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1 Introduction
These notes are provided to help students with mathematical derivations, as well as to
give a road-map of preliminaries. The course does not have strong prerequisites. Nev-
ertheless, the student should be familiar with or familiarize himself/herself with some
basic notions of probability, statistics, linear algebra and basic elements of optimiza-
tion. A road-map of the basic notions is provided below.

2 Probabilities
• What is a random variable:

A function which maps events or outcomes to a number set (i.e., integers, real
etc ).

• What is probability

– Frequentistic view: Probability of an event is the limit of its relative fre-
quency in a large number of trials.

– Bayesian view: Probability is a measure of belief regarding the predicted
outcome of an event.

• Bayes’ theorem (including conditional probabilities)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• Probabilities of union and intersection of sets

– The probability of the union of two (or more) events is the probability that
at least one of these events will occur. In the case of two events A and B
this probability is denoted by p(A ∪B).

– The probability of the intersection of two (or more) events is the probability
that these events will both occur. In the case of two events A and B this
probability is denoted by p(A ∩B).
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• Joint and marginal probabilities

– Joint probability of some random variables is a probability distribution that
gives the probability that each of these random variables falls in any partic-
ular range or discrete set of values specified for these variables (e.g., p(x, y)
is the joint probability for some x, y).

– Marginal distribution of random variables is the probability distribution of
each of the variables independently. In other words, it provides the prob-
abilities of various values of the variables without reference to the val-
ues of the other variables (i.e., p(x), p(y) are the marginal distributions
of p(x, y)).

• Independence and conditional independence

– Two (or more) random variables are independent if the realization of one
does not affect the probability distribution of the other. Two random vari-
ables a and b are independent if and only if their joint probability equals
the product of their probabilities: p(a, b) = p(a)p(b). Similarly, two sets
of events A and B are independent if and only if p(A ∩B) = p(A)p(B).

– Variables a and b are conditionally independent given c if any of the fol-
lowing holds

∗ p(a, b|c) = p(a|c)p(b|c)
∗ p(a, |b, c) = p(a|c)
∗ p(b|a, c) = p(b|c).

Knowing c contains all the knowledge about b (i.e. a does not contain any
information). This is due to the fact that a does not influence b or because
c provides all the information that the knowledge about a would provide.

• Probability density function and Cumulative distribution function

– Probability density function (PDF), of a random variable is a function that
describes the relative likelihood for this random variable to take a given
value. A function p(x) can be a pdf iff p(x) ≥ 0 and

∫ +∞
−∞ p(x) = 1.

Given the pdf, the probability of x ∈ [a, b] can be calculated as: P [a ≤
x ≤ b] =

∫ b
a
p(x) dx. For the Gaussian distribution, the pdf is defined as

p(x) = 1
σ
√
2π

exp{− 1
2σ2 (x− µ)2}.

– Cumulative distribution function (CDF) is the monotonic function that com-
putes the probability x ∈ (−∞, b], or formally F (b) =

∫ b
−∞ p(x) dx. Sim-

ilarly, pdf can be computed from the cdf as p(x) = dF (x)
dx .

– Change of variables in pdfs. Assume x1, x2 random variables with pdfs
p1(x1), p2(x2). Also assume that x2 = g(x1). Then, we can derive p2
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from p1 and g. Starting from the fact that the probability contained in a
differential area must be invariant under change of variables we get

p(x2)dx2 = p(x1)dx1
p(x2) = |dx1

dx2
|p(x1)

p(x2) = |dg
−1(x2)
dx2

|p(g−1(x2)).

3 Statistics
• Expected value and variance. The expected value of a random variable x is

defined as
E(x) =

∫ +∞
−∞ xp(x)dx.

The variance of a random variable x is defined as var(x) = E(x2) − (E(x))2.
The expected value of a Gaussian random variable x (also written as x follows
N(x|µ, σ2)) is E(x) = µ and its variance is var(x) = σ2.

• Maximum likelihood (ML) and maximum a posteriori probability (MAP) esti-
mates. Lets assume a population of n observations x1, . . . ,xn and θ the set of
parameters of the data generation model. Then, the Maximum Likelihood (ML)
estimate of optimum θ is given by maximizing the joint likelihood

θo = argmin
θ
p(x1, . . . ,xn|θ). (1)

Lets assume again a population of n observations x1, . . . ,xn and θ a set of
parameters of the assumed generative model. Furthermore, let g(θ) be a prior
distribution on θ. The Maximum a-posteriori (MAP) estimate is then given by
maximimizing the joint distribution

θo = argmin
θ
p(x1, . . . ,xn, θ) = argmin

θ
p(x1, . . . ,xn|θ)p(θ). (2)

Examples of the above are provided in the course slides.

4 Linear Algebra
• What is a vector, what is a matrix

– Vector x =

 x1
...
xn

 = (x1 . . . xn)
T = [xi]

– Matrix A =

 a11 . . . a1l
...

