction in (b) and the
starting vector wk = wt ∈ dom ξ .
Set δk = ∑k

0(−1)k(1/k)

(ii) 1While ξ(wk + δkdk) > ξ(wk) + δkdk

(iii) Set δ = δk .
(d) Update variables, wk+1 = wk − δdk

(e) Test convergence for stopping iterations, otherwise,
consider k = k + 1 and go to (b).

As we mentioned above, there are two main steps to esti-
mate eyelids correctly; step 3(b) considers the whole FAP
range to estimate the gradient descent. Step 4(c) calculates
the damping factor, δ, using backtracking procedures. There-
fore, the eyelid tracker provides a space of solutions and a
faster convergence.

3.4.2 Iris tracker

For the same image and using the current shape Ft , based on
the geometrical vector q = [r, g0, g1, g2], we construct an
ABT for irises, Tq, taking the following steps, see Fig. 3b:

1. Construct the appearance xt (w) for the image I0:

(a) Obtain Shape, Ft = D + A ∗ g
(b) Project the shape according to q = [r, g0, g1, g2]
(c) Apply the warping function, �(I, q) = xt (q)

2. Obtain Gaussian parameters:

(a) µt+1 = (1 − λ)µt + λxt (q)

(b) σ 2
t+1 = (1 − λ)σ 2

t + λ(xt (q) − µt )
2

3. Calculate the Jacobian and Hessian matrices:

(a) Calculate the residual appearance,
ξ(qt ) = 1

2 ||e(qt )||2
(b) Compute the partial derivatives,

J(qt ) = [∂e j/∂qi ], 1 ≤ j ≤ l, 1 ≤ i ≤ 7

1 Armijo Condition [16].

(c) Obtain the Hessian, ∇2ξ = J(qt )
T J(qt )

Iris movements are more subtle than eyelids; the iris’
FAP may change approximately ± 0.5 in two succes-
sive frames. Hence, gradients are estimated in the range
[g − 0.5, g + 0.5].

4. Estimate the new shape Ft applying GNI algorithm:

(a) Construct the diagonal matrix �(xt ).
(b) Compute the search direction,

dk = −[J(qt )
T J(qt )]−1�(xt )∇ξ(qt )

(c) Choose the step length δ via backtracking line-search
procedure:

(i) Consider the search direction in (b) and the
starting vector qk = qt ∈ dom ξ .
Set δk = δk−1

υ
, for υ > 1.

(ii) While ξ(wk + δkdk) > ξ(wk) + δkdk

(iii) Set δ = δk .
(d) Update variables, qk+1 = qk − δdk

(e) Test convergence for stopping iterations, otherwise,
consider k = k + 1 and go to (b).

Even when the iris movements are not smooth facial actions,
the backtracking procedure is more deterministic by decreas-
ing the damping factor δ, which is a constant rate.

3.4.3 Combination of ABTs

The residual image e(q), or the Mahalanobis distance ξ(q)

can be used as error measures to estimate the effectiveness of
both trackers. The number of iterations k is estimated exper-
imentally according to the average iterations needed to con-
verge when tracking long image sequences.

Appearance modelling, observation process and gradient
matrices are based on results of previous adapted frames.
Therefore, both trackers can run simultaneously and indepen-
dently until the GNI algorithm starts, then, they run sequen-
tially. Once the eyelid tracker converges, min[ξ(w∗)] =
ξ(w∗), the iris tracker starts the iterative process, see Fig. 4.

On one hand, the eyelid tracker Tw sets the starting point
in 4(c)(i) by modifying vector qt , qk = [r, g∗

0 , g1, g2], where
g∗

0 is the eyelid tracking solution for the current frame, (t+1).
On the other hand, the step-size estimation is constrained to
improve the convergence error of eyelid tracker, ξ(q∗) ≤
ξ(w∗).

Consequently, when applying twice the iterative minimi-
zation, both trackers are efficiently connected. The eyelid
tracker is independent from the iris estimation while the sec-
ond tracker is led to the correct eyelid position and forced to
improve the eyelid convergence error.

