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Abstract—3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and among the
state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial
datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled
conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture
models that are sufficient to reconstruct faces captured in unconstrained conditions (“in-the-wild”). In this paper, we propose the first
“in-the-wild” 3DMM by combining a statistical model of facial identity and expression shape with an “in-the-wild” texture model. We
show that such an approach allows for the development of a greatly simplified fitting procedure for images and videos, as there is no
need to optimise with regards to the illumination parameters. We have collected three new databases that combine “in-the-wild” images
and video with ground truth 3D facial geometry, the first of their kind, and report extensive quantitative evaluations using them that

demonstrate our method is state-of-the-art.

Index Terms—3DMM, Morphable Model, RPCA, 3D reconstruction.

1 INTRODUCTION

URING the past few years, we have witnessed significant
Dimprovements in various face analysis tasks such as face
detection [1], [2] and 2D facial landmark localisation on static im-
ages [3], [4], [5], [6], [7], [8], [9], [10]. This is primarily attributed
to the fact that the community has made a considerable effort to
collect and annotate facial images captured under unconstrained
conditions [11], [12], [13], [14], [15] (commonly referred to as
“in-the-wild”) and to develop discriminative methodologies that
can capitalise on the availability of such large amount of data.
Nevertheless, discriminative techniques cannot be applied for 3D
facial shape reconstruction “in-the-wild”, due to lack of ground-
truth data.

3D facial shape reconstruction from a single image or a
video captured under “in-the-wild” conditions is still an open and
challenging problem in Computer Vision. This is mainly due to
the fact that the general problem of extracting the 3D facial shape
from a single image, or even a video sequence, is an ill-posed
problem which is notoriously difficult to solve without the use
of any statistical priors for the shape and texture of faces. That
is, without prior knowledge regarding the shape of the object
at-hand there are inherent ambiguities present in the problem.
The pixel intensity at a location in an image is the result of a
complex combination of the underlying shape of the object, the
surface albedo and normal characteristics, camera parameters and
the arrangement of scene lighting and other objects in the scene.
Hence, there are potentially infinite solutions to the problem.

Furthermore, learning statistical priors of the 3D facial shape
and texture for “in-the-wild” images is currently very difficult by
using modern acquisition devices. That is, even though there is
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a considerable improvement in 3D acquisition devices, they still
cannot operate in arbitrary conditions. Hence, all the current 3D
facial databases have been captured in controlled conditions.

With the available 3D facial data, it is feasible to learn a
powerful statistical model of the facial shape that generalises well
for both identity and expression [16], [17], [18]. However, it is
not possible to construct a statistical model of the facial texture
that generalises well for “in-the-wild” images and is, at the same
time, in correspondence with the statistical shape model. That
is the reason why current state-of-the-art 3D face reconstruction
methodologies rely solely on fitting a statistical 3D facial shape
prior on a sparse set of landmarks [19], [20].

In this paper, we make a number of contributions that enable
the use of 3DMMs for “in-the-wild” face reconstruction (Fig. 1):

e Motivated by the success of feature-based (e.g., HOG [21],
SIFT [22]) Active Appearance Models (AAMs) [8], [23],
we propose a methodology for learning a statistical texture
model from “in-the-wild” facial images, which is in full
correspondence with a statistical shape prior that exhibits
both identity and expression variations.

e By capitalising on the recent advancements in fitting
statistical deformable models [8], [24], [25], [26], we
propose a novel and fast algorithm for fitting our “in-
the-wild” 3DMMs on images and videos. We show that
the advantage of using the “in-the-wild” feature-based
texture model is that the fitting strategy can be significantly
simplified since there is no need to optimise with respect
to illumination parameters.

e We make the implementation of our algorithm publicly
available within the Menpo Project [27]'. We strongly
believe that this can be of great benefit to the community,
given the lack of robust open-source implementations for
fitting 3DMMs.

1. https://github.com/menpo/itwmm
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Fig. 1. Results of our 3DMM image fitting method ITW(Basel) on “in-the-wild” images from the 300W dataset [15]. We note that our proposed
technique is able to handle extremely challenging pose, illumination, and expression variations, returning plausible 3D facial shapes in all the above

cases.

e In order to provide quantitative evaluations we collect
three new datasets which couple “in-the-wild” images with
3D ground truth shape information — KF-ITW, 4DMaja
and 3dMD-Lab.

e We present extensive quantitative and qualitative evalu-
ations of our proposed method against a wide range of
state-of-the-art alternatives, which demonstrates the clear
merits of our technique. [18].

The remainder of the paper is structured as follows. In Sec-
tion 2 we briefly outline the background on face reconstruction
from monocular cameras. In Section 3 we elaborate on the
construction of our “in-the-wild” 3DMM, whilst in Section 4
we outline the proposed optimisation for fitting “in-the-wild”
images with our model. Specifically, we extensively present our
approach for fitting static images and videos in Sections 4.1
and 4.2, respectively. Section 5 describes our three new datasets,
the first of their kind, which provide “in-the-wild” images and
video sequences with ground-truth 3D facial shape. We outline a
series of quantitative and qualitative experiments in Section 6, and
end with conclusions in Section 7.

2 BACKGROUND

Accurate recovery of the true 3D structure of a scene captured
by an image or video is arguably one of the core problems in
computer vision. Although it is feasible to recover many properties
of a scene’s background, the geometry of the objects within the
scene is the most important task, since it enables the acquisition of
powerful and descriptive models from which to perform inference.
In particular, the 3D shape of the underlying objects is arguably
the strongest cue for common tasks such as object recognition and
localisation. However, the general problem or recovering the 3D
shape of an object from a single image, or even a set of images
with different viewpoints, is ill-conditioned. Even when provided
with multiple images, additional information about the scene or

details about the capturing conditions, 3D shape recovery is full
of ambiguities. Many strategies have been proposed for solving
this problem.

In contrast to the difficulty of the general case, the recovery of
3D facial shape has been successful in scenarios with controlled
recording conditions. Human faces exhibit several characteristics
that are beneficial for performing shape recovery: (i) they have
approximately homogeneous configuration (all healthy human
faces have the same parts, such as eyes, nose and mouth, in the
same approximate locations), (ii) they have convex shape, and
(iii) they exhibit approximately Lambertian reflectance [28], [29],
[30], [311, [32], [33], [34], [35]. Nevertheless, the task is still very
challenging since faces are highly deformable, their appearance
changes dramatically depending on the illumination conditions
and can exhibit severe self-occlusions depending on the viewpoint.

In this paper, we are interested in the very challenging problem
of 3D face reconstruction from still images or videos captured
under unconstrained conditions, i.e. “in-the-wild”. Hence, we
herein review methodologies that do not require the use of any
specialised machinery (e.g., depth or stereo cameras).

