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ABSTRACT

The task of classifying accent, as belonging to a native lan-
guage speaker or a foreign language speaker, has been so far
addressed by means of the audio modality only. However,
features extracted from the visual modality have been suc-
cessfully used to extend or substitute audio-only approaches
developed for speech or language recognition. This paper
presents a fully automated approach to discriminating na-
tive from non-native speech in English, based exclusively on
visual appearance features from speech. Long Short-Term
Memory Neural Networks (LSTMs) are employed to model
accent-related speech dynamics and yield accent-class pre-
dictions. Subject-independent experiments are conducted
on speech episodes captured by mobile phones from the chal-
lenging MOBIO Database. We establish a text-dependent
scenario, using only those recordings in which all subjects
read the same paragraph. Our results show that decision-
level fusion of networks trained with complementary ap-
pearance descriptors consistently leads to performance im-
provement over single-feature systems, with the highest gain
in accuracy reaching 7.3%. The best feature combinations
achieve classification accuracy of 75%, rendering the pro-
posed method a useful accent classification tool in cases of
missing or noisy audio stream.
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1. INTRODUCTION

Accent can be identified through a set of pronunciation,
articulation, intonation, lexical stress and rhythmic patterns
that are common in the speaking style of individuals belong-
ing to a particular language group. Identifying accented
speech has emerged as a need to overcome limitations posed
by mispronunciations on the efficacy of speech recognisers [4].
Beyond serving as a pre-processing step for speech recog-
nition, accent analysis is essential for applications such as
computer-assisted second language learning [14].

Most related work has viewed accent identification as a
multiclass classification problem that aims to classify a speech
sample to either the native accent of the target language
or to one of separately modelled foreign accents. Those
approaches mainly use Hidden Markov Models trained on
acoustic features, such as prosodic and cepstral features [1].
More recent works [13, 10] have borrowed inspiration from
language and speaker recognition to target binary discrim-
ination between native and non-native speech. Shriberg et
al. [13] employ maximum likelihood regression and phone
N-gram features. Omar and Pelecanos [10] use a novel uni-
versal background model with Support Vector Machines to
detect non-native speakers and their native language.

All the above research on accent classification has ignored
features derived from the visual stream. However, the ben-
eficial role of visual information to speech comprehension
has been well documented and experimentally validated [12].
Specifically, automated visual-only approaches have been
developed for language identification [8]. Another study
shows that visual identification of accent is feasible for hu-
man observers [5]. These findings indicate that there are
visual accent-sensitive cues that can be used to distinguish
between native and non-native speakers.

In this paper, subject-independent accent classification
experiments are conducted on continuous reading speech
samples from the MOBIO Database [7], all captured by mo-
bile phones. Static appearance descriptors are extracted
and fed into Long Short-Term Memory Neural Networks
(LSTMs) [3] for classification. Our results show that ac-
curacy increases significantly, when accent predictions rely
on majority voting from networks that have been separately
trained with different appearance features.

2. OVERVIEW OF OUR METHOD

We present a fully-automated solution for discrimination

between native and non-native speech in English, using decision-

level fusion of visual features. The proposed system is graph-
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Figure 1: Illustration of the proposed framework for visual-only discrimination between native and non-native
speech. The dash-dot line denotes a stage that involves variants, i.e., original or difference ROIs.

ically illustrated in Fig. 1. First, a texture warping process
yields frontal face images, and the pixel intensities around
the lips are used as mouth Region of Interest (henceforth
termed mouth ROI). In the next stage, we use the mouth
ROIs to extract five different appearance features. Different
feature normalisation variants are also examined for the ap-
pearance descriptors. Finally, static features are forwarded
to LSTMs, which assign a single accent label to each sample.

3. DATABASE

The proposed framework is evaluated on speech episodes

in English from the MOBIO Database [7], by means of subject-

independent experiments. This bimodal database was
recorded at six sites in two phases, each comprised of six
sessions. For each of the 150 participants, there are totally
192 recordings in English, almost exclusively captured on
mobile phones. The visual stream is characterised by high
variability in pose and illumination across frames, due to the
acquisition device being handheld, while the appearance of
subjects and background vary across sessions.

In the current study, we choose to include only the visual
speech samples from Phase I in which all subjects read the
same text, thus establishing a text-dependent experimental
scenario. The data used are balanced over the two classes,
with 135 samples belonging to 28 native English speakers
and 137 to 28 non-native English speakers. The mean and
standard deviation of duration over all samples is 22.5 and
3.4 seconds, respectively. Each video, encoded in variable
framerate of mean value 15 fps, is converted in a sequence of
still frames. All 272 samples used correspond to utterances
of the following paragraph: “I have signed the MOBIO con-
sent form and I understand that my biometric data is being
captured for a database that might be made publicly available
for research purposes. I understand that I am solely respon-
sible for the content of my states and my behaviour. I will
ensure that when answering a question I do not provide any
personal information in response to any question.”

