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Abstract

In this paper we provide the first, to the best of our
knowledge, Bayesian formulation of one of the most suc-
cessful and well-studied statistical models of shape and tex-
ture, i.e. Active Appearance Models (AAMs). To this end,
we use a simple probabilistic model for texture generation
assuming both Gaussian noise and a Gaussian prior over
a latent texture space. We retrieve the shape parameters by
formulating a novel cost function obtained by marginalizing
out the latent texture space. This results in a fast implemen-
tation when compared to other simultaneous algorithms for
fitting AAMs, mainly due to the removal of the calculation of
texture parameters. We demonstrate that, contrary to what
is believed regarding the performance of AAMs in generic
fitting scenarios, optimization of the proposed cost function
produces results that outperform discriminatively trained
state-of-the-art methods in the problem of facial alignment
“in the wild”.

1. Introduction
The construction and fitting of deformable models is a

very active area of research in computer vision because of
its great importance in robust articulated object detection,
recognition and tracking. One of the most well-studied
technique for building and fitting deformable models are
Active Appearance Models (AAMs) [1, 2] and the closely
related 3D Morphable Models [3]. AAMs use statistical
models to describe shape and texture variation. In particu-
lar, a statistical model of shape is built from a set of (manu-
ally) annotated fiducial points describing the shape of the
object of interest. In order to approximately retain only
the variability that is attributed to non-rigid deformations,
the shape points are put in correspondence (usually by re-
moving global similarity transforms using Generalized Pro-
custes Analisys [2]) 1.

Similarly, a statistical model of the texture is built us-
ing images of the object that have been normalized with

1Dense shape models such as 3D Morphable Models use more compli-
cated procedures to arrange the shapes in correspondence [3].

Figure 1: Our Bayesian formulation fits AAMs by minimiz-
ing two different distances: (i) the Mahalanobis distance
within the latent texture subspace W and (ii) the Euclidean
distance within its orthogonal complement W̄ weighted by
the inverse of the estimated sample noise.

respect to the shape points (so-called shape-free textures).
This requires a predefined reference frame (usually defined
in terms of the mean shape) and a global motion model or
warpW(p) (e.g. Piece-Wise Affine [2] or Thin Plate Spline
[1, 4]). The two main assumptions behind AAMs are that
(1) for every test (unseen) image there exists a test shape
and set of texture weights for which the test shape can be
warped onto the reference frame and expressed as a linear
combination of the shape-free training textures and (2) the
test shape can be written as a linear combination of the train-
ing shapes. In mathematical terms let S = {s̄,B ∈ <2p×n}
and T = {m̄,U ∈ <F×m} be the linear models for the
shape and texture, respectively (where p is the number of
shape points, F the number of pixels on the reference frame
and n and m denote the number of bases of the shape and
texture models, respectively). Then, according to the above
assumptions, given a test shape s ∈ <2p×1 and its corre-
sponding test image x we have the two following approxi-
mation

s ≈ s̄ + Bp
x(W(p)) ≈ m̄ + Uc

(1)

where x(W(p)) ∈ <F×1 is the vectorized shape-free tex-
ture of the test image (from now onwards, for simplicity,
we will write x(p) instead of x(W(p))). Under the pre-
vious assumption the parameters p and c are retrieved by
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minimizing the sum of squared errors between the previous
shape-free texture and its reconstruction by the statistical
texture model

po, co = arg minp,c ||x(p)− (m + Uc)||2P (2)

where P are appropriate projection operators and ||x||2P =
xTPx. The solution of the above optimization problem is
referred to as model fitting.

Several works have been proposed to solve the previous
optimization problem [5, 4, 2, 1]. Most notable methodolo-
gies include the regression-based method of [1], the very
fast project-out inverse compositional algorithm (PIC) [2]
(which has been heavily criticized for its inability to per-
form well under generic fitting scenarios, i.e., fit images of
unseen identities), the simultaneous inverse compositional
algorithm [5], and a variation of the simultaneous inverse
compositional algorithm that operates in a projected space
[4]. A complete project-out compositional framework for
fitting AAMs was proposed in [6]. Due to the popularity of
the PIC algorithm [2], mainly because of its extremely low
computational complexity, methodologies such as [4, 6],
which can provide near real-time fitting, have not received
much attention.