Although the relevant literature is very extensive, a categorisa-
tion of sorts can be structured as follows:

Shape-from-Shading (SfS): These methods expect a single
image [36] (or a collection of images) as input and use image
formation assumptions (usually the Lambertian reflectance as-
sumption) to recover surface shape. There is considerable research
in SfS for generic surfaces, as well as faces [36], [37], [38], [39],
[40], [41], [42]. However, generic SfS techniques do not produce
very convincing results for faces [39], unless face shape priors
are introduced [36], [38] or jointly performing SfS in a large
collection of facial images [41], [42]. The current state-of-the-art
techniques include methods such as [41], [42], which even though
they are able to recover some facial details, they require dense
alignment to be performed (e.g., by using elaborate optical flow
techniques [42]) and they are only suitable for recovering 2.5D
information and not full 3D shape.
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3D Morphable Models (3DMM): The 3DMM fitting pro-
posed in the work of Blanz & Vetter [43], [44] was among the
first model-based 3D facial recovery approaches. The first 3DMM
was built using 200 faces captured in well-controlled conditions
displaying only the neutral expression. That is the reason why the
method was only shown to work on real-world, but not “in-the-
wild”, images. Since then, many extensions have been proposed to
the original method [45], [46], [47], [48]. Although model-based
SfS may also consider similarity to a facial model as a measure of
reconstruction accuracy, 3DMMs are unique in explicitly render-
ing images of faces for the purpose of 3D recovery. Until recently,
due to the lack of available texture models, 3DMMs were deemed
suitable only for images captured under controlled conditions.
Hence, many works considered only fitting a dense shape model
to a collection of sparse landmarks that were localised in the
image [19], [20]. In this paper, we make a significant step further
and demonstrate how to train the first in-the-wild 3DMM.

Structure-from-Motion (SfM): These methods employ geo-
metric constraints in order to recover 3D structure across multiple
images or frames of a sequence. Although the majority of research
in this area is not face specific, facial data is commonly used to
demonstrate the effectiveness of a method [49]. Nevertheless, the
lack of use of appropriate facial shape models makes the problem
of dense 3D face reconstruction very difficult to solve. This is
due to the fact that the dense SfM requires the solution of a very
high dimensional non-convex optimisation problem [49] which
also assumes the presence of very accurate dense flow [50], some-
thing that makes such techniques applicable mainly in controlled
recording conditions [49]. Nevertheless, sparse SfM applied on
a collection of tracked landmarks can be used to provide an
initialisation to our methodology when it comes to reconstructing
faces in videos.

3 MODEL TRAINING

A 3DMM consists of three parametric models: the shape, camera
and fexture models.

3.1

Let us denote the 3D mesh (shape) of an object with N vertices
as a 3N x 1 vector

Shape Modelling

717 T
'7XN] = [z, 91,21, -, N, YN, ZN] (D

s = [X-lr, ..
where x; = [2;, ¥i, zi]T are the object-centered Cartesian coordi-
nates of the i-th vertex.

We first of all consider an identity shape model, i.e. a model
of shape variation across different individuals, assuming that all
shapes are under neutral expression. For this, we adopt the recently
released LSFM model [18], the largest-scale 3D Morphable Model
(3DMM) of facial identity built from around 10,000 scans of
different individuals.

A 3D shape model like the one in LSFM is constructed by first
bringing a set of 3D training meshes into dense correspondence
so that each is described with the same number of vertices and
all samples have a shared semantic ordering. The corresponded
meshes, {s;}, are then brought into a shape space by applying
Generalised Procrustes Analysis and then Principal Component
Analysis (PCA) is performed which results in {S;q, U;q, Xia},
where 8, € R3V is the mean shape vector, U,;q € R3NXnp
is the orthonormal basis after keeping the first n, principal

SIFT

L

.
9

Fig. 2. Left: The mean and first four shape and SIFT texture principal
components of our “in-the-wild” SIFT texture model. Right: To aid in
interpretation we also show the equivalent RGB basis.

components and ¥;; € R™*" js a diagonal matrix with the
standard deviations of the corresponding principal components.
Let U;q = U;4X;4 be the identity basis with basis vectors that
have absorbed the standard deviation of the corresponding mode
of variation so that the shape parameters p = [pl, RV pnp]
are normalised to have unit variance. Therefore, assuming normal
prior distributions, we have p ~ N (0, Inp), where I,, denotes
the n X n identity matrix. Also, a 3D shape instance of a novel
identity can be generated using this model as a function of the
parameters p: _

Sia(p) = Sia + Uiap 2
Visualisations of the the identity model are included in the Sup-
plementary Material.

Furthermore, we also consider a 3D shape model of expression
variations, as offsets from a given identity shape S;4. For this
we use the blendshapes model of Facewarehouse [16]. We adopt
Nonrigid ICP [51] to accurately register this model with the
LSFM identity model. After this procedure, the expression model
can be represented with the triplet {Scup, Ueyp, Zewp}, Where
Sexp € R3N is the mean expression offset, Uy, € R3NXnq jg
the orthonormal expression basis having 1, principal components
and 3., € R"™*"a jg the diagonal matrix with the corre-
sponding standard deviations. Similarly with the identity model,
we consider the basis Ugyp = UeypDesp and the associated
normalised parameters ¢ ~ N(0,1,,,).

Combining the two aforementioned models, we end up with
the following combined model that represents the 3D facial shape
of any identity under any expression:

S(p, q) =5+ I’jidp + ﬁequ 3

where § = S;q + Scyp is the overall mean shape, p is the vector
with the identity parameters and q is the vector with the expression
parameters.

3.2 Camera Model

The purpose of the camera model is to map (project) the object-
centred Cartesian coordinates of a 3D mesh instance s into 2D
Cartesian coordinates on an image plane.

The projection of a 3D point x = x,y,z]T into its 2D
location in the image plane X’ = [z,y'] involves two steps.
First, the 3D point is rotated and translated using a linear view
transformation to bring it in the camera reference frame:

vV = [Uma vyvvz]T =R,x+t, (€]
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where R, € R3*3 and t, = [tz,ty,tZ]T are the camera’s 3D

rotation and translation components, respectively. This is based on

the fact that, without loss of generality, we can assume that the

observed facial shape is still and that the relative change in 3D

pose between camera and object is only due to camera motion.
Then, a camera projection is applied as:

X/ = 7"-(cintn V) (5)

where ciy, is a vector with the camera’s intrinsic parameters.

The above generic formulation can be applied to any camera
model. For example, in the case of a perspective camera with its
principal point fixed at the image centre, i, = ¢, where ¢ is the
focal length and the camera projection function is defined as:

w(v,qb):f[““%[c’”] (6)
CF Uy Cy
where [c,;, cy]T are the image coordinates of the image centre.

In the case of a scaled orthographic camera projection, Ciyy =
o, where o is the scale parameter of the camera and the camera
projection function is given by:

ﬂm@:a{%] )

Uy

Quaternions. We parametrise the 3D rotation with quater-
nions [52], [53]. The quaternion uses four parameters q =

[90, g1, 2, qg]T in order to express a 3D rotation as
i - -4 q192 ~ dods 4143+ dod>
R,=2| q1e2+qq 35— 4} — 43 f{z% — Joq1 ®)
g3 — qod2 @203+ 9o 3 — 4 — G
Note that by enforcing a unit norm constraint on the quater-
nion vector, 1.e. qTq = 1, the rotation matrix constraints of

orthogonality with unit determinant are withheld. Given the unit
norm property, the quaternion can be seen as a three-parameter
vector [q1,qa,q3] and a scalar go = \/1 — ¢? — g5 — q3. Most
existing works on 3DMM parametrise the rotation matrix R,
using the three Euler angles that define the rotations around the
horizontal, vertical and camera axes. Even thought Euler angles
are more naturally interpretable, they have strong disadvantages
when employed within an optimisation procedure, most notably
the solution ambiguity and the gimbal lock effect.

