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Abstract— The problem of fitting a 3D facial model to a 3D
mesh has received a lot of attention the past 15-20 years. The
majority of the techniques fit a general model consisting of
a simple parameterisable surface or a mean 3D facial shape.
The drawback of this approach is that is rather difficult to
describe the non-rigid aspect of the face using just a single
facial model. One way to capture the 3D facial deformations is
by means of a statistical 3D model of the face or its parts. This is
particularly evident when we want to capture the deformations
of the mouth region. Even though statistical models of face
are generally applied for modelling facial intensity, there are
few approaches that fit a statistical model of 3D faces. In this
paper, in order to capture and describe the non-rigid nature of
facial surfaces we build a part-based statistical model of the 3D
facial surface and we combine it with non-rigid iterative closest
point algorithms. We show that the proposed algorithm largely
outperforms state-of-the-art algorithms for 3D face fitting and
alignment especially when it comes to the description of the
mouth region.

I. INTRODUCTION

Building and fitting of 3D facial models is a field that
has received a lot of attention in the past decade [1], [2],
[3], [4], [5], [6], [7], [8]. 3D fitting algorithms are very
important, since they can be used to identify particular facial
landmarks or to recognize and define facial deformations that
are important for analysis of facial expressions. This research
field received further attention recently with the introduction
of low cost depth cameras, such as Kinect. Even though, the
majority of the methodologies use just a simple pre-defined
mesh model, parameterized or not, to fit a test mesh [9],
[3], [5], [8], [10]. Unfortunately, such methodologies may
fail to describe properly the complex, non-linear and highly
deformable structure of the face.

In this paper, we examine the problem of fitting a 3D facial
models to high-resolution depth scan. Our key contributions
are summarized as follows:
• To provide a point-driven mesh deformation procedure

that takes the advantage of robust 2D face alignment
[11] and deforms the 3D template model. This pre-
processing step helps to prevent incorrect fitting of face
part.

• To propose a dynamic local fitting procedure that makes
full use of dynamic subdivision framework. To this end,
we successfully adopt the non-rigid Iterative Closest
Point (ICP) algorithm [5] to this procedure, and show
that it manages to accurately model the subtle facial
feature.

• To present a new active method for describing and
fitting 3D faces by learning a local statistical model

of facial parts, and combining them with the non-rigid
ICP [5]. This method is also adopted to our dynamic
local fitting procedure.

II. RELATED WORK

Various 3D face fitting methods have been proposed to
address specific problems in different scenarios, such as the
situation with high-resolution data [3], partial range scan
[12], [5] and normal maps [13]. Passalis et al. [3] proposed
a deformable fitting framework based on AFM (Annotated
Face Model) [9], [14], which has been one of the state-of-
the-art 3D fitting methods. It employs a physics-based model,
and defines mass, damping and stiffness matrix to control the
deformation of template. To deform the template, an external
force that is proportional to the euclidean distance between
limit surface and closest points in target mesh is defined. The
resulting cost function is solved using Finite Element Method
(FEM) approximation. In order to increase flexibility and
scalability subdivision surfaces [15] were used in [3]. The
model was further used to describe 3D faces in various poses
by exploiting the fact that faces are approximate symmetric
[16]. The model was particular effective for capturing faces
for the purposes of face recognition and verification, due
to the fact that fitting relayed of deforming a single facial
template, in many cases, it was unable to capture facial
deformations due to facial expressions [17]. In [17] in order
to better capture facial expressions an extra fitting strategy
using Thin Plate Splines (TPS) was applied.

Another family of 3D fitting algorithms that use a single
template is non-rigid ICP (Iterative Closest Point), where
correspondence of points are found by a search based on
spatial proximity, and the transformation of each point is
modelled by general deformation. The main challenge of
non-rigid ICP is how to tackle the high-dimensional opti-
mization problem for local deformations while preserving
the convergence properties. Hahnel et al. [18] propose a
hierarchical method that firstly fits a skeleton structure to the
scan points and then aligns local parts. Allen et al. [6] assume
an affine transformation at each point of the template mesh
to allow non-rigid registrations of full-body scans to a high-
resolution template. Similar to this approach, the optimal
non-rigid ICP (NICP) step proposed by Amberg et al. [5]
assumes local affine transformation for each vertex, addition-
ally it defines a series of stiffness weights to regularize the
deformation. NICP has demonstrated fast convergence and
reliable fitting on a number of examples. However, since the
NICP optimization is essentially solving a linear system, it



remains as a question whether the system is solvable or not
for very dense template.