The sequential tracking combines the strengths of both
ABTs. Specific shape models contribute to avoid the high
contrast between eyelids, sclera and irises. The space of solu-
tions is extended using different FAP range and step-size
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Fig. 4 Structure of the
sequential gaze tracking system

Fig. 5 Public databases and
ground truth. We use the “FGnet
Talking” database for face
tracking (a) with the
corresponding ground truth (b).
Additionally, we use the FGnet
Facial Expressions and Emotion
Database (c)

for the estimation of the gradient. The use of two particular
backtracking procedures improve the convergence for each
tracker.

4 Experimental results

We have tested our method with two public databases; one
is the FGnet Talking Face Video [12] for face tracking. It
provides five image sequences, each one is composed by
one thousand images of head and shoulders with the ground
truth for upper and lower eyelids, and iris centre, see Fig. 5.
The other database is the FGnet for facial expressions analy-
sis [13]. Additional recorded videos are tested. They present
other challenges such as gaze movements, gazes in 3D, eye-
glasses, illumination changes and occlusions.

We use the ground truth of FGnet to evaluate the accuracy
of the results. Convergence error is used to evaluate those
experiments with image sequences without ground truth such
as FGnet for expression analysis and other recorded videos in
our laboratory. In this case, the output image helps to validate

Fig. 6 The image I and shape F edges do not match in a wrong result
(a) while matching in a correct one (b)

the results, since the drawn shape depends on the estimation
and the image is the original input, see Fig. 6.

The Experiments were run on a 3.2 GHz Pentium PC, in
ANSI C code. Image sequences were recorded with monoc-
ular cameras and standard resolutions. We tested the method
with two sizes of appearances, 170 and 580 pixels.

4.1 Ground truth comparison

To compare the sequential tracking results with the ground
truth, we used the FGnet database [12]. The images have a
size of 720 × 576 pixels and 800 frames. The actor performs
slow and short head movements, close to the frontal position
while moving eyelids and irises.
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Fig. 7 Estimated positions are compared with the ground truth of
FGnet DB. 3.2 and 2.2 averages for both trackers

Fig. 8 The error between expected and estimated appearances as con-
fidence value of the effectiveness

For eyelid comparison, we calculate the average differ-
ence for the vertical positions of upper and lower eyelids. It
is worth to mention that those positions may vary depending
on the horizontal position for both ground truth and tracking
result. However, the average error for eyelids is 3.2 pixels
per frame. For irises, we calculate the average difference for
the iris centre. Likewise, the average error for irises is low,
2.2 pixels per frame.

In Fig. 7, it is possible to see that higher errors coincide
with those frames where eye blinking or fast iris movements
are occurring. Nonetheless, errors decrease when both track-
ers improve the convergence in the subsequent frames. Alto-
gether, low errors compared to the ground truth agree with
low errors when comparing expected and estimated appear-
ances, see Fig. 8. Wrong adaptations are visible when the
drawn contour does not match the image. Moreover, higher
errors differ about 6.0 pixels with the ground truth and 4.5
pixels with the expected appearance.

Fig. 9 The ground truth is not accurate by marking blinks

In relation to this ground truth data, it is important to men-
tion that it may have wrong annotations, which are possible
to verify with the eyelid tracker Tw. This tracker estimates
vector w = [r, g0], where g0 [−1.0, 1.0], −1.0 when the
eyes are closed and 1.0 when they are in an open position.
Frames such as 125, 126, 242, 243, 603, 604 give us a value
of g0 = −1.0 and the distance between upper and lower eye-
lids is zero pixels. However, the ground truth differences are
never zero pixels (−1.0 corresponding to the FAP), see Fig. 9.

4.2 Eyelid tracking

As we mentioned before, the eyelid tracker Tw estimates vec-
tor w and eyelid facial action g0 as continuous variables in
the range [−1.0,1.0] for closed and open eyes, respectively.

Given that for each iteration of the GNI algorithm, the 3D
mesh varies according to rotation, translation and eyelids,
with respect to the previous estimated vector, we obtain an
appearance space with k possible solutions.