Camera function. The projection operation performed by the
camera model of the 3DMM can be expressed with the function
P(s,c) : RN — R2N which applies the transformations of
Egs. (4) and (6) on the points of provided 3D mesh s with
I ©)
being the vector of camera parameters with length n. = 7.
For abbreviation purposes, we represent the camera model of the
3DMM with the function W : R — R2N a5

W(p,q,¢) =P (S(p,q),¢)
where S(p, q) is a 3D mesh instance using Eq. (2).

Cc = [Cintr; q1, Q27Q3atw7ty7tz

10)

3.3 Feature-Based Texture Model

The generation of “in-the-wild” texture models is a key component
of the proposed 3DMM. We build feature-based texture models
by avoiding the estimation of illumination parameters. This leads
to a more efficient and robust representation. To construct such
models, it would not be effective to use the texture from 3D facial

4

scans, as usually done in the construction of 3DMMs [18], [43],
since the illumination conditions are excessively controlled in such
scans. On contrary, our goal is to model the texture of faces,
as captured by images and videos under completely uncontrolled
conditions. Therefore, we utilise a large collection of in-the-wild
facial images, accompanied with a sparse set of facial landmarks.

We assume that for the aforementioned set of M “in-the-
wild” images {Ii}i\l, we have access to the associated camera
and shape parameters {pj, qi, C; }. These parameters are initially
estimated by fitting the combined 3D shape model on the sparse
2D landmarks. Let us also define a dense feature extraction

function
f:]RHXWXNCu[m _)RHXWXC

1D
where H, W, Nors are the width, height and number of color
channels respectively of the input image and C' is the number
of channels of the feature-based image. For each image, we first
compute its feature-based representation as F; = F(I;) and then
use Eq. (10) to sample it at each vertex location to build back
a vectorised texture sample t; = F; W (ps, qi,c;)) € ROV,
This texture sample will be nonsensical for some regions mainly
due to self-occlusions present in the mesh projected in the image
space W(pi, qi, ¢i). To alleviate these issues, we cast a ray from
the camera to each vertex and test for self-intersections with the
triangulation of the mesh in order to learn a per-vertex occlusion
mask m; € RY for the projected sample.

Let us create the matrix X = [ty,...,ty] € REVXM py
concatenating the M grossly corrupted feature-based texture vec-
tors with missing entries that are represented by the masks m;. To
robustly build a texture model based on this incomplete data, we
need to recover a low-rank matrix L € REN*M representing the
clean facial texture and a sparse matrix E € REN*M accounting
for gross but sparse non-Gaussian noise such that X = L + E.
To simultaneously recover both L and E from incomplete and
grossly corrupted observations, the Principal Component Pursuit
with missing values [54] is solved

arg min || L[| + A[lE[
L.E (12)
s.t. Pa(X) = Po(L + E),

where ||-||. denotes the nuclear norm, ||-||; is the matrix ;-
norm and A > 0 is a regularizer. ) represents the set of
locations corresponding to the observed entries of X (i.e.,
(4,7) € Qif m; = m; = 1). Then, Po(X) is defined as the
projection of the matrix X on the observed entries {2, namely
Pa(X);; = x5 if (i,7) € Q and Po(X),;; = 0 otherwise.
The unique solution of the convex optimization problem in
Eq. (12) is found by employing an Alternating Direction Method
of Multipliers-based algorithm [55].

The final texture model is created by applying PCA on L
(the set of reconstructed feature-based textures acquired from the
previous procedure). This results in {t, U}, where t € ROV s
the mean texture vector and U; € REN*nt ig the orthonormal
basis after keeping the first n; principal components. This model
can be used to generate novel 3D feature-based texture instances
with the function 7 : R™ — ROV as

TA) =t+ U (13)

where A = [Aq, ..., /\,Lt]T are the ny texture parameters.
Finally, an iterative procedure is used in order to refine the
texture. That is, we started with the 3D fits provided by using only
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Fig. 3. Building an ITW texture model. The red coloured region denotes
the occlusion mask obtained by fitting the 3D shape model on the sparse
2D landmarks of the original image.

the 2D landmarks [56]. Then, a texture model is learnt using the
above procedure. The texture model was used with the proposed
3DMM fitting algorithm on the same data and texture model
was refined. This could be repeated over multiple iterations, but
we have empirically found that a single refinement iteration is
adequate. In the case of single-image fitting, this procedure is
done in a separate training phase, which needs to be performed
only once. In the case of video fitting, this can be done for every
input video.

4 MODEL FITTING

We propose an energy minimisation formulation to fit the 3DMM
on single images and videos. We design an efficient optimisation
strategy, which is based on the Gauss-Newton method and the
Project-Out approach. To this end, herein, we first present the
fitting on single images and then proceed with the fitting on videos.

4.1 Fitting on Single Images
4.1.1 Proposed Energy Formulation

To fit the 3DMM on single images, we propose to minimise the
following cost function:

E(pa q,cC, A) = Elext(pv q,c, A) + CZEland(p7 q, C)
+ Epriors(pv q)

where Fi is a texture reconstruction term, Fj,,q is a sparse 2D
landmarks term and FEos is a shape priors term that regularises
the shape parameters. Also ¢, is the balancing weight of the
Ejpa term. The energy E' depends on the shape (p, q), texture
A and camera ¢ parameters and these are the quantities that we
seek to estimate by minimising it. The terms FElyng and Eprors
are optional and aim to facilitate the optimisation procedure in
order to converge faster and to a better minimum. Note that thanks
to the proposed “in-the-wild” feature-based texture model, the
cost function does not include any parametric illumination model
similar to the ones in the related literature [43], [44], which greatly
simplifies the optimisation. Next, we present every term of the
energy.

The texture reconstruction term (F.y;) is the main data term
of the optimisation problem. It depends on shape, texture and
camera parameters and penalises the squared L? norm of the dif-
ference between the image feature-based texture that corresponds
to the projected 2D locations of the 3D shape instance and the
texture instance of the 3DMM:

Etexl(pa q,c, )‘) = ||F (W(pa q, C)) - T()‘) ”2

(14)

15)

5

where F = F(I) denotes the feature-based representation with
C' channels of an input image I using Eq. (11). Note that
F W(p,q,c)) € REN denotes the operation of sampling the
feature-based input image on the projected 2D locations of the 3D
shape instance acquired by the camera model (Eq. (10)).

The 2D landmarks term (Fj,pq) is an auxiliary data term that
is based on sparse 2D landmarks:

Eland(pa q, C) = ||Wl(pu q, C) - 'e||2

where £ = [21,y1,. .. ,xL,yL]T denotes a set of L sparse 2D
landmark points (. < N) defined on the image coordinate
system and W, (p, q, c) returns the 2L x 1 vector of 2D projected
locations of these L sparse landmarks. Intuitively, this term aims
to drive the optimisation procedure using the selected sparse
landmarks as anchors for which we have the optimal locations
£. In this way, the camera parameters can be rapidly adapted.

