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Abstract— Ears have been discovered to have biometric im-
portance for identifying people and/or verifying their identity.
This is largely because of their complex inner shape structure,
which is not only unique but also long-lasting regardless of
ageing. In this paper, we make two important contributions
relevant to analysis of ear in imagery captured in unconstrained
conditions. That is, we present (a) the first, to the best of our
knowledge, annotated database with ear landmarks and use it
in order to build statistical deformable ear models in-the-wild
and (b) a database of 2058 labelled unconstrained ear images
with 231 subjects and use it for ear recognition/verification. We
perform extensive comparisons for ear alignment using many
state-of-the-art techniques and extensive experiments. Finally,
we conducted extensive experiments for ear recognition using
both handcrafted, as well as learned features (i.e., using deep
learning). All annotated data and code will be publicly available.

I. INTRODUCTION

Given the increasing focus on automatic identity veri-
fication during the last decade, biometrics have attracted
extended attention. Such applications seek of biometric char-
acteristics that are special, common and quantifiable. One
such biometric is human ear [12], [13]. The human outer
ear consists of the following parts: outer helix, antihelix,
lobe, tragus, antitragus, helicis, crus helicis and concha
(see Figure 2). The inner structure of the human ear is
formed with numerous rides and valleys which makes it
very distinctive. Even though the human ear’s structure is
not completely random, it still brings significant differences
between individuals. The influence of randomness on appear-
ance can be observed even by comparing both ears of the
same person. Ears of same person have similarities but still
are not perfectly symmetric [30].

The complex interior shape of ears has long been consid-
ered as a valuable identification metric. The first time it was
utilised for human verification was hundreds years ago [10].
Several years later, researchers demonstrated that 500 ears
can be distinguished using only four features [24]. The work
of [23] also showed that 10k ears can be determined with 12
features. Furthermore, ear can be in many cases combined
with face for improved person recognition and verification
[12].

As in many biometrics, such as face [36], the first step to-
wards recognition/verification is, arguably, alignment. Since,
ear is a deformable object a statistical deformable model
should be learned. In order to learn the first statistical
deformable model of the ear we collected and annotated, with
regards to 55 landmarks, the first ”in-the-wild” ear database.
Furthermore, we conducted an extensive experimental com-
parison for ear landmark localisation using state-of-the-art

Fig. 1. Exemplar statistical shape and appearance model of human ear. The
figure visualises the first five principal components variation in both models.
Appearance model is created with pixel intensity for better visualisation.

generative and discriminative methodologies for training and
fitting statistical deformable models [15], [14], [28], [33], [8],
[40], [11], [6], [37], [7], [5]. Figure 1 visualises the mean and
the first variations along the 5 principal components of the
texture and the shape (as performed in Active Appearance
Model [14], [28], [37], [5]).

The other contribution of the paper is the collection of a
new ”in-the-wild” database suitable for ear verification and
recognition. The collected database consists of 231 subjects
with 2058 ”in-the-wild” images. We conduct extensive exper-
imental comparisons in the newly collected database using
various handcrafted features such as Image Gradient Orien-
tation (IGO) [38], Scale Invariant Feature Transforms (SIFT)
[27], Histogram of Oriented Gradients (HOG) [17], as well
as learned deep convolutional features [34]. Finally, we com-
pare the effect of alignment in ear recognition/verification.
Summarising, the contributions proposed in this paper are:

• We present the first annotated ”in-the-wild” database of
images of ears (605 images in total) with regards to 55



landmarks. We provide the database publicly available.
• We conduct an extensive comparison between various

discriminant and generative methodologies for ear land-
mark localisation ”in-the-wild”.

• We collect a large database of ears ”in-the-wild” for
ear recognition/verification and we conduct an extensive
experimental comparison.