We have used an image sequence of 700 frames, recorded
in our laboratory (Eyelid Sequence) with monocular cam-
eras and standard illumination. Each frame includes the head
and shoulders performing extreme eye facial actions, which
deform the eyelid surface in 3D, see Fig. 10. The eye-cropped
region shows the experimental results. The tracker does not
depend on the image size because it is warped into the same
appearance texture.

Without using edge detectors, the eyelid tracker is able to
handle low and smooth movements like eye slitting, eye clos-
ing and eye squinting. Forced and spontaneous movements
like eyelid raising, eyelid tightening, winking and blinking,
are handled correctly. These estimations are also indepen-
dent from the iris position because the inner eye pixels are
not visible when the eyelid in the image matches the shape
model.

Psychological studies have addressed the importance of
analysing these movements regarding emotion analysis,
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Fig. 10 The eyelid estimation Tw is a continuous curve, instead of the
dash line for discrete states

image encoding and HCI. These movements are character-
ised by the Facial Actions Coding System (FACS) [11].

4.3 Iris tracking

Iris tracker Tq estimates the whole vector q = [r, g]. The
iris yaw and pitch parameters are evaluated as continuous
variables in the same FAP range.

In this experiment, we use an image sequence of 500
frames of size 640 × 480 pixels (Iris Sequence). The video
was recorded in our laboratory with a photographic camera
in VGA mode and standard illumination. The actor shows
iris movements in all directions and looking askance.

The iris tracker can deal with the four different FACS
[11]; eyes turned up, down, left, right and extreme move-
ments like with an askance look, where the iris could be par-
tially occluded or distorted by the 3D perspective. However,
involuntary movements such as iris saccades are commonly
detected after eyelid occlusions or gaze accommodation.

Figure 11 shows how the iris tracker correctly estimates
yaw and pitch movements. The dash and light curves repre-
sent gaze-tracking results using the discrete scale of related
approaches. A good result corresponds to the correct match-
ing between the image and the drawn rectangle around to the
iris, which comes from the estimated vector q.

Frames between 101 and 151 show g2 near −0.5, when
the subject is looking down. In frame 300 the iris pitch is
g1 = −1.0 because the subject is looking askance to the
left, while frame 400 has g1 = 1.0 for askance to the right.
Figure 11 shows the results for both eyes when the upper
eyelids are drooping and occluding the iris.

Fig. 11 The estimations Tq for iris yaw and pitch are continuous curves
instead of estimating discrete states

Fig. 12 The iris tracker Tq is compared to the sequential tracking Tw+
Tq, by measuring the iris estimation in relation to the ground truth

4.4 Sequential tracking

First, we show the results when the iris tracker follows the
eyelids without any previous eyelid tracker estimation, see
Fig. 12. The search direction and Jacobian matrix for eyelids
are calculated in the range [−1.0, 1.0]. However, the back-
tracking procedure is not the same for the eyelid tracker,
because of a damping factor which influences the descent of
all appearance parameters.
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Fig. 13 Sequential tracking Tw + Tq improves the eyelid estimations
since the iris tracker Tq (dash curve) is not able to track eyelids

In order to compare both trackers, we use the previously
introduced dataset of FGnet [12]. When eyes are blinking, the
iris tracker is not able to adapt to the shape model. Hence, the
eyelid pixels over the inner eye region are rejected and are
not included in the appearance model and the shape remains
in the previous correct adaptation, see again Fig. 12.

However, in the same sequence, the sequential tracking
obtains first the eyelid position from eyelid tracker Tw. Next,
iris tracker Tq, starts estimating the iris movements while
refining the current eyelid estimation. We can see the same
frames after applying the sequential tracking, see Figure 13.
The eyelid estimation is more accurate due to the second iter-
ative process. This is demonstrated in the descent of the error
estimation in relation to the likelihood and the ground truth,
see Fig. 13.