AAMs are often criticized for a variety of reasons. The
most common is that defining a linear statistical model of
texture that explains variations in identity, expressions, pose
and illumination, is a very challenging task, especially in
the intensity domain. Furthermore, the large variation in fa-
cial appearance makes it very difficult to perform regression
from texture differences to shape parameters. Additionally,
occlusion cannot be easily handled, and, in general, require
the application of robust estimators on the `22-loss function
in Eq. (2). Finally, joint optimization with respect to shape
and texture parameters may create numerous local minima
in the cost function making it difficult for the algorithms to
reach optimal solutions.

Due to the above limitations, recent research on facial
alignment has focused on generative and discriminant fit-
ting of part-based models [7, 8, 9] (i.e. models which do not
define a complete holistic texture model of the object) and
on regression-based techniques that directly learn mappings
from image features to shape parameters or landmark loca-
tions [10, 11]. The main advantages of part-based models
are a natural handling of partial occlusions (since they only
model certain parts of the object) and, most importantly,
the fact that they are optimized only with respect to shape
(they do not define parametric models of texture). No-
table examples include Constrained Local Models (CLMs)
[7] and the tree-based model of [8] (which can be also
used for object detection). More recently, Asthana et al.
[9] proposed a robust discriminative framework for fitting
CLMs which achieved state-of-the-art results in the prob-
lem of facial alignment “in the wild”. On the other hand,

recent regression-based approaches have focused on com-
bining cascade-regression methods with the use of highly
engineered nonlinear image features [10, 11]. In particular,
the supervised descent method of [11], which learns a se-
quence of simple linear regressors from SIFT features to a
non-parametric shape representation, is considered to be the
state-of-the-art approach to facial alignment “in the wild”.

In this paper, we examine the problem of fitting AAMs
under a Bayesian perspective. Summarizing, our key con-
tributions are:

• To provide a novel Bayesian formulation of AAMs. To
this end, we use a simple probabilistic model for tex-
ture generation assuming both Gaussian noise and a
Gaussian prior over a latent texture space (i.e., c). By
marginalizing out the latent texture space, we derive a
novel cost function that only depends on shape param-
eters and propose an efficient compositional algorithm
to optimize it (the proposed cost function is motivated
by seminal works on probabilistic component analysis
and object tracking [12, 13, 14])

• To present the first in-depth comparison between the
existent gradient descent algorithms for fitting AAMs
[2, 5, 4, 6] to images acquired “in the wild”.

• To show that our Bayesian AAM approach (and others
[4]) can outperform state-of-the-art methods in facial
alignment such as the Robust Discriminative Response
Map Fitting (DRMF) for CLMs of [9] and the Super-
vised Descent Method (SDM) of [11].

The remainder of the paper is structured as follows. Sec-
tion 2 reviews Principal Component Analysis (PCA) and
Probabilistic PCA (PPCA). Section 3 outlines the existent
gradient descent algorithms for fitting AAMs. Our novel
Bayesian AAM formulation is introduced in Section 4. Ex-
perimental results are shown in Section 5. Finally, conclu-
sions are drawn in Section 6.

2. Principal Component Analysis (PCA) and
Probabilistic PCA

In the majority of cases, the statistical models of shape
and texture used in AAMs are defined using Principal Com-
ponent Analysis [15]. In this section we will briefly review
both deterministic and probabilistic versions of PCA.