4. STATIC FEATURE EXTRACTION

We initially track 113 characteristic facial points, using
the Appearance-Based Tracker [11]. These are manually
annotated in the first frame and tracked for the remain-
ing frames. We only use 34 points that correspond to the
lower face region, specifically their 2D spatial coordinates

(Fig. 2a), along with the coordinates of their pose-free ver-
sion (Fig. 2b), all provided as a part of the tracker’s output.
All 34 pose-free points are globally registered according to
the location of six base points (see blue points in Fig. 2b),
which are relatively invariant to facial deformations.

Next, texture warping is performed to acquire lower face
images in frontal view. First, for each frame, two 2D meshes
(one for actually tracked points and one for aligned pose-free
points), are triangulated. A piecewise affine warp is defined
between the corresponding triangles. This warp is then used
to map the texture of the mesh in the input image (Fig. 2¢),
onto the pose-free mesh (Fig. 2d). Each warped lower face
is re-sampled to dimension 200x200, and the mouth ROI
is extracted as a 94x114 bounding box containing the pixel
intensities around the mouth (Fig. 2e). Finally, all mouth
ROIs are downsampled to dimension 64x64 (Fig. 2f).

Five different appearance descriptors, all calculated on
pixel intensities of the mouth ROIs, are examined; Prin-
cipal Component Analysis [12], 2D Discrete Cosine Trans-
form [12], Discrete Wavelet Transform [12], Local Binary
Patterns [9], and Histograms of Oriented Gradients [2]. For
PCA, we use those principal components accounting for the
95% of the total intensity variance. For DCT, the 2D cosine
transform is applied to 8 non-overlapping 32x16 blocks of
the ROI. Only four coefficients corresponding to the lowest
frequencies are retained for each block and concatenated into
a 32-dimensional vector. For DWT, ROIs are first rescaled
to dimension 16x16, and a Daubechies-4 filter, with 3 levels
of decomposition, is used. Our 64-dimensional vector con-
sists of the approximation coefficients of the 3rd level and
all the detailed coefficients of the 2nd and 3rd level. For
LBP, we use the LBP(%ZJ) scheme, which acts in a neigh-
bourhood of 8 pixels on a circle of 1-pixel radius [9]. A 59-
bin histogram, encoding the frequency of occurence of the
u2-“uniform” LBP patterns over the entire ROI, forms our
local texture descriptor. For the computation of HOG, four
orientation bins are used and each ROI is divided into four
32x32 cells, so that dimensionality is comparable to that of
the other features (64-element vector).

In order to capture the dynamics of the recorded visual
articulations (i.e. changes in the skin appearance around the
mouth), even prior to the classification stage, and remove re-
dundant speaker-specific information, we also use difference
ROIs [6]. These are computed for all frames as the differ-
ence in pixel intensities between the current ROI and the
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Figure 2: Instances of the ROI extraction process, illustrated on a speech frame from a non-native speaker
of MOBIO Database. (a) Actually tracked points, (b) Pose-free points (the 6 base points used for alignment
are shown in blue), (c¢) Triangulated mesh on the lower face image, (d) Triangulated mesh of the aligned
pose-free points, (e) Warped frontal lower face and mouth bounding box, (f) Final rescaled mouth ROI.

Table 1: Distribution of Native and Non-Native
subjects/samples over the three sets.

Native | Non-Native All
Training 14/71 14/65 28/136
Validation 8/32 7/36 15/68
Test 6/32 7/36 13/68
All 28/135 | 28/137 | 56/272

ROI at the previous frame. Mean normalisation [12] is also
evaluated. The mean feature vector over all speech frames
is subtracted from the feature vector of each frame. We call
this scheme mean removal at the feature level (MRjft). We
also examine the alternative of mean remowval at the image
level (MRim) [6], where the mean intensity over the entire
utterance is removed from each ROI. Therefore, four dif-
ferent variants for each appearance feature are examined
(MRft, MRim, diff MRft, diff MRim), with diff denoting the
use of difference ROIs.

S. CLASSIFICATION WITH LSTMS

Long Short-Term Memory Neural Networks (LSTMs) [3]
are in principle a variant of traditional recurrent neural net-
works. They have shown increased ability in capturing con-
textual statistical regularities in speech, even when those
manifest themselves in longer time lags. Their hidden lay-
ers contain memory blocks, which are in turn composed of
memory cells and three multiplicative gates that perform
the operations of write, read and reset.

In the experiments reported in this paper, LSTMs are
trained using the RNNLIB Toolbox [3]. The input layer has
the size of the input feature vectors, which are corrupted
with Gaussian noise of standard deviation 0.6 to improve
generalisation. The sigmoid function o is used for the ac-
tivation a of the output layer unit, essentially transforming
it into the posterior probability P(Ci|zn) = o(a) for the
first accent class (native), where z,, is the feature vector at
the n-th frame. Each speech example is classified as either
native or non-native according to the value of this score for
the vector of the last frame.