The shape priors term (Eprors) aims at avoiding over-
fitting effects and penalizes reconstructed faces that are unlikely
to happen, under the consider shape model. It consists of two
optional prior terms over the identity and expression parameters, p
and q. Based on the normal distributions assumptions for p and q
and the fact that these are normalised (see Sec. 3.1), we formulate
the prior terms as the squared L? norms of the parameters:

(16)

2 2
Epriors(pa Cl) = Cid ||pH + Cexp ||q|| (17)

where ¢;q and ¢, are constants that weight the contribution of
the prior terms over identity and expression parameters respec-
tively.

4.1.2 Gauss-Newton Project-Out Optimisation

Inspired by the extensive literature in Lucas-Kanade 2D image
alignment [8], [24], [25], [26], [57], [58], we formulate a Gauss-
Newton optimization framework to efficiently minimize the en-
ergy of Eq. (14).

Parameters update. The shape and camera parameters are
updated in an additive manner, i.e.

P<P+Ap, q<q+Aq, c+ c+ Ac (18)

where Ap, Aq and Ac are their increments estimated at each

fitting iteration. Note that in the case of the quaternion used to

parameterize the 3D rotation matrix, the update is performed as
Aqo ] { do

the multiplication
A(11:3 q1:3 :| -

_ [ Agogo — Adf3q1:3 }
Aqoqi:3 + qAq1:3 + Aqu:z X qu:3
However, we will still denote it as an addition for simplicity.
Finally, we found that it is beneficial to keep the focal length
constant in most cases, due to its ambiguity with ¢ .
Linearisation. By introducing the additive incremental up-
dates on the shape and camera parameters, the cost function is
expressed as:

E(p+ Ap,q+ Aq,c+ Ac,A) =
IF W(p + Ap,q + Ag,c + Ac)) — TN
+c[Wi(p + Ap,q+ Ag,c + Ac) — £]?
+cia |p+ AP + Ceap la + Aq|®

Note that the texture reconstruction and landmarks constraint
terms of this cost function are non-linear due to the camera model

q+(Aq)q = {
(19)

(20)
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operation. We need to linearise them around (p, q, ¢) using first
order Taylor series expansion at (p + Ap,q + Aq,c + Ac) =
(p,q,c) = (Ap, Aq, Ac) = 0. The linearisation for the image
term gives:

F(W(p+ Ap,q+ Aqg,c+ Ac)) = F (W(p,q,c))

21
+ Jp pAp + Jp qAq + Jp cAc @b

where:

c=c

— [2)4% _ ow — ow
JF7p—VF W p:p’JF’q_VF Tq q:q’JF’C_VF W

are the image Jacobians with respect to the identity, expression
and camera parameters, respectively. Note that most dense feature-
extraction functions F(-) are non-differentiable, thus we simply
compute the gradient of the multi-channel feature image VF'.

Similarly, the linearisation on the sparse landmarks projection
term gives:

Wi(p + Ap,q+ Aq,c+ Ac) ~

(22)
Wi(p,a,¢) + I pAp +J1,qAq + I cAc
' _ow oW ) 4%}
where: JL,p = p p:p;JL,q — Oq q:q7JL’C T Oc c=c

are the landmarks projection Jacobians. Please refer to the sup-
plementary material for more details on the computation of these
derivatives.
By substituting Eqgs. (21) and (22) into Eq. (20) the cost
function is approximated as:
E(p+ Ap,q+ Aq,c+ Ac,A) »
IE (WP, 4. )+ T p Ap+Tr.qAq+Tr cAc—T (A
+ ce [Wi(p, q, ) +ILp Ap+I L. g A+ T cAc— ]
2 2
+ cia [P+ Ap[” + ceap [la + Ad||
(23)
Adopting the Project-Out optimisation approach, we optimise
on the orthogonal complement of the texture subspace which
eliminates the need to consider a texture parameters increment
at each iteration. In more detail, the minimisation of the energy

of Eq. (23) with respect to A can be expressed analytically as a
function of the increments Ap, Aq, Ac:

A=0U," (F(W(I% q,¢))+Jr pAp
(24)
+Ip.qAq + Tp.oAc — E)

We plug this expression into Eq. (23) to eliminate the dependence
of the energy on A and we get the following minimisation
problem:

arg min
Ap,Aq,Ac

IF (W(p,q,¢)+Ir pAp+Jr qAq+Jr Ac—t|5
+ e WP, €)+ 31 pAp+J L qAq+I L Ac—£|°
=+ Cid Hp + APHQ + Cexp Hq + AQ||2

(25)

where P = Iony — UtUtT is the orthogonal complement of the
texture subspace that functions as the “project-out” operator. Note
that in this formulation A plays no explicit role. Further note that
in order to derive Eq. (25), we use the properties PT = P and
PP =P.

6

The problem of Eq. (25) is a linear least squares problem that
can be written in the general compact form:

arg min | JAb — e (26)
Ab

where Ab = [ApT,Aq",Ac'] is a vector with all the un-

knowns (incremental updates) and J is the overall Jacobian of the

problem:

]T

Plpp | Plrgq | PJre
_ _ Ve dip | Veidia | Ve TLe
I=Be [JalJe] =1 V2an) | 0, o | 0nyn,

anxnp \/@I"q anxnc

27)
where 0,,,x, denotes the m X n zero matrix. Also, e is the overall
offset vector of the problem:

P(t—F(WV(p,q,c)))
\/a(z - Wl(pa q, C))
—/Cid P
—+/Cexp d

We compute Ab by solving the linear system that is derived from
taking the gradient of the cost function in Eq. (26) and setting it to
zero: (JTJ)Ab = JTe. This system is of a relatively small scale,
therefore it is straight-forward to implement its solution.

Note that the above-described Project-Out scheme is a very
efficient approach to solving the Gauss-Newton iterations for
minimising the cost function of Eq. (14). It has been shown
that this is much faster than the more widely-used Simultaneous
algorithm [23], [25], [59].

Residual masking. In practice, we apply a mask on the texture
reconstruction residual of the Gauss-Newton optimisation, in order
to speed-up the 3DMM fitting. This mask is constructed by first
acquiring the set of visible vertices using z-buffering and then
randomly selecting K of them. By keeping the number of vertices
small (KX ~ 5000 <« N), we manage to greatly speed-up the
fitting process without any accuracy penalty. This z-buffering
and random sampling is performed per-iteration, allowing for
changes in the self-occlusion state of vertices as the optimisation
progresses.

e =

(28)

4.2 Fitting on Videos

In the case of videos, we extend our energy minimisation formu-
lation, described in the previous Section 4.1. Due to our separable
identity and expression shape model, we can fix the identity
parameters throughout the whole video, a significant constraint
that greatly helps our estimations. In addition, we impose temporal
smoothness on the expression parameters, which improves the
estimation of the 3D facial deformations of the individual observed
in the input video. Furthermore, we can get a fast and accurate
initialisation for the minimisation of the proposed energy by
employing Structure from Motion on the per-frame sparse 2D
landmarks with an efficient linear least squares fitting approach.