Owing to the representative power and generalization
ability of statistical shape models [1], [2], various works
have successfully employed statistical shape prior in non-
rigid registration [19], [8], [20], [21], [10], [7]. Albrecht et
al. [19] proposed to use Tikhonov regularization that is based
on a statistical deformation model to regularize the shape.
Schneider et al. [8] used a morphable model to control the
deformation, and jointly optimized the non-rigid parameters
with the rigid pose in a unified ICP framework. [8] is further
extended to the problem of head scan registration [20].
Similar to [8], [20], Amberg et al. [10] fitted the 3DMM
to the weighted correspondences that are retrieved by ICP
algorithm. Pan et al. [7] further defined the deformation
offsets to each vertex of the shape, and solved the offsets
and non-rigid parameters alternately.

Statistical shape model has seldom been introduced to
the non-rigid ICP framework. Although NICP [5] is able
to provide closely fitted surface, it has weak constraint
on the shape geometry, which might lead to noisy fitting
result and even non-face like fittings. Here, we propose to
incorporate statistical prior into the fitting procedure of NICP
[5]. The use of subspace essentially puts extra constraint
on the fitting procedure that preserves the structure of each
face part. Besides, the fitting directed by the linear face
model is robust to the noisy raw scan, leading to a smoother
and finer representation of the target surface. We integrate
the proposed fitting into a dynamic subdivision framework,
making it possible to accurately capture the subtle details in a
high-resolution facial scans. In addition, we provide a point-
driven mesh deformation procedure that generates deformed
reference shape based on robust 2D face alignment.

III. DYNAMIC SUBDIVISION FRAMEWORK

The core idea of our framework is to dynamically fit
facial data using a deformable 3D face model, and provide
an accurately fitted surface. In contrary to previous works
on 3D surface registration [3], [9], [14] that subsample the
data using an annotated template to gain efficiency, our
method starts from a sparse level and dynamically propagates
to subsequent levels, in which the fittings are performed
locally to model regional deformation. We argue that the
subsampling step sacrifices the accuracy and loses essential
details (for example, wrinkles in the forehead) for expression
recognition task. Our framework mainly consists of three
processing stages: (1) Point-driven template deformation; (2)
Rigid alignment; (3) Local deformable model fitting.

A. Point-driven Template Deformation

Our fitting starts from annotated model of the face (AFM)
[14], [9], which is segmented into several parts according to
the facial physiology information [14], [9]. For the purpose
of local fitting, we further manually segment the subdivided
AFM (see Fig. 1 for details).

A natural problem of using AFM is that, for the exagger-
ated expression like surprise, final annotated parts tend to

(a) (b) (c)

Fig. 1: Annotated areas for different levels of AFM. (a) The
starting level, without subdivision and segmentation; (b) First
subdivision level, with 6 annotated face parts (cheeks are
combined into one part); (c) Second subdivision level, with
13 individual parts.

lose original physiology meaning. Specifically, the detected
mouth frequently lies in between nose and upper lip. This
is because the initial position of mouth hardly covers the
entire region, leading to a false preliminary correspondence
retrieved by closest points matching. Even though with
predefined expression-wise AFMs, this problem can hardly
be solved, since the valence and arousal of emotions vary
from time to time, thus expression-wise templates simply
cannot cover them.
Point-driven mesh deformation: To tackle this problem,
we propose to deform AFM based on the fitting of 2D
face alignment. Considering the robustness and efficiency of
2D face alignment [11], [22], [23], it is reliable to deform
the mesh under the guidance of 2D fitting. Therefore, we
use publicly available Chehra face tracker [23], and perform
fitting on the color image of 3D scan.