The deterministic version of PCA finds a set of orthonor-
mal projection bases U so that the latent space C is the
projection of the mean-centered training set X̄ = [x1 −
m, . . . ,xn −m] onto U (i.e. C = UT X̄). The optimiza-
tion problem is defined as follows

Uo = arg max
U

tr
[
UTSU

]
, s.t. UTU = I (3)



where S = 1
N

∑T
i=1(xi −m)(xi −m)T = 1

N X̄X̄ is the
total scatter matrix and I the identity matrix. The optimal
M projection bases matrix Uo are recovered by keeping
the M eigenvectors U = [u1, . . . ,uM ] that correspond to
the M largest eigenvalues of S (in the following we will
assume that the eigenvalues are stored in a diagonal matrix
Λ = diag{[λ1, . . . , λM ]}).

Probabilistic versions of PCA (PPCA) were indepen-
dently proposed in [14, 12, 13] 2. In these works the fol-
lowing probabilistic generative model was defined:

x = Wc + m + ε
c ∼ N (0, I)
ε ∼ N (0, σ2I)

(4)

where W is the matrix that relates the latent variables c with
the observed sample x and ε is the sample noise which is as-
sumed to be an isotropic Gaussian. The motivation is that,
when N < F , the latent variables will offer a more com-
pact representation of the dependencies between the obser-
vations. Denoting the parameters as θ = {W, σ2,m}, the
posterior probability over the latent variables is given by

p(c|x, θ) = N (M−1WT (x−m), σ2M−1) (5)

where M = WTW + σ2I (note that here the bases W are
not required to be orthonormal). Using a Maximum Likeli-
hood (ML) approach the parameters θ are found by solving

θo = arg min
θ

ln
∏n
i=1 p(xi|θ)

= arg min
θ

ln
∏n
i=1

∫
c
p(xi|c, θ) p(c) dc.

(6)

with the optimal W, σ2 and m given by

W = U(Λ− σ2I)1/2R

σ2 = 1
N−M

∑N
j=M+1 λi

m = 1
N

∑N
i=1 xi.

(7)

where R is an arbitrary M ×M orthogonal matrix.
An alternative to the ML approach is to use an Expecta-

tion Maximization (EM) procedure where the first and sec-
ond order moments of the latent space (E[ci] and E[cic

T
i ])

are also found. The EM solutions for the parameters can be
found in [16, 12]. Several variations of probabilistic PCA
have been proposed, e.g. by incorporating sparseness and
nonnegative constraints [17] or changing the Gaussian mod-
els for others (such as the Student-t model of [18]).

In the upcoming sections, we first review existent algo-
rithms for fitting AAMs and then proceed to define a novel
fitting strategy using the previous probabilistic model as a
generative model of texture.

2In particular the Maximum Likelihood (ML) solutions where provided
in [12, 13], while Expectation Maximization (EM) solutions where pre-
sented in [12, 14]

3. Fitting Active Appearance Models
Before we describe our Bayesian AAM formulation, we

briefly outline the main algorithms that have been proposed
to solve the optimization problem defined by Eq. (2). In
this paper, we limit the discussion to compositional Gauss-
Newton algorithms [2, 5, 4, 6] for fitting AAMs and, con-
sequently, we will not review discriminative and regression
based approaches. For such methods the reader is referred
to the existent literature [19, 1, 20, 21].

In a compositional framework, Gauss-Newton algo-
rithms iteratively solve Eq. (2) with respect to the shape pa-
rameters p by (i) introducing an incremental warpW(δp),
(ii) performing a first order Taylor expansion of the residual
term with respect to δp, (iii) solving for δp and (iv) com-
puting the optimal shape parameters po by composing the
incremental warp W(δpo) with the current estimate of the
warp W(pc). Depending on whether the algorithm is for-
ward or inverse the incremental warp is placed on the image
(forward) or model (inverse) side, and the corresponding
linearization and composition performed according to this
choice. In both settings, the incremental warp is linearized
around the identity warp (denoted by δp = 0).