All facial actions g and the 3D shape pose are indepen-
dently estimated since the Jacobian J is calculated by partial
differences. Although the iris tracker includes eyelid facial
action, it cannot find big changes such as closed eyes or
blinks. On one hand, the contrast between the inner and
the outer eye pixels is greater than the outlier threshold in
Huber’s function. Therefore, inner pixels are outliers and are
not learnt fast enough to expect quick changes. On the other
hand, the gaze vector is estimated in a small range with a
ratio of ± 0.5.

Another test for the sequential gaze tracking is done using
an image sequence from the FGnet DB for facial expression.
It contains 100 frames of 320 × 240 pixels, where the actor
performs an expression of anger while squinting, blinking
and moving the iris.

In Fig. 14, it can be seen how the iris position is retrieved
after eyelid occlusion. Moreover, the eyelid tracker adjusts

Fig. 14 The sequential tracking estimates eyelids and irises while
expressing emotions, squinting and blinking

Fig. 15 The ABT is stable to illumination changes by learning the new
environment conditions and decreasing the error

correctly to the eyelid position during the iris motion. Only
eyelid estimation and its convergence are shared by both
trackers. Therefore, iris estimations do not influence the eye-
lid tracker at the next frame.

4.5 Illumination changes

Appearance trackers commonly suffer drifting problems due
to sensitiveness to illumination changes. This happens mainly
because of their dependency on training of textures and
shapes.

To prove the capability of our method to handle illumi-
nation changes, we use an image sequence of 800 frames
(Flashing Light Sequence), each of a size of 352 × 288 pix-
els, recorded with a web camera in an indoor scenario. The
subject is using his hands, creating shadows and occluding
his face while lights are flashing, see Fig. 15.

The pictures in Fig. 15 show how the ABT can adapt to
the 3D shape while there are changes in illumination. This is
a controlled learning ability based on combining likelihood
and Huber’s function. Besides, both trackers handle different
learning rates, λw and λq, because eyelids change faster than
irises.
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Fig. 16 The ABT recovers stability if the illumination changes are not
extreme, as with flashing lights

In frame 525, a fluorescent lamp is turned off to vary illu-
mination. The FAP plot shows how both eyelid and iris track-
ers need extra accommodation due to environment changes,
see Fig. 16.

Appearance space in the iterative process is more diverse,
as for each iteration k, the gradient descent may change the
step size and the direction. However, we keep the same num-
ber of iterations, if we assume that illumination changes are
not extreme, as with flashing lights.

Sequential tracking improves estimations as long as the
new illumination conditions remain stable. Therefore,
expected appearances have less information from the pre-
vious illumination and the GNI algorithm recovers stability,
see the plot in Fig. 15.

4.6 Translucent textures

It is an interesting challenge to analyse images when subjects
wear eyeglasses or sunglasses. Sequential gaze tracking is
able to handle these cases where the eye region is partially
occluded by a translucent surface.

In order to test tracking stability for bright and translu-
cent surfaces such as sunglasses, we use our own-recorded
sequence of 240 frames (Wearing Sunglasses Sequence).
This was recorded indoors with low illumination and semi-
transparent sunglasses. The camera is photographic and the
size of the image is of 640 × 480 pixels, see Fig. 17.

The subject wears sunglasses from the beginning allowing
the ABT to learn the translucent texture. However, when the
head is in profile, one eye could be partially occluded by the
nose, darkening the occluded eye and also causing specular
reflectance on the sunglasses.

We consider facial symmetry up to 45◦ of tilt rotation,
because both eyes are visible. If rotation is greater than 45◦,
the face is considered asymmetric and the appearance

Fig. 17 Gaze tracking results under translucent textures. ABT learns
on-line this textures, assumes facial symmetry after 45◦ to deal with
profile

matches mainly the non-occluded eye. Both eyes can be
tracked independently by extending the sequential tracking
at the cost of more computational effort.

The ABT handles the darker side and the the specular
effects as variations of illumination. In the observation pro-
cess, high intensity changes are considered outliers and
excluded from learning. Therefore, the 3D shape remains
in the previous correct positions, see again Fig. 17.