To deform a 3D model, we retrieve the corresponding
3D coordinates of 2D fitting in the raw scan. Based on the
2D annotation scheme, we annotated 33 landmarks as the
anchor points on the AFM (Fig. 2), note that we excluded all
boundary points since they are generally noisy. Besides, we
interpolated new landmarks to avoid irregular deformation.
In the existing work of point-driven facial animation, RBF
network [24], [25] is trained to map the source points to the
template mesh so as to maintain the topology of template.
However, in our case, it is beneficial to keep the structure of
target face, hence, we only perform rigid alignment instead.

For mesh deformation, we employ bounded biharmonic
blending [26], in which the blending weights are obtained
when minimizing the Laplacian energy subject to bound
constraints.

B. Rigid Alignment

To provide a good initialization for subsequent fittings, we
perform a multi-stage alignment as in [27]. This procedure
aligns the facial data with the annotated model, during which
a rigid transform would be estimated. There are three steps
in the multi-stage alignment [27], with each step taking the
result of previous step as input.
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Fig. 2: Procedure of feature point-driven mesh deformation.

Spin images [28]: The first step matches the spin images
of selected raw data points to those of the model points,
and finds the initial correspondence between them. After
the correspondence is established, a plausible transformation
would be computed and verified.
Iterative Closest Point (ICP) [29]: During ICP procedure,
boundary points on the target surface are disregarded, hence,
residual error from the non-overlapping part of two clouds
would not be counted. A trimmed ICP algorithm [27], [30]
is used when ICP fails to generate a satisfied result.
Simulated annealing on Z-Buffers [31], [32]: To refine the
alignment result given by previous two steps, minimization
in the differences between the model and data on z-buffers is
performed. Enhanced Simulated Annealing (ESA) [31], [32]
is adopted for this purpose.

C. Dynamic Subdivision for Face Fitting

The next stage is dynamic fitting on the rigidly aligned
face. It starts with the deformed AFM, and then subdivides
the model using Loop subdivision [33]. The subdivided
model is segmented into predefined face parts, on which we
will perform our local fitting. We perform such divide-and-fit
operation only for two levels, due to the sufficient denseness
of second level. In this paper, we propose the Active Non-
rigid ICP that incorporates statistical shape prior during the
fitting. We will explain it in Section IV.
Loop subdivision: Different from regular parametric surface
splines (e.g. B-spline, Bezier and NURBS), subdivision
surface can handle shapes of arbitrary topology, and offer
smoothness, flexibility and scalability [34]. Starting with a
given polygonal mesh called control mesh, it subdivides
the mesh following a refinement scheme. Based on the
neighbouring old vertices, new vertices and faces are created.
In this paper, we use Loop subdivision scheme [33] for
its simplicity and efficiency. This method could work on
the triangular mesh that has extraordinary vertex (valence
6= 6), to compute the new vertex, it only uses the vertices
lying within one-neighbourhood area of this vertex. It could
produce a limit surface with C2 smoothness everywhere
except at extraordinary points, where only C1 continuity is
guaranteed.

Dynamic local fitting: We follow a coarse-to-fine approach
for the fitting procedure. After the initial NICP [5] fitting,
for the first subdivision level, we apply Loop subdivision
scheme to the fitted AFM. As for such denser model, it
is neither efficient nor feasible to perform the same global
fitting, hence, we propose to fit the surface locally based
on the predefined face parts in AFM, which allows more
local variations to be captured, resulting in a highly detailed
representation of raw data. We repeat the same procedure to
the first level result for the second level fitting. To alleviate
the boundary discrepancies between parts, we take the mean
value of the shared boundary vertices. In the next section,
we will describe the method used for the local fitting.

IV. ACTIVE NONRIGID ICP

To capture more local variations, we perform local fitting
based on the segmented template of subdivision levels.
Inspired by the recent success in region-based face modelling
[21], we employ a statistical shape model in non-rigid ICP
algorithm, and propose to solve the optimal mesh controlling
parameters in an alternating manner. We refer to this method
as Dynamic Active Non-rigid ICP (DA-NICP) in this paper.