II. EXISTING DATABASES

In the following we briefly review the available databases
for ear recognition and argue for a collection of a new one
”in-the-wild” database for ear alignment and one for ear
recognition/verification ”in-the-wild”. The list of the most
popular ear databases includes the following database UND-
Collection E [1], EUBEAR [32], IIT [25], WPUTEDB [19]
and ScFace [20]), most of which have been captured under
controlled laboratory conditions or lack of annotations. In
particular,
UND Databases Collection E includes 464 right profiled
ear images from 114 identities, from which 3 to 9 images
are taken for each person in days with various pose and
illumination conditions.
WPUTEDB introduces 3348 images of 421 subjects each
having 4 to 12 images taken under controlled environ-
ments [19]. Various indoor lighting conditions, occlusion
by hair and accessories, and slightly angled positions are
involved in this database to simulate “in-the-wild” condition
but still very limited to specific scenario.
IIT Delhi database contains 125 subjects where each has 3
to 6 images taken in grayscale. Images are taken in indoor
condition with limited lighting variation. No or occasionally
occlusion and pose variation occurred.
UBEAR dataset involved 126 subjects with an average 35
images corresponding to each subject. Lighting conditions,
pose variations and occlusions are all applied to this database.
But images are collected from indoor video therefore the
with-in class variation is quite limited.

Note that all datasets above are collected under controlled
environment and none, to the best of our knowledge, has been
annotated with regards to landmarks. Furthermore, as we
will show in the experimental result section, in WPUTEDB
database the area around the ear contains very discriminative
information. This is an indication that the data have been
collected within small time intervals. In this paper, we make
a significant step further and collect and annotate databases
of ears ”in-the-wild”. Furthermore, we made an effort so
that the ear samples for each person have been taken with
considerable time interval.

To the best of our knowledge the only ear database that
has been collected ”in-the-wild” is the one presented in [18],
which contains a very limited amount of subjects (only 16).

III. “IN-THE-WILD” EAR DATABASE

We collected two sets of ear images “in-the-wild”1. The
first was used for statistical deformable model construction,

1Both Collection A and B are publicly available in
http://www.ibug.doc.ic.ac.uk/resources/ibug-ears.

while the latter was used for ear verification and recognition
“in-the-wild”.

Collection A consists of 605 ear images “in-the-wild”
collected from Google Images with no specific identity (by
searching using the ear related tags). Each is manually anno-
tated with 55 landmark points. Examples of such annotated
images and the anatomy of pinna is shown in figure 2. The
semantic meaning of the 55 landmarks are: ascending helix
(0-3), descending helix (4-7), helix (8-13), ear lobe (14-19),
ascending inner helix (20-24), descending inner helix (25-
28), inner helix (29-34), tragus (35-38), canal (39), antitragus
(40-42), concha (43-46), inferio crus (47-49) and supperio
crus (50-54). We randomly split the images into two disjoint
sets for training (500) and testing (105). The purpose of
Collection A is to build statistical deformable models with
unconstrained ear samples.

Collection B contains 2058 images contains 231 identity-
labelled subjects collected from VGG database [29], which
contains more than one million images of celebrities with
only identity labels. As the purpose of VGG database was
face recognition ”in-the-wild”, we had to manual select
images were ears are visible (not fully occluded) and fur-
thermore there bounding box could be generated by a simple
HoG Support Vector Machine (SVM) [17] ear detector
(trained on collection A). Exemplar collected ear images

Fig. 2. Example of the annotated 55 landmarks on ears. Ascending helix (0-
3), descending helix (4-7), helix (8-13), ear lobe (14-19), ascending inner
helix (20-24), descending inner helix (25-28), inner helix (29-34), tragus
(35-38), canal (39), antitragus (40-42), concha (43-46), inferio crus (47-49)
and supperio crus (50-54).



are shown in Figure 2 that images are under challenging
environment such as heavily posed angel, significant lighting
variations, notable occlusions, variant resolutions, and signif-
icant ageing. It is so far, to the best of out knowledge, the
largest ear in-the-wild databases. The most related database
is [18], which contains only 16 subjects.

Upon acceptance of the paper, both databases will be made
available to the research community.

IV. HOLISTIC AND PATCH-BASED STATISTICAL
DEFORMABLE MODELS

We have applied many state-of-the-art statistical de-
formable models for ear landmark localisation. The method-
ologies includes Constrained Local Models (CLMs) [16],
Supervised Descent Method (SDM) [39] and various Active
Appearance Model (AAM) methods [14], [28], [37], [5]. In
the following, we will focus on the general AAM architec-
tures applied, since they were the top performing ones. The
annotated ear dataset was used to build two different kind of
AAMs [14], [28]: holistic [31], [3], [4], [5] and patch-based
[37]. The difference between these two models is on the way
that the appearance is represented, as well as the deformation
model.