Mathematically, the forward setting is defined by the fol-
lowing linearizations and update rules

x(pc ◦ δp)− (m + Uc) ≈ e(pc) + Jxδp

W(po) ← W(pc) ◦W(δpo)
(8)

and the inverse

x(pc)− (m(δp) + U(δp)c) ≈ e(pc) − Jmδp

W(po) ← W(pc) ◦W(δpo)
−1

(9)
where e(pc) = x(pc)−(m+Uc) is the so-called error im-
age and where Jx,∈ <F×n and Jm,∈ <F×n are the image
and model Jacobians evaluated at δp = 0, respectively. By
using the chain rule, the previous Jacobians can be further
expanded as ∇Wx∂W∂p and ∇W (m + Uc)∂W∂p . For further
details on how to compute ∂W

∂p and on warp composition
and inversion the interested reader is referred to [2] and [4].
In general, the optimization of Eq. (2) with respect to the
texture parameters c is algorithm dependent.

3.1. Project Out Inverse Compositional

The most popular and fastest algorithm for solving Eq.
(2) is the so-called project out inverse compositional algo-
rithm 3 which was first proposed in [22] for performing
rigid alignment with linear texture variations. This algo-
rithm eliminates the need to solve for the texture parameters
c by working on the orthogonal complement of the texture
subspace U (i.e. Ū = I−UUT ). Consequently, the incre-
mental warp δp is estimated only using the mean m of the

3Inverse compositional algorithms became very popular after [2].



texture model

δpo = arg min
δp

||x(pc)−m(δp)||2I−UUT (10)

The problem is solved by linearizing over m(δp) = m +
Jmδp. By defining J̃m = (I − UUT ) Jm the iterative
updates are given by

δp = (J̃TmJ̃m)−1J̃Tm(x(pc)−m) (11)

The computation of (J̃TmJ̃m)−1J̃Tm is performed off-
line, hence the complexity of each update is only O(nN +
n2).

3.2. Simultaneous Inverse Compositional

The simultaneous inverse compositional algorithm [5],
finds, simultaneously, shape and texture increments (δp and
δc) by solving the following optimization problem

δpo, δco = arg min
δp,δc

||x(pc)−(m(δp)+U(δp)(cc+δc)||2

(12)
Let δq = [δpT , δcT ]T be the concatenation of the param-
eters and let U(δp) ≈ U + [J1δp . . .Jmδp] be the lin-
earization of the bases, where Ji is the Jacobian with re-
spect to each component ui. The updates of the parameters
are given by

δq = (JTt Jt)
−1JTt (x(pc)− (m + Uc) (13)

where the total Jacobian Jt = [JU,U] and JU = Jm +∑K
i=1 cicJi (neglecting second order terms of the form

δcTAδp). Even though Jm and all individual Jacobians
Ji can be precomputed, the computation of the Jt must be
performed at each step due to its dependency on the current
estimate of the texture parameters cc. Thus, the total cost
per iteration is O((n+m)2N + (n+m)3)

3.3. Alternating Optimization Approaches

The variation of the simultaneous inverse compositional
algorithm proposed in [4] solves two different problems, in
an alternating manner, one for the shape and one for the
appearance, as

δpo = arg min
δp

||x(pc)− (m(δp) + U(δp)cc||2I−UUT

δco = arg min
δc

||x(pc)− (m(δpo) + U(δpo)(cc + δc))||2

(14)
The update for δp is given by

δp = (J̃TUJ̃U)−1JTU(x(pc)−m) (15)

where J̃U = (I −UUT )JU. Similarly as before, J̃m and
all J̃i can be precomputed, but J̃U has to be computed at
each iteration because of its dependancy on cc. Given the

optimum δpo, δc0 is obtained by solving the second opti-
mization problem in Eq. (14)

δc = UT (x(pc)− (m + Ucc + JUδpo)) (16)

By performing expansions of the update in Eq. (15) with
regards to the projection operation I − UUT , it has been
shown [4] that the method is of complexityO(m2n2+(m+
n)N + n3).