A. Local Face Part Modelling

We denote the model with N vertices V and M edges E
by S = (V, E), and the target surface by T . Assume that we
have P independent parts for the current face template V =
{vi}Pi=1, the ith part vi can be modelled by the following
equation:

vi = Bici +mi, (1)

where vi ∈ R4N×1 that contains 3D coordinates (x, y, z)
plus homogeneous coordinates of all vertices for the cor-
responding part; Bi ∈ R4N×h consists of h linear bases
of the PCA model, mi ∈ R4N×1 is the mean value, and
ci ∈ Rh×1 is the latent variable controlling deformation of
the model. By solving for the optimal parameter ci, the local
face region can be faithfully reconstructed and used in the
subsequent fitting steps.

B. Active Non-rigid ICP Formulation

The goal of our fitting is to find a set of affine parameters
X = {Xi}Pi=1 and non-rigid parameter C = {ci}Pi=1

such that for each face part the displaced source vertices
V({Xi, ci}Pi=1) fit in the target surface. The refined corre-
spondence, together with {Xi, ci}Pi=1 and the topology of
model, form the parametric version of the 3D scan. Here,
Xi := [Xi

1 ... X
i
ni
]T consists of an affine 3 × 4 transform

matrix for each template vertex. In order to solve for the
optimal affine and non-rigid parameters, we formulate two
cost functions.
Optimizing affine parameters: We define the first cost
function by the distance and stiffness term.
The distance term measures the euclidean distance between
source vertex and its closest vertex in target mesh. Given
that we have the optimal non-rigid parameters and fixed
correspondences between the template vi and target ui (ui ∈



R3N×1) after the closest point matching step for each part,
the distance term is defined as:

Ed({Xi}Pi=1) :=
∑
vi∈V

ni∑
j=1

‖Xi
jv

i
j − ui

j‖2

=
∑
ci∈C

ni∑
j=1

‖Xi
j(B

i
jc

i
j +mi

j)− ui
j‖2

=

P∑
i=1

∥∥∥∥∥∥∥
X

i
1

. . .
Xi

ni


 ṽi

1
...

ṽi
ni

−
 ui

1
...

ui
ni


∥∥∥∥∥∥∥
2

, (2)

where ṽi
j = Bi

jc
i
j + mi

j . Note that in [5], due to potential
missing data in the scan, a reliability weight is defined for
each correspondence pair to improve the robustness. Since
the use of linear shape model helps to regularize the fitting,
we choose not to include this additional weight here.

The current formulation is not easy to differentiate, thus
we need to swap the position of unknown term X and current
vertices v to obtain a standard form. Let us define Ui :=
[ui

1, ...,u
i
ni
]T , and create sparse matrix Di with diagonal

blocks being the transpose of each vertex ṽi
j , Equation 2

can then be rearranged as:

Ed({Xi}Pi=1) =

P∑
i=1

∥∥DiXi −Ui
∥∥2
F
. (3)

The stiffness term penalises differences between the trans-
formation matrices assigned to neighbouring vertices, there-
fore, enforces a constraint on neighbouring vertices. This
term can defined as [5]:

Es({Xi}Pi=1) =

P∑
i=1

∥∥(Mi ⊗Gi)Xi
∥∥2
F
. (4)

For the ith face part, Gi := (1, 1, 1, γi), γi is used to
balance the scale of rotational and skew factor against the
translational factor. It depends on the units of the data and
the deformation type to be expressed. Mi is the node-arc
incidence matrix of the template mesh topology [5].

