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1 Introduction

These notes are provided to help students with mathematical derivations, as well as to
give a road-map of preliminaries. The course does not have strong prerequisites. Nev-
ertheless, the student should be familiar with or familiarize himself/herself with some
basic notions of probability, statistics, linear algebra and basic elements of optimiza-
tion. A road-map of the basic notions is provided below.

2 Probabilities

e What is a random variable:
A function which maps events or outcomes to a number set (i.e., integers, real
etc ).

e What is probability

— Frequentistic view: Probability of an event is the limit of its relative fre-
quency in a large number of trials.

— Bayesian view: Probability is a measure of belief regarding the predicted
outcome of an event.

e Bayes’ theorem (including conditional probabilities)
p(z,y) = p(z|ly)p(y) = p(ylz)p(z)
e Probabilities of union and intersection of sets

— The probability of the union of two (or more) events is the probability that
at least one of these events will occur. In the case of two events A and B
this probability is denoted by p(A U B).

— The probability of the intersection of two (or more) events is the probability

that these events will both occur. In the case of two events A and B this
probability is denoted by p(A N B).



e Joint and marginal probabilities

— Joint probability of some random variables is a probability distribution that
gives the probability that each of these random variables falls in any partic-
ular range or discrete set of values specified for these variables (e.g., p(x, y)
is the joint probability for some z, y).

— Marginal distribution of random variables is the probability distribution of
each of the variables independently. In other words, it provides the prob-
abilities of various values of the variables without reference to the val-
ues of the other variables (i.e., p(z),p(y) are the marginal distributions

of p(z, y))-
e Independence and conditional independence

— Two (or more) random variables are independent if the realization of one
does not affect the probability distribution of the other. Two random vari-
ables a and b are independent if and only if their joint probability equals
the product of their probabilities: p(a,b) = p(a)p(b). Similarly, two sets
of events A and B are independent if and only if p(A N B) = p(A)p(B).

— Variables a and b are conditionally independent given c if any of the fol-
lowing holds

* p(a,blc) = p(ale)p(blc)

* p(a, |b, ¢) = p(alc)

* p(bla, ¢) = p(blc).
Knowing c contains all the knowledge about b (i.e. a does not contain any
information). This is due to the fact that a does not influence b or because
c provides all the information that the knowledge about a would provide.

e Probability density function and Cumulative distribution function

— Probability density function (PDF), of a random variable is a function that
describes the relative likelihood for this random variable to take a given
value. A function p(z) can be a pdf iff p(z) > 0 and fj;; p(z) = 1.
Given the pdf, the probability of x € [a,b] can be calculated as: Pla <

x <b = fab p(z) dx. For the Gaussian distribution, the pdf is defined as
i

p(:z:) = oVon exp{—#(x - M)2}~
— Cumulative distribution function (CDF) is the monotonic function that com-
putes the probability x € (—oo, b], or formally F'(b) = f_boo p(z) dx. Sim-

dF (z)

— Change of variables in pdfs. Assume z;,x9 random variables with pdfs
p1(x1),p2(x2). Also assume that x5 = g(x1). Then, we can derive py

ilarly, pdf can be computed from the cdf as p(z) =



from p; and g. Starting from the fact that the probability contained in a
differential area must be invariant under change of variables we get

p(xe)dry = p(x1)day
Iﬁ%gllp(m)
plaa) =92 p (g~ ().
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3 Statistics

e Expected value and variance. The expected value of a random variable x is
defined as
E(x) = f_tf xp(x)dz.
The variance of a random variable z is defined as var(r) = E(z?) — (E(z))?.
The expected value of a Gaussian random variable x (also written as x follows
N(x|p,0?))is E(z) = u and its variance is var(z) = o2.

e Maximum likelihood (ML) and maximum a posteriori probability (MAP) esti-
mates. Lets assume a population of n observations x;, . ..,x, and € the set of
parameters of the data generation model. Then, the Maximum Likelihood (ML)

estimate of optimum 6 is given by maximizing the joint likelihood

Qozargmeinp(xl,...,on). (D

Lets assume again a population of n observations x1,...,x, and 6 a set of
parameters of the assumed generative model. Furthermore, let g(6) be a prior
distribution on . The Maximum a-posteriori (MAP) estimate is then given by
maximimizing the joint distribution

00 = argm@inp(xl, <o X, 0) = argmeinp(xlv cee 7xn‘0)p(9) (2)

Examples of the above are provided in the course slides.