4. Probabilistic Models for fitting AAMs
Let us consider again the probabilistic generative model

defined in Eq. 4. For a particular test image x(p) we have

x(p) = Wc + m + ε
c ∼ N (0,Λ)
ε ∼ N (0, σ2I)

(17)

where W,m and σ2 have been learned in the training phase
(from a set of training shape-free textures). Notice that we
have changed the prior over the latent space such that it is
a multivariate Gaussian distribution with variance equal to
the eigenvalues Λ (instead of I). Furthermore, for simplic-
ity and without loss of generality, we assume that W is or-
thonormal (i.e., WTW = I).

Our aim is to define a ML procedure to retrieve the opti-
mal shape parameters po using the above generative model.
This can be done by defining the following optimization
problem

po = arg max
p

ln p(x(p)|θ)

= arg max
p

ln
∫
c
p(x(p)|c, θ)p(c|θ)dc (18)

where the texture parameters c are marginalized out and the
marginalized density p(x(p)|θ) is given by

p(x(p)) = N (m,WΛWT + σ2I) (19)

Using Eq. (19), the optimization problem in Eq.(18) can be
reformulated as

po = arg min
p

||x(p)−m||2(WΛWT+σ2I)−1

= arg min
p

||x(p)−m||2WD−1WT +

1
σ2 ||x(p)−m||2I−WWT

(20)

where we used the Woodbury formula

(WLWT + σ2I)−1 = WD−1WT+
1
σ2 (I−WWT )

(21)

where D is a diagonal matrix defined as D = diag[λ1 +
σ2, · · · , λM + σ2].

Hence, as in [13], our cost function is comprised of
two different distances: (i) the Mahalanobis distance within



the latent texture subspace W and (ii) the Euclidean dis-
tance within its orthogonal complement W̄ = I −WWT

weighted by the inverse of the estimated sample noise σ2.
The first of these distances favors solutions with higher
probability within latent subspace W, acting as a regu-
larizer that ensures the solution x(po) can be well recon-
structed by the texture model. The second distance captures
everything that cannot be generated by the texture model
(e.g. occlusions and other unseen variations) and weights it
with respect to the estimated sample noise 4.

Note that, the contribution of the second term 1
σ2 ||x(p)−

m||2I−WWT decreases as the estimated sample noise in-
creases. On the other hand, when the variance Λ of the
prior over the latent subspace increases (and especially as
Λ → ∞) c becomes uniformly distributed and the con-
tribution of the first term ||x(p) −m||2WD−1WT vanishes.
Hence, under our Bayesian formulation, the project-out
inverse compositional algorithm in Section 3.1 naturally
stems from assuming a uniform prior over the latent texture
space.

On the contrary, our ML formulation uses both distances
to retrieve the optimal shape parameters. To the best of our
knowledge the above cost function has not been used for
estimating parameters in a deformable model fitting frame-
work.

A novel forward compositional algorithm is proposed to
solve the optimization problem defined in Eq. (20). As we
demonstrate below, the algorithm is efficient as only shape
parameters need to be recovered

δpo = arg min
δp

||x(pc ◦ δp)−m||2WD−1WT +

1
σ2 ||x(pc ◦ δp)−m||2I−WWT

(22)

The problem can be solved by linearizing over x(pc◦δp) ≈
x(pc) + Jxδp and the update is given by

δp = (J̃Tx J̃x)−1J̃Tx (x(pc)−m) (23)

where J̃x = (WD−1WT + 1
σ2 (I−WWT ))Jx. In order

to reduce the computation complexity of the algorithm we
expand the Hessian as

J̃Tx J̃x = 1
σ2 JTx Jx − (WTJx)TAWTJx (24)

where A = ( 1
σ2 I−D−1). Note that the term J̃Tx (x(pc)−

m) can also be reformulated as J̃Tx (x(pc)−m) = JTx x̃(pc)
where

x̃(pc) = 1
σ2 (x(pc)−m)−
(WT (x(pc)−m))TAWT (x(pc)−m)