A. Holistic Active Appearance Model

AAM method consists of a linear statistical model of the
shape and appearance of an object. During fitting, they aim
to minimise the appearance reconstruction error with respect
to the parameters of the shape and appearance models.
Initially it was proposed to optimise their cost function using
regression [14]. Later, it was also shown that they can achieve
state-of-the-art performance by employing the Gauss-Newton
optimisation [28], [5].
Shape Model A shape vector is defined by concatenating the
coordinates of its landmarks. A shape model can be trained
by applying Generalized Procrustes Analysis followed by
Principal Component Analysis (PCA) on a set of training
shapes. The shape model can then be used to generate shape
instances with NL landmarks as

sp = s̄+USp (1)

where a shape is represented as s= [x1,y1, ..,xNL ,yNL ]
T , and

s̄ is the mean shape, p are the shape parameters and Us
are the principal components matrix of dimension US ∈
ℜ2NL×Np , where Np represent the number of eigenvectors.
Appearance Model A holistic appearance is defined as the
values of the pixels that lie inside a shape s. Similar to shape
models, an appearance model is trained using PCA. Given
the appearance eigenvectors UA, the mean appearance ā and
a set of parameters λ, a new appearance can be generated
as

aλ = ā+UAλ (2)

where a denotes the vector of pixels that lie within a shape,
ā is the mean appearance, λ are the appearance parameters
and UA are the appearance principal components matrix of
dimension UA ∈ ℜNA×Nλ , where Nλ represent the number

of appearance eigenvectors and NA represented the length
of eigenvector e.g. number of pixels within mean shape
if single-channel appearance model considered. Note that
the appearance can be represented by a handcrafted feature
function (e.g. SIFT, HOG) or a learned feature (e.g. Dense
CNN).
Deformation Model The deformation model of an AAM
consists of a warp function W (p), which maps all the points
sp within a source shape defined by the shape parameters
p to their corresponding coordinates in a reference shape
(commonly the mean shape s̄). This procedure is necessary
in order to bring the appearance vectors of different images
into correspondence. We employ the Piecewise Affine Warp,
which performs the mapping based on the barycentric coordi-
nates of the corresponding triangles between the two shapes
that are extracted using Delaunay Triangulation.
Fitting The aim of fitting is to minimise the `2

2 norm between
the warped appearance of an input image T (W (p)) and the
appearance model instance aλ with respect to the shape and
appearance parameters, i.e.

argmin
p,λ

||T (W (p))− ā−UAλ||2 (3)

Inverse Compositional (IC) Algorithm is an efficient
gradient descend method that, in general, introduced an
incremental warp, which composing with the current warp
at each iteration as

W (p)←W (p)◦W (∆p)−1 (4)

Thereby the cost function for inverse compositional algo-
rithm are:

argmin
∆p,λ

||T (W (p))− ā(W (∆p))−UA(W (∆p))λ||2 (5)

where W (∆p) denotes incremental warp on template image.
Applying first order Taylor expansion on equation 5 gives:

argmin
∆p,λ

||T (W (p))− ā−UAλ−J |p=0∆p||2 (6)

where Jacobian term is defined as:

J |p=0 = ∇(ā+UAλ)
∂W

∂p
|p=0 (7)

Alternating Minimisation As the expression revealed, there
are two variables contained (p and λ) so it is of importance
to minimise them simultaneously. As there is no depen-
dency between AAM shape and appearance, solving p and
λ alternatively is used by IC Algorithm. Cost functions
corresponding to ∆p and ∆λ are:

argmin
∆p

||T (W (p))−aλW (∆p)||2
ÛA

(8)

argmin
∆λ

||T (W (p))−aλ+∆λ W (∆p))||2 (9)

where ||.||2
ÛA

denotes vector projected into subspace ÛA,

which is orthogonal complements of appearance ÛA = I−
UAU

T
A. Because norm considers only orthogonal compo-

nents of subspace, so any other components lies in ÛA



Fig. 3. Visualisation of Holistic AAM ear fitting results (cropped to ear only for better visualisation). First row demonstrates the bounding box generated
from our in-house ear detector with corresponding initialisation. Second row presented the final fitting using Holistic AAM. Figure best viewed by zooming
in.