4 Linear Algebra

e What is a vector, what is a matrix

L1
— Vector x = : = (21...7,)7 = [2}]
Ty,
a1 ... ay al
- Matrix A = =(ay...a) = = [ai;]
ap1 ... Qg 52

e What is a vector’s inner and outer product



— Inner (dot) product x”'y = Z TiY;

i=1

r1yr .- T1lYn
— Outer product xy? =

TpY1 - TnlYn

e Matrix-matrix and matrix-vector multiplication, identity matrix

— Matrix multiplication A = [a;;] € R™*!, B = [b;;] € RI*™

M aj
AB= |} b] =| ¢ [bi...by]=[a"b)]
i=1 5T
al'B
=[Ab;...Ab,] = :
al'B
al al'b
— Matrix-vector multiplication Ab = b= = [éJTb]
al alb
— Identity matrix ATl =TA = A
1 0 0
I=| 0 1 0 | 3x 3Ildentity Matrix
0 0 1
a1 e Anin a{
e Matrix transposition AT = D : =(a;...a,) =
ap ce QApl a?

Matrix trace, matrix determinants

n
— Matrix trace tr(A) = Z Qi
i

n
- Matrix determinant |A| = Z(—l)j+kajk|Ajk|
j=1

e Matrix inverse and pseudo-inverse
— Matrix inverse A™1, A"1A = AA™! =1, A texistsiff |A| # 0
— Matrix pseudo-inverse At = (ATA)flAT, ATA =1

Rank of a matrix



— Definition 1: is the dimension of the largest square sub-matrix of a matrix
that has a non-zero determinant.

— Definition 2: is the maximum number of linearly independent columns (or
rows) of a matrix

Orthogonal/orthonormal matrices
al
— Orthogonal Ab = ~JTék =0foreveryj #k, AAT =L
=T

a,

- Orthonormal Ab = [a; ...a,] a;Tay = 0 forevery j # k, AAT =1

Matrix Eigenanalysis Ax = Ax, x # 0

Matrix Diagonalization: Given a matrix A, find P such that P~! AP is diagonal

Gram-Schmidt orthogonalization

— A process to convert a non-orthonomal basis S = {uy, us,...,u,} to an
orthonormal one for the inner product space V

— The key idea of the Gram-Schmidt orthogonalization is to subtract from
every new vector, ug, its components in the directions already determined,

{V17V2, s 7Vk—1}

5 Optimization

During the course we will formulate various optimization problems in which x is a
vector or matrix. The optimization problems that we will encounter are of the form

e without constraints x, = arg min/ max f(x)
X
e or with constraints

X, = arg min/ max f(x) subject to g(x) = 0 or withx € X

How to solve unconstrained optimization problems?:

1. For certain optimization problems we can find an exact optimum by examining
the vanishing point of the derivative i.e. by solving

of of

Vi f(x) =0 where Vi f = [67331%]

Vx f has the same number of elements as x.



2. Gradient descent. In case that Vy f(z) = 0 does not have an analytic solution
or the optimum is very computationally expensive to compute by a closed form
solution, then gradient descent methods can be applied as alternatives.

Gradient descent is of the general rule
<O — x(t=1) _ YV s f | t=1)
. A very challenging aspect is the computation of the update weight ~¢.
How to solve constraint optimization problems?:

1. Assume the problem
X, = arg minf(x)
g1(x) =0
st.g(x)=0= : ,
gr(x) =0
The above optimization problem can be solved by the method of Lagrangian
multipliers. In particular, we introduce k& Langrangian multipliers (one for each

equation g;(x) = 0, j = 1,...,k) and we stack them in a vector 1. Then the
Lagrangian of the optimization problem can be defined as

L(x,1) = f(x) +17g(x)
. We can find optimum x,, 1, by solving Vx 1L(x,1) = 0 or equivalently

ViL(x,]) =0=g(x) =0
{ ViL(x,1) = 0 = V,f(x) = —V,lTg(x)

2. Gradient descent with constraints. In case the method of Lagrangian multipliers
cannot be applied, then, a special kind of gradient descent (called project gradient
descent) is employed. In particular, the projected gradient descent is given as

x) = Pe(x"™) — 4 Vo flymyr-n)

and
P = al ]l. 1| (X — y
xX g IXH H )

i.e. Px is projection of x € R™ on to the closest point on X’

Finally, we will be using derivatives of functions that employ vectors or matrices
as variables such as

o VytriwlAw] =2Aw
o Vwala=2a
o Vyloglw| = (w HT.

No need to remember them by heart (consult to matrix cookbook).