After defining these two terms, the complete cost function
is a quadratic function:

EX({Xi}Pi=1) := Ed + αEs

=

P∑
i=1

∥∥∥∥[αMi ⊗Gi

Di

]
Xi −

[
0
Ui

]∥∥∥∥2
F

=

P∑
i=1

∥∥∥AiXi − Ũi
∥∥∥2
F
,

(5)

which is a well-known linear least square problem. The
minimum occurs where the gradient vanishes, that is
[∂EX/∂X

1; ...; ∂EX/∂X
P ] = 0. Thus Equation 5 has

closed-form solution for each part:

Xi = (AiTAi)−1AiT Ũi. (6)

Here, α is the stiffness weight that influences the flexibility
of the template. Therefore, for each iteration, given a set of

non-rigid parameters, we determine the optimal deformation
in the sense that it exactly minimises the cost function for
fixed stiffness and correspondences.
Optimizing non-rigid parameters: Assume that we already
have the optimal affine parameters {Xi}Pi=1, we need to find
the best {ci}Pi=1. Based on the euclidean distance between
closest points and template vertices, this problem can be
formulated as:

Ec({ci}Pi=1) :=
∑

Xi∈X

ni∑
j=1

‖Xi
jv

i
j − ui

j‖2 (7)

=
∑

Xi∈X

ni∑
j=1

‖Xi
j(B

i
jc

i
j +mi

j)− ui
j‖2

=

P∑
i=1

∥∥∥X̃i(Bici +mi)− ui
∥∥∥2 ,

and

X̃i =

X
i
1

. . .
Xi

ni

 .
To solve this equation, we take the partial derivative with
regard to each ci and take the minimum when it approaches
to zero:

(X̃iBi)T (X̃iBi)ci + (X̃iBi)T (Ximi − ui) = 0,

yielding the closed-form solution,

ci = −[(X̃iBi)T (X̃iBi)]−1(X̃iBi)T (Ximi − ui). (8)

C. Alternating Optimization Approach
Given Equation 5 and 7, our goal is to find the best

combination of affine and non-rigid parameters that aligns
the template towards the raw scan. However, it is not feasible
to solve both parameters simultaneously in each iteration.
To account this problem, we propose to solve two different
equations in an alternating manner, one for X and one for
c, as:

Xo = argmin
X

P∑
i=1

∥∥∥Ai
cX

i − Ũi
c

∥∥∥2
F
, (9)

co = argmin
c

P∑
i=1

∥∥∥X̃i
o(B

icic +mi)− ui
c

∥∥∥2 . (10)

Since the optimal solution for each part does not depend
on the others (Equations 6 and 8), we perform the individual
fitting on each of them. Given an initial estimate of non-rigid
parameter cic, we can form Ai

c and solve optimal Xi
o using

Equation 6. Given the optimum Xi
o, we can construct X̃i

o

and find the optimal cio using Equation 8. As such, for this
iteration, the optimal Xi

o and cio are considered to be found.
The alternating optimization for each face part is described
in Algorithm 7.

V. EXPERIMENTS
Apart from visual comparison between fittings, we con-

duct two experiments to provide quantitative measures of



Algorithm 1: Alternating optimization on Active Non-
rigid ICP

Require: Two point clouds, ith part vi of face template V and
target T .

1 Initialize the non-rigid parameters ci0 and affine parameters
Xi

0.
2 for each stiffness αi ∈ {α1, ..., αn}, αi > αi+1 do
3 while ‖Xi

j −Xi
j−1‖ ≥ ε do

4 Find preliminary correspondences for
V(Xi

j−1, c
i
j−1).

5 Get optimal affine transform Xi
j (Eqn. 6) from cij−1,

preliminary correspondences and αi.
6 Get optimal non-rigid parameters cij (Eqn. 8) from

Xi
j .

7Return Xi

our proposed dynamic Active Non-rigid ICP (DA-NICP)
algorithm. To demonstrate the advantage of putting subspace
constraint on fitting, we introduce D-NICP - a method
similar to DA-NICP that uses dynamic subdivision surfaces
and perform local fitting, but with NICP [5] chosen as the
only fitting strategy. The third method to compare is the
deformable fitting with subdivision on AFM in [3] (we refer
as FEM). To further evaluate the impact of point-driven mesh
deformation on fitting, we perform the DA-NICP and D-
NICP fitting with deformed AFM (-PD) and with original
AFM.

The first experiment shows that the proposed point-driven
mesh deformation helps to prevent incorrect fitting of mouth,
thus D-NICP-PD and DA-NICP-PD are able to cover the
majority of mouth region. The second experiment is a
facial expression recognition (FER) experiment on BU-4DFE
database [35]. This experiment proves that an accurate fitting
can benefit the recognition task (accurate dense alignment is
important for accurate face and facial expression recognition
[36], [37], [38], [27]), even when a simple feature extraction
and recognition method is used.