can be dropped. So the optimisation is accomplished by
(1) fixing appearance parameter λ to compute ∆p (2) then,
similarly, fixing shape parameter p to compute ∆λ. By given
estimation of λ, we can solve ∆p in closed form as:

∆p=H−1JT [T (W (p))− ā−UAλ] (10)

where H is the Hessian matrix H = JTJ . Given estimation
of p, appearance parameters can be solved as least-squares
solution:

∆λ=UTA [T (W (p))− ā(W (∆p))−UA(W (∆p))λ]
(11)

where appearance parameters are updated by λ← λ+∆λ.
As the equation states, image template ā is constant and

the gradient of warp ∂W
∂p

is always evaluated at appearance
template, which remains constant. Therefore Jacobian at
initial iteration and Hessian Matrix H can be precomputed
before optimising cost function.

B. Patch-based Active Appearance Model

The difference between a holistic and a patch-based AAM
[37] is on the way that the appearance vectors are extracted,
as well as the deformation model. As explained in the
previous section, a holistic appearance is retrieved using the
warp function in order to map the locations of all the pixels
of a given shape into a common reference shape and transfer
their values. However, under a patch-based formulation, this
procedure is greatly simplified and an appearance vector is
acquired by concatenating the features (e.g. SIFT) extracted
from the patches centred at the landmarks of a provided

shape instance. Thus, the affine warp function is replaced
by a simple sampling function. In [37] it is shown that due
to this difference, the compositional update of the shape
parameters becomes additional, i.e. ∆p← p+∆p. The rest
of the Gauss Newton optimisation remains the same.

Patch-based AAMs achieve more accurate performance
compared to holistic AAMs on the task of face alignment
[37]. However, this is easily explained by the fact that the
inner appearance information of a human face (i.e. cheeks
ets.) does not have a distinctive structure. Experiment V-A
further explains the advanced performance of holistic AAM
on ears where inner appearance is complex and rich. In
general, the selection of a holistic or patch-based appearance
representation highly depends on the nature of the modelled
object and its interior structure.

V. EXPERIMENTAL EVALUATION

We have conducted two set of extensive experiments.
The first set of experiments concerns ear landmark local-
isation using the Collection A. The second set of exper-
iments revolves around ear recognition/verification using
Collection B. In particular, the aim and motivation of ear
recognition/verification experiments are the following. (a)
To demonstrate the shortcomings of the current available
databases, and particular WPUTEDB, (b) to demonstrate
the challenges that emerge from our new database and
(c) to demonstrate the effect of alignment in recogni-
tion/verification.



Method mean ± std median ≤ 0.10
DCNN+AAM 0.0599 ± 0.0272 0.0542 93%
SIFT+AAM 0.0522 ± 0.0246 0.0453 94%
HOG+AAM 0.0539 ± 0.0248 0.0479 97%
IGO+AAM 0.0786 ± 0.0295 0.0738 77%
PI+AAM 0.2124 ± 0.2674 0.1342 36%
SIFT+PAAM 0.0563 ± 0.0264 0.0493 93%
HOG+PAAM 0.0860 ± 0.0533 0.0700 73%
IGO+PAAM 0.0704 ± 0.0272 0.0709 86%
PI+PAAM 0.1049 ± 0.0733 0.0729 64%
SDM 0.0890 ± 0.0348 0.0862 65%
CLM 0.0862 ± 0.0296 0.0830 81%
Initialisation 0.1276 ± 0.0332 0.1283 23%

TABLE I
FITTING STATISTICS ON EAR DATABASE COLLECTION A

A. Ear Fitting Evaluation

We evaluated the performance of many state-of-the-art
methodologies including AAM, CLM and SDM using var-
ious kind of features. In particular, we employed pixel
intensity (PI), dense SIFT (DSIFT) [27], dense HOG [17],
IGO [38] and DCNN [34] features for both holistic and
patch-based AAMs. The models were trained on a 3-level
Gaussian pyramid. We kept [3,6,12] shape components for
each level (low to high) and 90% of the appearance variance
for all levels. Also discriminative models like Supervised
Descend Method (SDM) [39] and Constrained Local Model
(CLM) [16] are involved using features DSIFT [27]. Figure 1
visualises the first five shape and appearance principal com-
ponents of the holistic AAM and, as it can be observed,
the variation of both shape and appearance is plausible.
Appearance components are shown using pixel intensities for
better visualisation. Note that any technologies involved in
this paper was implemented using the Menpo Platform [2].