(25)

Using the above expansions the computational complexity
of the update is of order O(mnK + n2K + n3), which is

4This weighting corrects the size of the Gauss-Newton step taken
within the orthogonal subspace W̄ (effectively addressing a well known
problem of the original inverse compositional algorithm [23])

σnoise = 0 σnoise = 4 σnoise = 10

Figure 2: Exemplar initializations obtained by varying the
value σnoise in the described initialization procedure. Note
that, when σnoise = 0 the initialization is equivalent to ap-
plying the correct scale and translation transforms to the
mean shape. On the other hand, increasing values of σnoise
produce more challenging initialization.

similar or even lower (as m increases) to the complexity of
[4].

We would like to clarify that our approach susbtancially
differs from previous probabilistic formulations of AAMs
[24]. In [24] a methodology that uses a K-mixture of PPCA
to define AAMs is proposed. This mixture-AAM is fitted
to new images by independently fitting K different AAMs
(one for each mixture) using the project-out inverse compo-
sitional algorithm (PIC). In a way, [24] can be considered to
automatize previous work in view-based AAMs where dif-
ferent AAMs (mainly view specific [25]) are independently
fitted to a novel image. Consequently, in the one mixture
case, the algorithm is equivalent to PIC. Finally, we want to
note that multi-view and mixture of subspaces can be also
used in our Bayesian framework, but we opted to show the
power of our approach in the most difficult case, i.e. by
using a single subspace (which is also faster and easier to
build and fit).

5. Experiments

In this section we evaluate the performance of our
Bayesian AAMs formulation on the problem of facial align-
ment “in the wild”.

We performed two different experiments. The first one
compares the proposed methodology with other existent
gradient descent algorithms for fitting AAMs [2, 5, 4] on
the popular LFPW [26] database. In the second experiment,
we test our approach against two recently proposed state-of-
art methods [9, 11] for facial alignment by performing two
challenging cross-database experiments on the recently pro-
posed Helen [27] and AFW [8] databases. Performance in
both experiments is reported using the error measure pro-
posed in [8] for the 49 interior points (excluding the face
boundary) shown in figures Fig. 2 and Fig 7.



5.1. Comparison with other AAM fitting algorithms

We start by evaluating the relative performance of the
proposed algorithm with respect to the existent Gradient
Descent algorithms reviewed in Section 3 (i.e. the project-
out inverse compositional algorithm [2], the simultaneous
inverse compositional algorithm [5] and the alternative si-
multaneous inverse compositional algorithm proposed in
[4] which we abbreviate as PIC, SIC and AIC respectively;
the proposed algorithm is abbreviated as PROB).

This experiment is performed on the popular Labeled
Faces Parts in the Wild (LFPW) [26] database. The original
LFPW database consisted of 1400 URLs to images, 1100
for training and 300 for testing, that could be downloaded
from the Internet. All images were acquired “in the wild”
and contain large variations in identity, pose, illumination,
expression and occlusion. Unfortunately some of the orig-
inal URLs are no longer valid. We were able to download
813 training images and 224 test images for which we used
the 68-point annotations provided by the authors of [28, 29]
(which can be downloaded from [30]). All methods were
trained using the available 813 training images and results
are reported on the 224 testing images that remain avail-
able. For this experiment, we used Normalized pixel Inten-
sities (NI) as the texture representation used to build the tex-
ture model of all AAM algorithms. Furthermore, in order to
provide a little insight on the convergence properties of our
method, given a particular test image, all methods are ini-
tialized by randomly perturbing the correct global similarity
transform (without considering in-plane rotations) and ap-
plying it to the mean shape of the shape model (a frontal
pose and neutral expression looking shape). The similar-
ity transform is perturbed using a similar procedure as the
one described in [2], where the parameter σnoise controls the
magnitude of the random Gaussian noise added to perform
the perturbation. Exemplar initializations obtained by this
procedure are shown in Fig. 2.