4.2.1 Proposed Energy Formulation

Let us assume that the input video consists of ny images,
Ii,...,Xy,...,L,. As in the single-image case, we are based
on the feature-based representation F; = F(Iy) of the
image of every frame f = 1,...,ny. Also, let £y =
[x1f7y1f,...,fo,ny]T be the 2D facial landmarks for the
f-th frame. We are still denoting by p the identity parameters



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

vector, which as already mentioned, is fixed over all frames of
the video. However, we consider that every frame has its own
expression, camera, and texture parameters vectors, which we
denote by qy, ¢y and Ay respectively. We also denote by g, ¢

and A the concatenation of the corresponding parameter vectors

T T

,qlf},é = [cl,... c! } and

over all frames: q" = {q{, e 1 Cp

T T T
A= [Al,...,Anf]
To fit the 3DMM on a video, we propose to minimise the

following energy, which is a multi-frame extension of the energy
in Eq. (14):

E(pa (AL éa 5‘) = Etexl(p7 éla év 5‘) + CZEland(pa (ia é)

. ’ . " (29)
+ Epriors(pv Q) + Csm Esmooth(q)

where Etex[, Eland and Epriors are the multi-frame extensions of the
texture reconstruction, 2D landmarks term and prior regularisation
terms respectively. Furthermore, Fgyoom 1S @ temporal smoothness
term that we impose on the time-varying expression parameters
qy. Also ¢ and cgy,, are the balancing weights for the terms Fiyng
and Esmooth respectively. Next, we present every term of the energy
in more detail. .

The texture reconstruction term (Fiy) is the main data term
and sums the texture reconstruction error from all frames:

nf
Eeu(p,@,6,X) = > |[Fr W(p,ay,cp) = TAp)I* (30)
=1

The 2D landmarks term (Eland) is a summation of the
reprojection error of the sparse 2D landmarks for all frames:
ny
; N 2
Eland(pv q, C) = Z ”Wl(pa qrf, Cf) - sz
f=1

€1V

The shape priors term (Epriors) imposes priors on the recon-
structed 3D facial shape of every frame. Since the facial shape at
every frame is derived from the (zero-mean and unit-variance)
identity parameter vector p and the frame-specific expression
parameter vector q s (also zero-mean and unit-variance), we define
this term as:

ny
N ~ 2 2
Epn'ors(p7 Q) = Cid ||PH + Cea:p Z ||qf||
=1

. 2 112
= Cia [|PII” + cexp [|all

(32

where ¢;q and ce,,, are the balancing weights for the prior terms
of identity and expression respectively.

The temporal smoothness term (Fgpootn) is video-specific
and enforces smoothness on the expression parameters vector
qy by penalising the squared norm of the discrimination of its
2" temporal derivative. This corresponds to the regularisation
imposed in smoothing splines and leads to naturally smooth
trajectories over time. More specifically, this term is defined as:

ng—1
Esmooth(d) = Z qu—l - 2(1f + qf+1||2 = ||D2(Al
=2
where the summation is done over all frames for which the
discretised 2" derivative can be expressed without having to
assume any form of padding outside the temporal window of the
video. Also D? : R™a"s — R™a("s=2) is the linear operator that
instantiates the discretised 2™ derivative of the ng4-dimensional

2

(33)
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vector gy. This means that D2q is a vector that stacks the
vectors (qf—1 — 2df + qf41), for f=2,...,ny — 1. It is worth
mentioning that we could have imposed temporal smoothness
on the parameters c¢, Ay too. However, we have empirically
observed that the temporal smoothness on q 7, in conjunction with
fixing the identity parameters p over time, is adequate for accurate
and temporally smooth estimations.

4.2.2 |Initialisation

The proposed energy Fin Eq. (29) is highly non-convex, therefore
a good initialisation is of paramount importance. To achieve
highly-accurate fitting results on videos, even in especially chal-
lenging cases, we design a computationally efficient video initiali-
sation strategy, by decomposing the problem into two simpler ones
that can be solved quickly and accurately.

For the above reasons, we consider for this part a scaled
orthographic camera, which simplifies the optimisation by making
the projection function 7 (Ciyy, v) described in Eq. (6) to be linear
with respect to v. Also, we are based on a simplified version of the
proposed energy E in Eq. (29) that does not contain the texture
reconstruction term:

Einit(p7 fl; é) = CZEland(p7 (AL é) (34)

+ Epriors(p7 fl) + CsmEsmooth(q)
This means that the only data term is Eland and the estimations use
only the sparse 2D landmarks as input. Full details are provided
in the Supplimentary Material.

4.2.3 Video-Specific Texture Model

Apart from offering a good starting point for the main optimisa-
tion, the initialisation described in the previous sections is first
of all used to bootstrap the learning of the video-specific texture
model, as described in Sec. 3.3. To improve the computational
efficiency of this procedure, we down-sample the frames and only
consider 1 every fiep frames. In more detail, using the estimated
shape and camera parameters of the considered frames, we sample
the facial texture t; = F; OV(p, qe, c¢)) and utilise it in the
Principal Component Pursuit (PCP) problem of Eq. (12).

4.2.4 Main Optimisation of the Proposed Energy

Similarly to the single-image case (Sec. 4.1.2), we minimise the
proposed energy E of Eq. (29) by following a Gauss-Newton
scheme. In every iteration, we consider the current estimates p, q,
¢ and we linearise the texture reconstruction and landmarks error
functions around them. After this approximation, the problem
becomes a linear least squares problem with respect to the texture
parameters A and the incremental updates Ap, Aq and Ac. For
more details, please see Supplementary Material.

Regarding the unknown texture parameters, we follow again
the Project-Out approach. In more detail, the minimisation with
respect to each Ay is decoupled in every frame and can be found
analytically as a function of Ap, Ady and Acy, exactly as in
Eq. (24) (see Supplementary Material). Using this expression in
the expression of the linearised energy E , we derive the following
problem:

argmin E (p+ Ap,q+ Aq, ¢ + Ac)
Ap,Ag,Aé

(35)
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The above problem is a large-scale linear least squares problem
that can be written in the form (see Supplementary Material for
detailed derivations):

arg min | JAb — &2
Ab

(36)

where Ab = [ApT,Aq",A¢"] is a vector with all the un-
known incremental updates from all the frames. Also, J is the
corresponding overall Jacobian matrix that has a sparse structure.
Finally, éA is the overall error term. Note that the dimensional-
ity of Ab (and hence the number of parameters to estimate)
is N = ny, + ny(ng + 7) and the Jacobian J is of size
(ny(CN 4+ 2L + ng + 1) — 2ny) X Ny Given the fact that
we consider hundreds of frames m; and tens of thousands of
vertices IV, the least square problem (36) is a very large-scale
one. For example, for the choice of parameters considered in our
experiments, the Jacobian J is of size 425,884,944 x35,100. This
is in contrast to the corresponding problem of the single-image
fitting case, where the problem was of small scale, so we could
solve it by standard approaches. Therefore, we follow a video-
specific strategy, in order to achieve a satisfactory scalability. In
more detail, we consider the equivalent linear system (derived
by equating the gradient to zero): JTJx = JTb and adopt
an efficient and parallelisable method that avoids the explicit
computation and storage of the matrices J and (JTJ ), which
are very large-scale and sparse. More precisely, following other
recent methods of 3D facial and more general deformable surface
reconstruction [48], [60], we use a preconditioned conjugate
gradient (PCG) solver, for which we only need to efficiently
implement functions that compute the multiplications J TJ )x and
JTh for any input vectors x and h. For the preconditioning, we
use the inverses of the diagonal blocks of JTJ.