. . .
...

an1 . . . anl

 = (a1 . . .al) =

 ãT1
...
ãTn

 = [aij ]

• What is a vector’s inner and outer product
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– Inner (dot) product xTy =

n∑
i=1

xiyi

– Outer product xyT =

 x1y1 . . . x1yn
...

. . .
...

xny1 . . . xnyn


• Matrix-matrix and matrix-vector multiplication, identity matrix

– Matrix multiplication A = [aij ] ∈ Rn×l, B = [bij ] ∈ Rl×m

AB =

[
M∑
i=1

aikbkj

]
=

 ãT1
...
ãTn

 [b1 . . .bm] = [ãTbj ]

= [Ab1 . . .Abm] =

 ãT1 B
...

ãTn B



– Matrix-vector multiplication Ab =

 ãT1
...
ãTn

b =

 ãT1 b
...

ãTnb

 = [ãTj b]

– Identity matrix AI = IA = A

I =

 1 0 0
0 1 0
0 0 1

 3× 3 Identity Matrix

• Matrix transposition AT =

 a11 . . . an1n
...

. . .
...

al1 . . . anl

 = (ã1 . . . ãn) =

 aT1
...
aTl


• Matrix trace, matrix determinants

– Matrix trace tr(A) =

n∑
i

aii

– Matrix determinant |A| =
n∑
j=1

(−1)j+kajk|Ajk|

• Matrix inverse and pseudo-inverse

– Matrix inverse A−1, A−1A = AA−1 = I, A−1 exists iff |A| 6= 0

– Matrix pseudo-inverse A+ = (ATA)
−1

AT, A+A = I

• Rank of a matrix
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– Definition 1: is the dimension of the largest square sub-matrix of a matrix
that has a non-zero determinant.

– Definition 2: is the maximum number of linearly independent columns (or
rows) of a matrix

• Orthogonal/orthonormal matrices

– Orthogonal Ab =

 ãT1
...
ãTn

 ãTj ãk = 0 for every j 6= k, AAT = L

– Orthonormal Ab = [a1 . . .an] aj
Tãk = 0 for every j 6= k, AAT = I

• Matrix Eigenanalysis Ax = λx, x 6= 0

• Matrix Diagonalization: Given a matrix A, find P such that P−1AP is diagonal

• Gram-Schmidt orthogonalization

– A process to convert a non-orthonomal basis S = {u1,u2, . . . ,un} to an
orthonormal one for the inner product space V

– The key idea of the Gram-Schmidt orthogonalization is to subtract from
every new vector, uk, its components in the directions already determined,
{v1,v2, . . . ,vk−1}

5 Optimization
During the course we will formulate various optimization problems in which x is a
vector or matrix. The optimization problems that we will encounter are of the form

• without constraints xo = argmin
x
/max f(x)

• or with constraints

xo = argmin
x
/max f(x) subject to g(x) = 0 or with x ∈ X

How to solve unconstrained optimization problems?:

1. For certain optimization problems we can find an exact optimum by examining
the vanishing point of the derivative i.e. by solving

∇xf(x) = 0 where∇xf = [
∂f

∂x1
. . .

∂f

∂xn
]

∇xf has the same number of elements as x.
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2. Gradient descent. In case that ∇xf(x) = 0 does not have an analytic solution
or the optimum is very computationally expensive to compute by a closed form
solution, then gradient descent methods can be applied as alternatives.

Gradient descent is of the general rule

x(t) = x(t−1) − γt∇xf |x=x(t−1)

. A very challenging aspect is the computation of the update weight γt.

How to solve constraint optimization problems?:

1. Assume the problem
xo = argmin

x
f(x)

s.t. g(x) = 0 =

 g1(x) = 0
...

gk(x) = 0

 ,
.

The above optimization problem can be solved by the method of Lagrangian
multipliers. In particular, we introduce k Langrangian multipliers (one for each
equation gj(x) = 0, j = 1, . . . , k) and we stack them in a vector l. Then the
Lagrangian of the optimization problem can be defined as

L(x, l) = f(x) + lT g(x)

. We can find optimum xo, lo by solving ∇x,lL(x, l) = 0 or equivalently{
∇lL(x, l) = 0⇒ g(x) = 0
∇xL(x, l) = 0⇒ ∇xf(x) = −∇xl

T g(x)

2. Gradient descent with constraints. In case the method of Lagrangian multipliers
cannot be applied, then, a special kind of gradient descent (called project gradient
descent) is employed. In particular, the projected gradient descent is given as

x(t) = Px(x
(t−1) − γt∇xf |x=x(t−1))

and
Px = argmin

y∈X
||x− y||2,

i.e. Px is projection of x ∈ Rn on to the closest point on X

Finally, we will be using derivatives of functions that employ vectors or matrices
as variables such as

• ∇wtr[w
TAw] = 2Aw

• ∇waTa = 2a

• ∇w log |w| = (w−1)T .

No need to remember them by heart (consult to matrix cookbook).
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