4.7 Occlusions and real-time

There are real situations where we can see how occlusions
affect the estimation errors for both trackers. In the experi-
ment, we present an image sequence of 600 frames, recorded
in an indoor scenario with a monocular camera (Wearing
Glasses Sequence). The subject performs head movements
and exaggerated facial actions while illumination is subtly
changed. In one frame, the subject puts on a pair of eye-
glasses, which produces occlusions and intensity variations.

Spontaneous eyelid blinks occlude the iris region in two
or three frames. After the blinking, the iris tracker has to
recover the correct adaptation because during the blinking
the position is the same. This search can use one or two more
frames while increasing the estimation error, for example,
at frames 17, 164, 232. However, iris saccade movements
deform the eyelid surface, changing the descent direction for
the eyelid tracker. In Fig. 18, we can see how the iris move-
ments influence the estimation error of the eyelid tracker in
frames such as 96, 330, 483, 551.

In order to achieve the real-time requirements, we have
tested the same image sequence using an ABT with a small
appearance resolution of 170 pixels. Accuracy and robust-
ness are tested by comparing the output images and the time
spent to find the correct adaptation (i.e. the time needed to
complete the algorithm in Fig. 19).

While tracking with a small appearance resolution, we
obtained an average of 85% of correct adaptations and 32
frames per second (fps). Instead, big appearance resolution
provides an average of 96% of correct adaptations and 1.1
fps. It is worth to mention that for big resolution appearances,
the iris had fewer pixels in the 2 × 3 appearance than in the
one of 5 × 6 pixels.
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Fig. 18 This sequence exhibits both blinks and saccades. For example,
we can see eyelid blinks at frames 17, 164, 232. We can also see iris
saccades at frames 96, 330, 483 and 551

Fig. 19 Performance comparison between two ABT of 580 pixels (a)
and 170 pixels (b). It is possible to obtain robust results (c) with similar
accurate results (a) and (b)

5 Conclusions

We have shown that appearance-based trackers can achieve
automatic gaze analysis by combining deterministic and sto-
chastic methods. It is possible to extract gaze motion infor-
mation without using edge detectors or colour information.

Our proposed technique deals with different eyelid and
iris movements according to FACS codes; upper eyelid rais-
ing, tightening drooping, squint, blinking, slit, eyes closed,
iris yaw, iris pitch and saccade. This algorithm is extensible
to asymmetric facial actions to track winks, but it is time-
consuming.

We have introduced new strengths for ABTs in general.
The two backtracking procedures and the modified Gauss-
Newton Iterative algorithm are essential to increase the

convergence speed. Therefore, the algorithm can find the
optimal combination of search direction and damping factor,
producing a better appearance space and possible solutions.

Combining the strengths of two different and indepen-
dent trackers, we improve gaze tracking. We have proven
the need of combining two trackers to deal with different
facial actions. Each tracker has its own appearance model,
backtracking procedure and learning coefficient.

By applying the Huber’s function, we have demonstrated
robustness to handle illumination changes, occlusions and
fast movements. Appearance registration and gradient
descent are controlled for those pixels whose value is higher
than the outlier threshold.

We have shown the system’s capabilities with positive
experimental results for the most challenging issues as mark-
less trackers and gaze tracking algorithms. The experiments
are focused on eyelid and iris tracking, illumination changes,
occlusions, spontaneous movements and real-time.

The proposed method is a significant contribution
to-wards gaze motion tracking using an appearance-based
model. On one hand, the shape representation, the statisti-
cal modelling, and optimization algorithms give an alterna-
tive to already proposed methods. On the other hand, the
robustness and accuracy make this method suitable for HCI
applications and psychological analysis, since it can work in
standard video surveillance environments without previous
training. Our future work involves the inclusion of psycho-
logical models of behaviours and expressions, since gazes
determine brain activity (for example, saccades are initiated
by the frontal lobe of the brain called Brodmann area 8), as
well as supports deceit and truth detection. We also want to
include head, eyebrows and lips for a detailed facial motion
description for expression analysis.
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