5 BENCHMARK DATASETS FOR 3DMM IMAGE

AND VIDEO FITTING

To allow for the quantitative evaluation of our proposed 3DMM
image and video fitting methods, we have constructed three
datasets — KF-ITW, 3dMD-Lab and 4DMaja. For the benefit of
the research community, we are making these benchmark datasets
publicly available>. We now describe each dataset in turn.

5.1 KF-ITW Dataset

The first dataset we introduce is focused on providing quantitative
evaluation for 3DMM image fitting. KF-ITW is, to the best of
our knowledge, the first dataset where ground truth 3D facial
shape is provided along with images captured under relatively
unconstrained conditions.

The dataset consists of 17 different subjects captured under
various illumination conditions performing a range of expressions
(neutral, happy, surprise). We employed the KinectFusion [61],
[62] framework to acquire a 3D representation of the subjects with
a Kinect v1 sensor. In order to accurately reconstruct the entire
surface of the face, each subject was instructed to stay still in a
fixed pose whilst a circular motion scanning pattern was carried
out around the face. The fused mesh for each subject recovered
from KinectFusion serves as a 3D face ground-truth in which
we can evaluate our algorithm and compare it to other methods.
Single frames picked from the RGB video stream of the Kinect

2. webpage:https://goo.gl/2DwhHz

@) (b) )

Fig. 4. 3dMD-Lab benchmark: (a,b) Examples of 2 out of 8 images
of 3dMD-Lab(real images). We introduce this benchmark to evaluate
image fitting methods under ideal conditions. (c,d) Examples of 2 out of
8 images of 3dMD-Lab(synthetic images). We introduce this benchmark
to evaluate image fitting methods under synthetic strong illumination
conditions.

Fig. 5. 4DMaja(synthetic video) benchmark: 4 out of 440 frames of a
synthetic video created using high-resolution 4D face scans and ren-
dering using a synthetic camera under varying 3D pose. Since this is a
rendered video, it is accompanied by 4D ground truth mesh information.

sensor recording are selected as input images of our benchmark.
The frame rate for every subject was constant to 8 frames per
second, and a voxel grid of size 6083 was utilised to get the
detailed 3D scans of the faces. After getting the 3D scans from
the KinectFusion framework we manually annotate each mesh
with the iBUG 49 sparse landmark set, and use these landmarks
to constrain a fit of the mean of the shape model in a non-rigid
manner to each raw scan by performing a Non-Rigid Iterative
Closest Point (N-ICP) matching between the two surfaces. This
results in a set of meshes in dense correspondence, that is to say
that all meshes in KF-ITW have the same well-behaved mesh
topology and number and distribution of vertices for the evaluation
process.

Although a short video sequence is captured as part of the
acquisition process, we do not consider KF-ITW a suitable dataset
for video facial shape recovery evaluation, as this video is highly
contrived (the user is requested to hold still the entire time and the
video motion is very specific and unnatural). To this end we only
supply single frames from the acquisition process for image-fitting
evaluation.

The evaluation protocol for KF-ITW is as follows. We use
the ground-truth annotations provided in the KF-ITW dataset to
initialize and fit each technique under test to the “in-the-wild” style
images in the dataset. Our error metric is the per-vertex dense error
between the recovered shape and the model-specific corresponded
ground-truth fit, normalized by the inter-ocular distance for the
test mesh (i.e. the distance between the outer corners of the eyes).
Only regions of the face that are recovered by all methods under
test can be used for evaluation. In our case, this corresponds to the
inner region of the face. The neck, ears, and other extremities are
not considered, as they only appear in a subset of models used by
methods under test.

5.2 3dMD-Lab Dataset

To quantitatively evaluate additional aspects of 3DMM image
fitting, we are introducing a second benchmark dataset, which we
call “3dMD-Lab”. In contrast to KF-ITW, this dataset has been
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(© (d)

Fig. 6. 4DMaja(real video) benchmark: (a-c) 3 out of 387 frames of a real
video under in-the-wild conditions. (d) Ground truth mesh representing
the shape identity component of the 3D facial shape of the captured
subject.

(b)

created in more controlled conditions and has been based on high-
resolution 3D face scans, using a 3dM DTM face scanner. This
makes the ground truth facial meshes to be highly-detailed, and
allows us to to evaluate the performance of 3DMM image fitting
methods in the use case where we have no “in-the-wild” effects.

In more detail, 3dMD-Lab includes 4 subjects each perform-
ing 2 different expressions for a total of eight 3D face scans.
It includes 8 real images (‘“3dMD-Lab(real images)”) in ideal,
laboratory conditions, coming directly from one of the RGB
cameras of the 3dM DTM face scanning system. It also includes 8
synthetic images (‘“3dMD-Lab(synthetic images)”) created by the
same scans after rendering them from different view points and
with added illumination directed light under different directions.
All real and synthetic images are high-resolution images with
spatial dimension of 2048 <2448 pixels and true colour range (24
bits per pixel). Please see see Supplementary Material for more
details on both these variations, including sample images.

5.3 4DMaja Dataset

To quantitatively evaluate 3DMM video fitting, we are introducing
a third benchmark, which we call “4DMaja”. To the best of our
knowledge, this is the first publicly available benchmark that
allows detailed quantitative evaluation of 3D face reconstruction
on videos. 4DMaja includes two face videos of the same subject
(Prof. Maja Pantic) under varying natural expressions and sig-
nificant head pose variation. The first video is a synthetic video
created based on high-resolution 4D face scans, using a DI4DT™M
face scanner: see Fig. 5. In more detail, the video was created by
using a 4D scan of the subject under different expressions and
rendering it with a synthetic camera that undergoes a periodic
rotation. This allows the comparison over 4D ground truth infor-
mation, i.e. quantitative evaluation of the 3D face reconstruction
for every frame of the video. This video includes 440 frames with
512x512 pixels per frame. The second video is a real video under
in-the-wild conditions for which a high-resolution 3D scan of the
captured subject is available: see Fig. 6. In more detail, the real
video is a clip from a public talk of the subject and we associate it
with a 3D face scan of the same subject under neutral expression
that was captured with DI4D™TM _This video includes 387 frames
with 1280720 pixels per frame. The 3D face scan was acquired
with less than 2 months time difference from the day of the public
talk, which allows us to reliably consider it as ground truth of the
identity component of the 3D facial shape for the real video. In this
way, we can quantitatively evaluate how well the 3D facial identity
is estimated when different methods are run over the whole video.

6 EXPERIMENTS

In this section we present in-depth qualitative and quantitative
evaluations of our proposed image and video fitting methods.
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Apart from comparisons with classic and state-of-the-art methods,
we are presenting self-evaluations of our fitting framework by
comparing results obtained under different settings. We label
our “In-The-Wild” image and video fitting methods as ITW and
ITW-V respectively. Further details, visualisations and additional
experiments are presented in the Supplementary Material.