A. Experiment Setup

Linear shape models: To train our PCA model for each face
part, we start with the point-driven deformed AFM, and run
D-NICP-PD fitting on the BU-3DFE database [39]. We align
the instances of individual part and train a shape model on
them, keeping 95% of the variations. In total, there are two
levels of shape model - 6 models for the first subdivision
level, and 13 for the second level.
FER method: Based on the annotated parts, we extract
the main face region that contains eyes, mouth, cheeks
and nose from the converted depth image. In order to
further demonstrate the advantage of using the deformed
AFM, we also conducted FER experiments using only mouth
region. We divided the extracted region into non-overlapping
blocks, for which HONV (Histogram of Oriented Normal
Vectors) [40] features are computed (to this end other simple
histogram-based features can be used [41]). The final feature

descriptor is the concatenation of feature vectors from the
corresponding blocks.

Since the goal of our experiment is to compare the
different fitting methods, it is less important to select between
advanced recognition methods. We choose the multi-class
SVM classifier with one-against-one approach [42]. Radial
Basis Function (RBF) kernel is employed as the distance
metric. An empirical grid search is performed over the
parameters in RBF kernel.
FER experiment protocol: We create a ten-fold partition of
the data, each time one fold is used for testing, all the others
are used for training. Our BU-4DFE experiment is sequence-
independent, which means the query sequence never appears
in the training set.

B. Mouth Coverage Experiment

To evaluate the mouth coverage of proposed fitting proce-
dures, we select 100 scans that have exaggerated expressions
of different subjects in BU-4DFE [35] and we manually an-
notated the mouth region. We extract the manually annotated
(G) and detected (D) mouth regions specified by the alpha
hull and measure tracking accuracy as S = 1 − A(D∩G)

A(D∪G) .
A(·) describes the 2D area of a region. Note that the
smaller S the more overlap we have. Table I shows the
percentages of covered area for different fitting methods.
As can be observed, both D-NICP-PD (0.2891) and DA-
NICP-PD (0.3058) better cover the mouth region than those
without using deformed templates. The result suggests that
the mesh deformation driven by 2D face alignment greatly
helps subsequent 3D fitting in locating correct face part. And
this procedure can be highly efficient, hence, the time taken
in this stage can be neglected. See Fig. 3 for qualitative
examples of annotated mouth region.

Method Mean S value
FEM 0.4086

D-NICP-PD 0.2891
D-NICP 0.3841

DA-NICP-PD 0.3058
DA-NICP 0.3688

TABLE I: Mean S values of 100 annotated scans.

C. BU-4DFE Experiment

BU-4DFE database consists of 4D faces (sequences of
3D faces), with temporal and spatial resolution being 25
frames/second and 35,000 vertices, respectively. It includes
101 subjects each containing sequences of the six proto-
typical facial expressions. FER experiment on BU-4DFE
is challenging, since more than one instance per subject
are labelled as a specific expression, while those instances
differ slightly from each other. For our experiment, we pick
the apex frames for each sequence from temporal segment
annotation provided in [37]. Due to the fact that each
sequence has different apex period, the numbers of instances
per expression differ from each other. An unbalanced training
set would affect the quality of classifier, therefore, we trim



(a) FEM Fitting Results.

(b) D-NICP-PD Fitting Results.

(c) DA-NICP-PD Fitting Results.

Fig. 3: Sample fitting results with annotated mouth region
highlighted (in blue).

the data for each apex sequence and generate a balanced set
that consists of roughly 6000 instances, with each expression
having nearly 1000 instances.