Results for this experiment are shown in Fig. 3 and
Fig. 4 (for visual inspection, please see the fitting results
in Fig. 7 and our supplementary material). Fig. 3 shows
the Cumulative Error Distribution (CED) curves obtained
by initializing all methods using σnoise = 4. Fig. 4 shows
the error bars and median error of the SIC-NI, AIC-NI
and PROB-IC methods (PIC-NI did not fit on the graph)
for increasing values of σnoise. The results show that our
approach (PROB-NI) considerably outperforms all other
methods by a considerable large margin. More specifi-
cally, our Bayesian algorithm achieves improvements of at
least 10% over all other algorithms at the significant region
0.025 < err > 0.035 (region at which results are generally
considered adequate by visual inspection). It is also worth
noticing the good performance achieved by the alternating
inverse compositional algorithm (AIC-NI) which, to our
surprise, had barely been used in the AAMs literature be-

Figure 3: CED curves for σnoise = 4 on the LFPW database.

Figure 4: Fitting statistics obtained by initializing with dif-
ferent values of σnoise on the LFPW database.

fore. Notice that, both PROB-NI and AIC-NI are also fairly
robust against the magnitude of σnoise. Finally, the remain-
ing AAMs algorithms: the simultaneous inverse composi-
tional (SIC-NI) and specially the project-out inverse com-
positional (PIC-NI) perform poorly.

5.2. Comparison with state-of-the-art methods

In this experiment we tested the performance of our
Bayesian AAM formulation, against the Robust Discrimi-
native Response Map Fitting (DRMF) for CLMs of [9] and
the Supervised Descent Method (SDM) of [11].

As before, all AAM algorithms were trained on the avail-
able 813 training images of the LFPW dataset. Results for
[11] and [9] were directly obtained using the code and mod-
els provided by the authors which can be downloaded from
[31] and [32] respectively (note that these models were po-
tentially trained using thousands of images, in comparison
to the only 813 images used to trained our models). Re-
sults are reported on the 330 testing images of the Helen
[27] database and on the entire 337 images of the AFW [8]



Figure 5: CED curves on the Helen database.

Method Median Mean Std
SDM 0.0209 0.0216 0.0059
DRMF 0.0265 0.0280 0.0086
AIC-ES 0.0199 0.0274 0.0211
PROB-NI 0.0238 0.0394 0.2980
PROB-ES 0.0184 0.0209 0.0093

Table 1: Fitting statistics for the Helen databse.

database. Ground truth annotations for both databases were
again downloaded from [30]. Note that, compared to the
previous LFPW, the images of Helen and specially of AFW
appear to be much more natural and rich in variations and,
consequently, are even more difficult to fit.

Both [9] and [11] take full advantage of powerful non-
linear image features (i.e. HoG and SIFT, respectively) to
achieve state-of-the-art results. For this reason, in this ex-
periment, we use the Edge Structure (ES) features proposed
in [33] as the texture representation used to build the texture
model of our approach (the use of HoG and SIFT features
in AAMs has never been investigated in the existent litera-
ture and lies out of the scope of this paper). For the sake
of completeness, we also report results for our method us-
ing normalized intensities and for AIC using the same edge
structure features.

Results for these experiments are shown in Fig. 6 and
Fig. 5 and Table 1 and Table 2 (for visual inspection please
see the fitting results in Fig. 7 and our supplementary ma-
terial). We report CED curves and fitting statistics ob-
tained by initializing all methods using the bounding box
initializations provided by [30], which were obtained us-
ing the face detector of [8]. The results show that our ap-
proach (PROB-ES) achieves state-of-the-art results in both
databases, largely outperforming the DRMF and perform-
ing marginally better than SDM (our approach is more ac-
curate but slightly less robust). We find this results remark-
able, specially considering that our Bayesian approach was
trained using only 811 images in comparison to the poten-

Figure 6: CED curves on the AFW database.