We use two different variants of our adopted 3DMM model
of shape and texture variation, obtained by using either the
Basel Face Model (BFM) [17] or the LSFM model [18] as 3D
shape models for identity variation. This is denoted by the labels
“(Basel)” and “(LSFM)” after the names of our methods, for
example “ITW(Basel)” or “ITW-V(LSFM)”. Note that while LSFM
is a more accurate and powerful model, we are also adopting
BFM in the experiments for the sake of fairness towards the
methods that we compare with, which use BFM or other models
of much smaller scale than LSFM. We expand the adopted models
for identity variation by incorporating a model for expression
variation provided by [16], following the process described in
Section 3.1. Regarding the texture component of our 3DMM
models that is used by our image fitting method, we trained our
“in-the-wild” texture model on the images of iBUG, LFPW &
AFW datasets [15] as described in Sec. 3.3 using the 3D shape fits
provided by [63].

In the subsequent experimental evaluation, we are comparing
with several existing methods for 3DMM fitting as follows:

— “Classic”: this is an implementation of the classic 3DMM
fitting [43], [44] with the original Basel laboratory texture model
and full lighting equation.

— “Linear”: this is the texture-less linear model fitting proposed
in [20], [64]. For this method we use the Surrey Model with related
blendshapes along with the implementation given in [64].

— “3DMMedges”: this is the 3DMM fitting method that was
recently proposed by Bas et al. [65]. This method is fully
automatic and uses landmarks and edge features. For this method,
we used the publicly available source code * with its default
parameters.

— “Jackson et al. 2017”: this is a very recent method proposed
Jackson et al. [66]. It performs 3D face reconstruction from a
single image based on Convolutional Neural Networks [66]. It has
been reported to achieve promising performance in unconstrained
scenarios. To obtain results from this method, we have used the
online demo provided by the authors *.

— “MoFA”: this is another very recent method, which was
proposed by Tewari et al. [67]. It adopts a model-based deep
convolutional autoencoder to perform 3D face reconstruction from
a single in-the-wild image. Results of this method for a set of in-
the-wild images were provided to us by the authors of this method.

— “4DFace’: in contrast to all previous methods of this list,
this method is performing 3DMM fitting on videos rather than
images. It was recently introduced by Huber et al. [20], [64]. This
the only method for 3DMM fitting on videos with code that is
publicly available 3. We have used the demo app of this code,
without making any change on its parameters.

6.1 3DMM fitting on single images

We present both qualitative and quantitative results and compar-
isons of our proposed “in-the-wild” model on single images.

3. https://github.com/waps101/3DMM_edges
4. http://cvl-demos.cs.nott.ac.uk/vrn/
5. http://www.4dface.org/
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[ Method | AUC _ Failure Rate (%) |
ITW 0.678 1.79
Linear 0.615 4.02
Classic 0.531 13.9
TABLE 1

Accuracy results for facial shape estimation on the KF-ITW database.
The table reports the Area Under the Curve (AUC) and Failure Rate of
the CEDs of Fig. 8.

Figure 1 demonstrates qualitative results of our image fitting
method on a wide range of fits of “in-the-wild” images drawn
from the Helen and 300W datasets [14], [15] that qualitatively
highlight the effectiveness of the proposed technique. To obtain
these results, the BFM model has been used as the identity
component of the shape model. We note that in a wide variety of
expression, identity, lighting and occlusion conditions our model
is able to robustly reconstruct a realistic 3D facial shape that stands
up to scrutiny.

Figure 7 shows qualitative comparisons of our ITW method
(using LSFM shape identity model) with four existing techniques
(MoFA, Jackson et al. 2017, 3DMMedges and Classic) on chal-
lenging images of faces under strong expressions. We observe
that the results of our method are by far the most visually
appealing ones. In contrast to all other tested methods, our method
yields 3D face reconstructions that recover both the anatomical
characteristics and the facial expressions of the captured subjects
in an extremely plausible way, yielding results of unprecedented
quality for such challenging conditions.

We also perform a quantitative evaluation on the KF-ITW
benchmark, comparing our ITW(Basel) method with Linear and
Classic techniques. Fig. 8 shows the Cumulative Error Distri-
bution (CED) for this experiment for the three methods under
comparison. Table 1 reports the corresponding Area Under the
Curve (AUC) and failure rates. The Classic model struggles to
fit to the “in-the-wild” conditions present in the test set, and
performs the worst. The texture-free Linear model does better,
but our ITW(Basel) model is most able to recover the facial
shapes possibly due to its ideal feature basis for the “in-the-wild”
conditions.

As a second quantitative evaluation, we employ images of 100
subjects from the Photoface database [68]. We use our ITW(Basel)
method to find per-pixel normals and compare against two well
established Shape-from-Shading (SfS) techniques: PS-NL [69]
and IMM [42]. As a set of four illumination conditions are
provided for each subject then we can generate ground-truth facial
surface normals using calibrated 4-source Photometric Stereo [70].
In Fig. 9 we show the CED in terms of the mean angular error.
ITW slightly outperforms IMM even though both IMM and PS-NL
use all four available images of each subject.

Apart from in-the-wild conditions like in the previous exper-
iments, we evaluate and compare our fitting method under ideal,
laboratory conditions. For this, we use the real images of 3dMD-
Lab dataset and compare our ITW(Basel) method with Linear,
Classic, 3DMMedges and Jackson et al. 2017. Fig. 10 shows the
CED for this experiment. We observe that our method yields a
significantly better performance than the compared methods. This
suggests that even under more controlled conditions, our image
fitting approach is still advantageous over previous approaches.

6.2 3DMM fitting on videos

In addition to the 3D shape recovery of single images we are
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also evaluating the available techniques on the task of 3D face
reconstruction in the videos of 4DMaja dataset as well as in in-
the-wild videos collected from the 300VW [71] dataset.

We use a state-of-the-art facial tracker from [72] to fit the
videos using a set of sparse landmarks which we use for initial-
ising all the methods. Also, we use the Basel Face Model [17]
(BFM) as a standard here to allow a fair comparison across
techniques.

In our first experiment, we run ITW-V on 4DMaja(synthetic
video) (which provides a ground truth mesh for each frame
of the sequence), and compare against “3DMMedges” [65],
“4DFace” [20], [64], “Classic” [43], [44] and “Linear” [20],
[64]. For each examined technique, we calculated an error at
each frame of the sequence by computing the average per-vertex
error between the recovered mesh and the corresponding ground
truth. Fig. 12(a) shows that ITW-V outperforms “3DMMedges”,
which is the second best algorithm, by a large margin. Fig. 12(b)
further shows how the per-frame error changes over time. Here, the
significantly lower temporal error variance of ITW-V vindicates
our decision to regularise identity and enforce smooth expressions
over video sequences.

In the next evaluation scenario we run ITW-V on the “in-
the-wild” 4DMaja(real video) sequence (which, as a reminder,
provides a single ground truth neutral expression mesh). In this
case the error is based on comparing the mean recovered mesh for
each method across the whole sequence with the single ground
truth. In Fig. 13 it can be seen that ITW-V recovers identity more
effectively than any other method.