Table II shows the performance measures of the five fitting
methods. As can be observed, DA-NICP-PD consistently
outperforms the others in both main face and mouth exper-
iments, achieving overall accuracies of 81.16% and 80.41%
respectively. Not surprisingly, owing to a better annotated
mouth region, methods that utilize deformed AFM (D-NICP-
PD and DA-NICP-PD) gain more accuracy than those with
original template, and the margin can be 2.7% and even
higher. Although we expect a decreased performance when
using only mouth for FER, other than the huge decrease of
FEM (from 75.87% to 73.38%), all our methods drop less
in performance. In particular, DA-NICP-PD only drop 0.75%
in accuracy.

Furthermore, it is important to notice that even without
deformed AFM, our fitting methods (D-NICP and DA-NICP)
show improvement of 0.87% and 2.56% correspondingly.
It proves that a more accurate fitting would benefit the
FER, and the proposed fitting methods manage to capture
facial motion that is informative for FER. However, an over
detailed fitting as D-NICP will be sensitive to the noise in
scan, thus by reducing the motion caused by the noise, DA-
NICP achieves a better performance. In addition, DA-NICP
has very nice convergence properties. In Fig. 4, we show one
example of residual error changes as the fitting progresses.

Fig. 4: Example residual error changes as the dynamic Active
Non-rigid ICP (DA-NICP) fitting of the upper lip part in the
second subdivision level progresses.

As can be seen, the residual error monotonically decreases
and gradually converges to a minimum value.

D. Visualization of Fitting Results

We show sample BU-4DFE fitting results of previously
mentioned methods, one example for each expression (see
Fig. 5). We manually crop some images for a better demon-
stration. It is obvious to see that the proposed methods model
the face better than FEM, especially for mouth region, where
FEM produces distorted and weird shapes. For expression
surprise (row 6), FEM fails to capture the chin and full
lower lip. Since our fitting procedures are dynamic, the
template would be stretched to cover the whole face, hence,
we can fully represent the original face structure. The main
difference between fittings with and without deformed AFM
is the position of annotated parts (we demonstrated it in
previous experiment). In most cases, without the deformed
AFM, D-NICP and DA-NICP can still fit the entire face,
therefore, it is difficult to spot great difference from the ones
with deformed template in Fig. 5.

Comparing to FEM, the DA-NICP-PD and D-NICP-PD
capture more details including wrinkles and eyelids. This
is because D-NICP-PD has less constraint on the shape
deformation, hence, allowing very closely fitting to the scan
surface. While DA-NICP-PD regularizes the shape using
PCA model, as a result, produces a relatively smooth fitting.
One major problem of D-NICP-PD is that the boundaries
between each face part are not very consistent, since the
constraint on the deformation of border vertices is weak.
An typical example can be found in surprise example (row

Method Main face Mouth
F1[%] CR[%] F1[%] CR[%]

FEM 75.65 75.87 73.49 73.38
D-NICP-PD 79.24 79.47 78.18 78.13

D-NICP 76.50 76.74 74.74 75.05
DA-NICP-PD 80.94 81.16 80.44 80.41

DA-NICP 78.22 78.43 76.15 76.57

TABLE II: Classification rate (CR), and average F1-measure
(F1) achieved with all the methods and face regions (i.e.
main face, mouth) in BU-4DFE (%). The best performance
achieved for each measure is show in bold.



6, column 5) of D-NICP-PD, where there are black holes
around the mouth, this suggests inconsistency between mouth
and neighbouring parts.

VI. CONCLUSION
We propose a dynamic local fitting procedure that gains

benefits from dynamic subdivision framework, and show how
to adopt the NICP algorithm to our procedure. The proposed
fitting procedure is shown capable of modelling subtle facial
details. More importantly, we present a statistical model
for describing the faces and we combined it with NICP
for 3D face alignment. We have shown that the proposed
algorithm largely outperforms state-of-the-art 3D facial de-
formable models, such as the ones that use Finite Element
Methods (FEM), especially when it comes to the description
and alignment of the mouth region. Furthermore, to avoid
incorrect fitting of face part (especially mouth), we propose
a pre-processing procedure where the feature points, taken
from a robust 2D face alignment procedure, are employed to
deform template. Extensive experimental results verify our
theoretical expositions.
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shapes: Reconstruction and parameterization from range scans,” TOG,
vol. 22, no. 3, pp. 587–594, July 2003.