In particular, we use networks with one hidden layer.
Weights are randomly initialised three times in the range
[=0.1,0.1], and training is done with online gradient descent,
with learning rate 10~* and momentum 0.9. The number of
blocks in the hidden layer is optimised on the Validation Set
in the interval {40, 50, ...,180}, separately for each feature-
normalisation combination. The optimal number of blocks
is set to the value yielding the lowest average classification
error over the three trials on the Validation Set.

6. EXPERIMENTS

We evaluate the proposed framework by means of subject-
independent experiments on visual speech data from MO-
BIO Database (see section 3). We use exactly 50% of the
samples for training. The remaining episodes are equally
divided into the Validation Set and the Test Set. All three
sets are balanced, in terms of both accent class and gender
of the subjects. The distribution of subjects and samples for
each class across sets is shown in Table 1.

First, the Validation Set is used to find the optimal LSTM
configuration, i.e., the number of blocks in the hidden layer,
for each feature-normalisation combination and, subsequently,
to reveal the best-performing normalisation for each feature.
Results on the Validation Set, in terms of classification accu-
racy, are presented in Table 2. It is worth noting that more
complex networks are needed to model feature vectors that
vary less smoothly over time, such as the LBP and HOG
local descriptors calculated on the difference ROIs (the op-
timal number of blocks for both LBP gignrs: and HOG gignrye
is 180). Furthermore, the MRim scheme seems to be more
beneficial for features that are more susceptible to registra-
tion artefacts and misalignments, such as LBP and PCA.
Instead, HOG is not assisted by further image-level process-
ing of the ROIs, since its computation has already catered
for intra-ROT illumination normalisation.

The normalisations that account for the highest accuracy
percentages (shown in boldface in Table 2), are used for the
corresponding features for the Test Set. Results on the Test
Set, as yielded by networks trained on a single feature as well
as all three- and five-element decision-level combinations,
are reported in Table 3. Note that the F1 measure takes
similar values for the two classes, indicating that the trained
networks are not biased towards one of the classes. LSTMs
trained either with DCT or with HOG achieve the high-
est accuracy of 67.7% amongst the single-feature systems.
DCT is well-known for its ability to efficiently encode visual
speech dynamics [12]. On the other hand, HOG proves also
highly discriminative, presumably thanks to accent-related
edge information being captured, such as tale-telling tran-
sient features (e.g., bulges and wrinkles). PCA accounts for
the lowest accuracy of 60.3%, probably due to its higher
susceptibility to registration errors.

The fusion results are obtained by means of majority vot-
ing, that is, each test example is assigned to the accent-
label predicted by the majority of the three or five net-
works. As can be seen in Table 3, fusion consistently results
in higher accuracy, compared to the single-feature systems.
The only exception is the PCA4+DCT+DWT combination,
which still stays at the same accuracy as that obtained by



Table 2: Results in terms of classification accuracy (%)
on the Validation Set of MOBIO speech samples, for the
different features and normalisations examined. The ac-
curacy reported for each combination corresponds to the
network with the optimal number of memory blocks in
the hidden layer, which is shown in the subscript. The
best score for each feature among all four normalisations
is shown in boldface.

ﬂ'ﬁ;‘;‘;ss/a tions MRft  MRim  diffMRft diffMRim
PCA 64.20000 68.1¢0) 652000  66.20r0)
DCT 65.2010) 652020y 56.9(s0) 56.9s0)
DWT 67.2(0) 672030 TL.6100y  71.610)
LBP 59.8(0)  64.T@e0) 61.7as0)  60.3(c0)
HOG 71.6020) 5690y 60.30s0) 5930

the best-scoring out of the three networks (67.7% by DCT).
Fusion leads to higher performance in terms of the other
metrics as well (class-wise F1 measures and UAR), in al-
most all cases. The largest performance boost, in terms
of accuracy, over the single-feature schemes, amounts to
7.3%, and is furnished by both the PCA4+DCT+LBP and
PCA+DCT+HOG combinations. This highlights that those
features capture complementary accent-sensitive informa-
tion in the visual stream. Thus, a projection onto prominent
modes of intensity variance (PCA), a block-based frequency
decomposition (DCT), and a local descriptor unveiling local
texture (LBP) or edge orientation information (HOG), train
LSTMs that act efficiently in synergy for the target problem.
The five-network combination does not provide additional
gain, probably due to redundant information being carried
by the couples (DCT, DWT) and (LBP, HOG).

7. CONCLUSION

In this paper, we presented a visual-only approach to
discriminating native from non-native speech in English,
based on fusion of neural networks trained on visual fea-
tures. Overall, our results on fixed-content speech episodes
provide evidence that accent in speech can be accurately
identified when sequential classifiers, trained on complemen-
tary appearance descriptors, are combined to yield predic-
tions. We intend to examine how our visual-only framework
compares to an identical audio counterpart and experiment
with multimodal fusion schemes. We also plan to investigate
alternative ways of sequential modelling.
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