The capability of ITW-V to reconstruct the 3D facial shape in
in-the-wild videos is further examined by applying it to videos
of the 300VW [71] dataset. For comparison, we both fit our
ITW model to each frame individually with no video-specific
cost (ITW per frame) and show our full ITW video cost pipeline
(ITW-V).Figure 11 shows the representative frames from fitting
the videos. We observe that in general both our ITW techniques
visually outperform the SfM, Classic and Linear techniques in
these challenging videos. We note that ITW-V, our video-specific
fitting technique, combines the stability of Structure from Motion
(SfM) with the detail from the ITW per frame fitting. The Classic
technique’s explicit lighting model struggles to model “in-the-
wild” effects such as the microphone occlusion (first frame, first
video) leading to the algorithm diverging. We note further that
ITW-V does not suffer from drift in the identity of the individual
(as ITW per frame does, first video) or non-smooth expression
changes (see ITW per frame, second video in supplementary
material). Finally, we also show in the bottom of this figure how
our technique behaves in “in-the-wild” videos when used with the
LSFM shape model. We have found this combination of ITW-
V with LSFM to be particularly effective, with LSFM providing
excellent robustness to variations in age, gender, and ethnicity

A video showing 3D reconstructions from the different meth-
ods can be found at https://goo.gl/IcZZWa.

6.3 Self-Evaluation of the proposed method

To decouple the effect on performance of the texture model and
the optimisation strategy employed, we present a self-evaluation
of our fitting method, where we compare the following:

(1) a full version of our image fitting method (ITW), using the
shape variation from BFM [17],

(ii) a version of our image fitting method where we have replaced
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(b) ITW(LSFM)

(a) Input (c) MoFA

(d) Jackson et al. 2017 (e) 3DMMedges
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(f) Classic

Fig. 7. 3D face reconstruction of challenging face images: qualitative comparison of our method (ITW) with other methods.
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Fig. 8. Accuracy results for facial shape estimation on the KF-ITW
database. The results are presented as CEDs of the normalized dense
vertex error. Table 1 reports additional measures.
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Fig. 9. Accuracy results for facial surface normal estimation on 100
subjects from the Photoface database [68]. The results are presented
as CEDs of mean angular error.

the learned ITW texture model with the an RGB texture model
(laboratory conditions), as provided by BFM [17]. We call this
simplified version of our method “RGB-V”.

(iii) an implementation of the classic 3DMM fitting (‘Classic’)
[46], which uses the same texture and shape model as in (ii),
coming from BFM [17].

This comparison sheds light on the benefits of using an ITW
texture model and the proposed energy formulation, independently

O=-0 ITW(Basel)

O=O0 jackson et al. 2017
3DMMedges
Classic

O=O0 Linear

0(9.00 0.02 0.04 0.06 0.08 0.10
Normalized dense vertex error

Fig. 10. Facial shape estimation on 3dMD-Lab(real images): quantitative
comparison of our image fitting method ITW(Basel) with other methods.
The results are presented as CEDs of the normalised dense vertex error.

| Method | AUC  Failure Rate (%) |
ITW 0.632 4.30
RGB-MM | 0.610 6.13
Classic 0.545 10.9
TABLE 2

Facial shape estimation on 3dMD-Lab(synthetic images): Quantitative

comparison of ITW (our fitting method), RGB-MM (a simplified version

of our method where we have replaced the ITW texture model with an

RGB texture model) and Classic 3DMM fitting [43]. The table reports

the Area Under the Curve (AUC) and Failure Rate of the Cumulative
Error Distribution (CED) of each method.

[ Method | AUC  Failure Rate (%) |
ITW-V 0.793 2.33
ITW-V, init | 0.770 2.46
TABLE 3

3D identity shape estimation on 4DMaja(real video): quantitative
self-evaluation of our fitting framework. Comparison of our video fitting
method (ITW-V) with the initialisation of our video fitting method from
sparse landmarks as described in Section 4.2.2 (ITW-V, init). The table
reports the Area Under the Curve (AUC) and Failure Rate of the CED
of each method.

the one from the other. Table 2 presents the quantitative results
of the above three methods on 3dMD-Lab(synthetic images).
We observe that method (ii) outperforms method (iii), which
suggests that the proposed energy formulation is indeed beneficial
as compared to the standard formulation followed by the classic
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Fig. 11. Top: Two sample frames extracted from “in-the-wild” videos along with the 3D reconstructions performed using a variety of techniques.
Bottom: A final qualitative comparison demonstrating how our proposed technique works well with a range of shape models, including the diverse

Large Scale Facial Model (LSFM).
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Fig. 12. 4D facial shape estimation on 4DMaja(synthetic video): quantitative comparison of our video fitting method (ITW-V) with other methods.
The results are presented in two ways: a) CEDs of the per-frame mean (over all vertices) normalized dense vertex error, b) Plots of the mean
normalized vertex error as a function of time (frame index), where all plots share the same vertical axis.
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Fig. 13. 3D identity shape estimation on 4DMaja(real video): quantitative
comparison of our video fitting method (ITW-V) with other methods. The
results are presented as CEDs of the normalized dense vertex error.

3DMM fitting. In addition, we observe that method (i) outperforms
method (ii), which suggests that the proposed ITW texture is
indeed beneficial as compared to the conventional RGB texture
model. A second direction of self-evaluation is to compare our
proposed video fitting method ITW-V(Basel) against our image
fitting, when the later is applied to the frames of a video indepen-
dently (ITW(Basel), per frame). We employed this experimental
setting to fit 4DMaja(synthetic video) sequence and calculated a
mean error at each frame by averaging the differences between the
vertexes of the resulting mesh and the ground truth. As presented

ITW(Basel), per frame

S o7
g 06
°
505
304
g 0.3
fro

0.2

0.1

%fo0 002 004 006 008
Normalized dense vertex error

0.10

Fig. 14. 4D facial shape estimation on 4DMaja(synthetic video): quanti-
tative self-evaluation of our fitting framework. Comparison of our video
fitting method (ITW-V(Basel)) with our image fitting method applied per-
frame (ITW(Basel), per frame), i.e. independently on every frame of the
video. The results are presented as CEDs of the per-frame mean (over
all vertices) normalized dense vertex error.

in Fig. 14 our video fitting outperforms per frame image fitting by
a large margin which validates the superiority of our formulation.

Please refer to the Supplementary Material for additional
visualisations and self-evaluation experiments.

7 CONCLUSION

We have presented a novel formulation of 3DMMs re-imagined
for use in “in-the-wild” conditions. We capitalise on annotated “in-
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the-wild” facial databases to propose a methodology for learning
an “in-the-wild” feature-based texture model suitable for 3DMM
fitting on images and videos without having to optimise for illu-
mination parameters. We show that we are able to recover shapes
with more detail than is possible using purely landmark-driven ap-
proaches. Our newly introduced “in-the-wild” datasets, KF-ITW,
4DMaja, & 3dMD-Lab, permit for the first time a quantitative
evaluation of 3D facial reconstruction techniques “in-the-wild”
on images and videos, and on these evaluations we demonstrate
that our in the wild formulation is state-of-the-art, outperforming
contemporary 3DMM approaches by a considerable margin.
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