[7] G. Pan, X. Zhang, Y. Wang, Z. Hu, X. Zheng, and Z. Wu, “Establishing
point correspondence of 3d faces via sparse facial deformable model,”
TIP, vol. 22, no. 11, pp. 4170–4181, Nov 2013.

[8] D.C. Schneider and P. Eisert, “Fast nonrigid mesh registration with
a data-driven deformation prior,” in ICCV Workshops, Sept 2009, pp.
304–311.

[9] I.A. Kakadiaris, G. Passalis, T. Theoharis, G. Toderici, I. Konstantini-
dis, and N. Murtuza, “Multimodal face recognition: combination of
geometry with physiological information,” in CVPR, June 2005, pp.
1022–1029 vol. 2.

[10] B. Amberg, R. Knothe, and T. Vetter, “Expression invariant 3d face
recognition with a morphable model,” in FG, Sept 2008, pp. 1–6.

[11] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust discrimi-
native response map fitting with constrained local models,” in CVPR,
Portland, Oregon, USA, June 2013.

[12] H. Li, R. W. Sumner, and M. Pauly, “Global correspondence
optimization for non-rigid registration of depth scans,” SGP, vol. 27,
no. 5, July 2008.

[13] Z. Wang, M. Grochulla, T. Thormahlen, and H.-P. Seidel, “3d face
template registration using normal maps,” in 3DV, June 2013, pp.
295–302.

[14] G. Passalis, I.A. Kakadiaris, T. Theoharis, G. Toderici, and N. Mur-
tuza, “Evaluation of 3d face recognition in the presence of facial
expressions: an annotated deformable model approach,” in CVPR
Workshops, June 2005, pp. 171–171.

[15] C. Mandal, H. Qin, and B. C. Vemuri, “A novel fem-based dynamic
framework for subdivision surfaces,” in SM, New York, NY, USA,
1999, SMA ’99, pp. 191–202, ACM.

[16] G. Passalis, P. Perakis, T. Theoharis, and I.A. Kakadiaris, “Using facial
symmetry to handle pose variations in real-world 3d face recognition,”
T-PAMI, vol. 33, no. 10, pp. 1938–1951, 2011.

[17] T. Fang, X. Zhao, O. Ocegueda, S. K Shah, and I.A. Kakadiaris,
“3d/4d facial expression analysis: an advanced annotated face model
approach,” IVC, vol. 30, no. 10, pp. 738–749, 2012.

[18] D. Hahnel, S. Thrun, and W. Burgard, “An extension of the icp
algorithm for modeling nonrigid objects with mobile robots,” in IJCAI,
San Francisco, CA, USA, 2003, pp. 915–920, Morgan Kaufmann
Publishers Inc.

[19] T. Albrecht, M. Luthi, and T. Vetter, “A statistical deformation prior
for non-rigid image and shape registration,” in CVPR, June 2008, pp.
1–8.

[20] C. David Schneider and Peter Eisert, “Algorithms for automatic and
robust registration of 3d head scans,” JVRB, vol. 7(2010), no. 7, 2010.

[21] J. R. Tena, F. De la Torre, and I. Matthews, “Interactive region-based
linear 3d face models,” in ACM SIGGRAPH, New York, NY, USA,
2011, pp. 76:1–76:10.

[22] A. Asthana, S. Zafeiriou, G. Tzimiropoulos, S. Cheng, and M. Pantic,
“From pixels to response maps: Discriminative image filtering for face
alignment in the wild,” T-PAMI, 2015.

[23] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Incremental face
alignment in the wild,” in CVPR, 2014.

[24] L. Dutreve, A. Meyer, and S. Bouakaz, “Feature points based facial
animation retargeting,” in VRST, New York, NY, USA, 2008, pp.
197–200, ACM.

[25] T. C. S. Rendall and C. B. Allen, “Reduced surface point selection
options for efficient mesh deformation using radial basis functions,”
J. Comput. Phys., vol. 229, no. 8, pp. 2810–2820, Apr. 2010.

[26] A. Jacobson, I. Baran, J. Popović, and O. Sorkine, “Bounded
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