Method Median Mean Std
SDM 0.0265 0.0273 0.0507
DRMF 0.0363 0.0517 0.0611
AIC-ES 0.0250 0.0375 0.0323
PROB-NI 0.0296 0.0796 1.1577
PROB-ES 0.0212 0.0245 0.0132

Table 2: Fitting statistics for the AFW database.

tially thousands of images used to trained the DRMF and
SDM methods.

6. Conclusions
In this paper we present a novel Bayesian formulation of

AAMs. In particular, by marginalizing out the latent texture
space we derive a novel cost function that depends only on
the shape parameters and propose a novel fitting algorithm
to optimize it. We show that our Bayesian AAM formula-
tion outperforms the most recently proposed state-of-the-art
methods for facial alignment “in the wild” in two extremelly
challenging cross-database experiments.

Acknowledgements The work of Joan Alabort-i-Medina
was funded by a DTA studentship from Imperial College
London and by the Qualcomm Innovation Fellowship. The
work of Stefanos Zafeiriou was partially funded by the
EPSRC project EP/J017787/1 (4DFAB).

References
[1] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appear-

ance models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2001. 1, 2, 3

[2] I. Matthews and S. Baker, “Active appearance models revis-
ited,” International Journal of Computer Vision, 2004. 1, 2,
3, 5, 6

[3] V. Blanz and T. Vetter, “A morphable model for the synthesis
of 3d faces,” in SIGGRAPH, 1999. 1



Figure 7: Selected results from our method on the 3 databases: LFPW (first row) (using normalized pixel intensities as image
representation), Helen (second row) and AWF (third row) (both using edge structure features as image representation).

[4] G. Papandreou and P. Maragos, “Adaptive and constrained
algorithms for inverse compositional active appearance
model fitting,” in CVPR, 2008. 1, 2, 3, 4, 5, 6

[5] R. Gross, I. Matthews, and S. Baker, “Generic vs. person
specific active appearance models,” Image and Vision Com-
puting, 2005. 2, 3, 4, 5, 6

[6] B. Amberg, A. Blake, and T. Vetter, “On compositional im-
age alignment, with an application to active appearance mod-
els,” in CVPR, 2009. 2, 3

[7] J. M. Saragih, S. Lucey, and J. F. Cohn, “Deformable model
fitting by regularized landmark mean-shift,” International
Journal of Computer Vision, 2011. 2

[8] X. Zhu and D. Ramanan, “Face detection, pose estimation,
and landmark localization in the wild,” in CVPR, 2012. 2, 5,
6, 7

[9] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust
discriminative response map fitting with constrained local
models,” in CVPR, 2013. 2, 5, 6, 7

[10] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by ex-
plicit shape regression,” in CVPR, 2012. 2

[11] Xuehan-Xiong and F. De la Torre, “Supervised descent
method and its application to face alignment,” in CVPR,
2013. 2, 5, 6, 7

[12] M. E. Tipping and C. M. Bishop, “Probabilistic principal
component analysis,” Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 1999. 2, 3

[13] B. Moghaddam and A. Pentland, “Probabilistic visual learn-
ing for object representation,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 1997. 2, 3, 4

[14] S. Roweis, “Em algorithms for pca and spca,” Advances in
neural information processing systems, 1998. 2, 3

[15] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-
nal of cognitive neuroscience, 1991. 2

[16] C. M. Bishop et al., Pattern recognition and machine learn-
ing. MIT Press, 2006. 3

[17] Y. Guan and J. G. Dy, “Sparse probabilistic principal com-
ponent analysis,” in AISTATS, 2009. 3

[18] Z. Khan and F. Dellaert, “Robust generative subspace mod-
eling: The subspace t distribution,” 2004. 3

[19] A. U. Batur and M. H. Hayes, “Adaptive active appearance
models,” IEEE Transactions on Image Processing, 2005. 3

[20] X. Liu, “Discriminative face alignment,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2009. 3
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