For all the tested methods we computed the Cumulative
Error Distribution (CED) curves which is the standard way
of visualising the performance of deformable models. The
fitting error is computed using the point-to-point error nor-
malised by the diagonal of the ear’s bounding box that tightly
bounded ground truth annotations, as proposed in [40].

Figure 5 reports the CED curves of all the tested methods
along with the initialisation curve. The fitting is initialised
using our own in-house ear detector based on HoG SVMs
that was trained with in-the-wild ear images of the training
set of Collection A. Figure 4 shows some characteristic
examples of different error values in order to give an intuition

Fig. 4. Examplar visualisations showing different values of normalised
point-to-point error measure for ears (0.06, 0.10, 0.14, 0.24 respectively).
Figure best viewed by zooming in.

Fig. 5. Experimental results on our testing 121 dataset evaluated on 55
landmarks. Fitting accuracy reported for Holistic AAM, patch-based AAM,
SDM and CLM.

Fig. 6. Exemplar visualisation of background of the ear in both the
WPUTEDB, as well as the proposed database. Top row: the background
of ear images of WPUTEDB for one subject. Bottom row: images of the
background from the proposed database for one subject. The black area
covers the ear region.

about the fitting quality of each error bin of the CED curves,
which indicates that normalised point-to-point error less or
equal than 0.10 is acceptable. The figure reveals that DSIFT
tends to give most representative features for ears and holistic
AAMs in general outperform patch-based AAM. This is
attributed to the fact that holistic texture model can represent
the complex inner structure of ears in a better fashion. The
poor performance of SDM could be associated to the limited
annotated data, as well as to the use of a part-based texture
model.

Table I complements Figure 5 by reporting some statistical
metrics, i.e. the mean, median and standard deviation of the
errors. Finally, Figure 3 shows some qualitative fitting results
along with their initialisations.



WPUTEDB Our Database
Aligned
LDA+PI 0.6581 ± 0.0030 0.2272 ± 0.0169
LDA+HOG+PCA 0.8195 ± 0.0058 0.5123 ± 0.0162
LDA+DSIFT+PCA 0.8082 ± 0.0098 0.5496 ± 0.0180
LDA+PPSIFT+PCA 0.9076 ± 0.0038 0.6684 ± 0.0195

Unaligned
LDA+PI 0.5993 ± 0.0025 0.1429 ± 0.0123
LDA+HOG+PCA 0.7784 ± 0.0074 0.3250 ± 0.0105
LDA+DSIFT+PCA 0.7621 ± 0.0082 0.3348 ± 0.0138

Background Only
LDA+DSIFT+PCA 0.5676 ± 0.0312 0.0827 ± 0.0173

TABLE II
EAR RECOGNITION EXPERIMENTS ON WPUTEDB AND THE PROPOSED

DATABASE. MULTIPLE FEATURES AND CLASSIFICATION ALGORITHMS

ARE APPLIED WITH/WITHOUT ALIGNMENT.

B. Ear Recognition Experiments

In order to conduct close ear recognition experiments we
conducted a 10 fold cross validation experiment where 90%
were used for training and 10% testing in each fold. We
report average accuracy and standard deviation. In order to
compare how challenging each database is we applied the
above protocol to both our database, as well as WPUTEDB,
which contains largest amount of subjects and most signif-
icant appearance variance among existing ear databases but
still collected under controlled environment. Furthermore, we
wanted to investigate how the background of the ear images
of WPUTEDB biases the results, since from Figure 6 it is
evident that the background is very similar in the ear images
of the same person of WPUTEDB.

Classification of ears was implemented by applying
generic classification pipelines. In particular, the we applied
the standard pipeline of feature extraction + dimensional-
ity reduction + multi-class classification. For features we
explored pixel intensities, HOG, SIFT and Pyramid Patch
SIFT (PPSIFT) 2. For dimensionality reduction we used
a Principal Component Analysis plus Linear Discriminant
Analysis (PCA plus LDA) framework [9]. For classification
we using a multi-class SVM [21].

Finally, we compared aligned versus non-aligned ears. For
alignment we used the previously described SIFT+AAM
framework to locate the landmarks. We applied the AAM
deformation model warp function to map all the points to
the reference shape. This procedure is necessary in order
to bring the SIFT features appearance vectors of all fitted
images into correspondence. We employ the Piecewise Affine
Warp, which performs the mapping based on the barycentric
coordinates of the corresponding triangles between the two
shapes that are extracted using Delaunay Triangulation. For
the non-aligned version of experiments we used the cropped
ear images from the detected bounding box. In both cases

2To compute PPSIFT, we build image pyramid for given images by rescale
it by 0.25, 0.5, 1.0 of original image including landmarks. Then we extract
small patches around landmarks at each pyramid level and compute SIFT
feature so each patch gives a vector of size 128. PPSIFT are constructed
by concatenating all patches.

the ear images were rescaled in a 200× 200 bounding box
before feature extractions.

From the results reported in Table II we can deduce the
following (a) the collected database is far more challenging
than the WPUTEDB, (b) the background around the ear does
not play any role in the proposed database, while the back-
ground gives a 57% recognition rate in WPUTEDB 3, (c) the
alignment largely improves performance (approximately 5%
average in WPUTEDB and 10% to 20% in our database) and
(d) the best performance is achieved by PPSIFT features.

C. Ear Verification Experiments

In this section we have designed and executed an ear veri-
fication experiment reminiscent of the experimental protocol
of Labelled Faces in-the-wild (LFW) [22]. That is, evaluation
is performed by determining whether a pair of images come
from the same person or not. In the case of ear verification,
185 positive and 185 negative matching pairs are generated

3Since images from WPUTEDB for each subjects are all collected in
short periods, even background (e.g. hair and earrings) provides significant
support to classification which is not the case in our database.

Fig. 7. ROC curves averaged over 5 folds on the proposed database (top:
using aligned images, bottom: using unaligned images).



aligned unaligned
PI+LDA 0.5659 ± 0.017 0.5405 ± 0.023
DSIFT+PCA+LDA 0.6222 ± 0.012 0.6178 ± 0.025
JBC+EigenPEP+PCA 0.6297 ± 0.013 0.6189 ± 0.023
DCNN+LDA 0.6859 ± 0.024 0.6492 ± 0.032

TABLE III
EAR VERIFICATION BENCHMARK ON THE PROPOSED DATABASE USING

THE PROPOSED METHODS.

for each fold and total five folds are generated, from which
we perform a leave-one-out cross validation.

We used similar features as in the recognition experiments.
In particular, we applied pixel intensities (PI), DSIFT and
Deep Convolutional Neural Networks (DCNN) [35] (for
DCNN we used the pre-trained VGG-16 architecture). High
dimensional features, such as DSIFT, were combined with
PCA for dimensionality reduction. For each pair of the train-
ing images and for each feature we computed the squared
distance and formed a vector which was fed to a two class
LDA or SVM which separate match versus not-match pairs.
We apply the above methods to both aligned and non-aligned
ear samples. Finally, we also applied the methodology that
was proposed in [26] (so-called Eigen-Pep).

Overall performance over five folds is reported using
mean accuracy (as in LFW). Experiments are performed
under the image-restricted setting, where only binary positive
or negative labels are given, for pairs of images. So the
identity information of each image is not available under
this setting and results are reported with both no outside
training data and label-free outside data for alignment. Table
III summarises the results. The top performance is around
68% using DCNN features and aligned images. As in the
recognition experiments alignment always improves perfor-
mance. Finally, Figure 7 plots the ROC curves for the tested
methods.

VI. CONCLUSION

In this paper, we collected two sets of challenging in-the-
wild ear databases for the purpose of ear deformable model
constructions and ear recognition/verification. The experi-
mental evaluation and comparison revealed that holistic and
patch-based AAMs can align images of ears captured ”in-the-
wild”. We conducted extensive recognition and verification
experiments. The experiments convincingly demonstrate that
(a) the proposed database is very challenging and (b) align-
ment consistently improves performance.
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