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Extended T : Learning with Mixed
Closed-set and Open-set Noisy Labels

Xiaobo Xia, Bo Han, Nannan Wang, Jiankang Deng, Jiatong Li, Yinian Mao, Tongliang Liu

Abstract—The noise transition matrix T , reflecting the probabilities that true labels flip into noisy ones, is of vital importance to model
label noise and build statistically consistent classifiers. The traditional transition matrix is limited to model closed-set label noise, where
noisy training data have true class labels within the noisy label set. It is unfitted to employ such a transition matrix to model open-set label
noise, where some true class labels are outside the noisy label set. Therefore, when considering a more realistic situation, i.e., both
closed-set and open-set label noises occur, prior works will give unbelievable solutions. Besides, the traditional transition matrix is mostly
limited to model instance-independent label noise, which may not perform well in practice. In this paper, we focus on learning with the
mixed closed-set and open-set noisy labels. We address the aforementioned issues by extending the traditional transition matrix to be
able to model mixed label noise, and further to the cluster-dependent transition matrix to better combat the instance-dependent label
noise in real-world applications. We term the proposed transition matrix as the cluster-dependent extended transition matrix. An unbiased
estimator (i.e., extended T -estimator) has been designed to estimate the cluster-dependent extended transition matrix by only exploiting
the noisy data. Comprehensive experiments validate that our method can better cope with realistic label noise, following its more robust
performance than the prior state-of-the-art label-noise learning methods.

Index Terms—noise transition matrix, mixed noisy labels, instance-dependent label noise, deep clustering, robustness
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1 INTRODUCTION

THE success of deep networks largely relies on large-
scale datasets with high-quality label annotations [1],

[2], [3]. However, it is quite costly, time-consuming, or even
infeasible to collect such data. Instead, in practice, many
large-scale datasets are collected in cheap ways, e.g., from
search engines or web crawlers. The obtained data in these
ways inevitably contain noisy labels [4]. The presence of
noisy labels adversely affects the model prediction and
generalization performance [3], [5]. It is therefore of great
importance to train deep networks robustly against noisy
labels.

The types of noisy labels studied so far can be divided
into two categories: closed-set and open-set noisy labels. The
closed-set noise occurs when instances with incorrect labels
have true class labels within the noisy label set [1]. Oppositely,
the open-set noise occurs when instances with incorrect labels
have true class labels outside the noisy label set [1]. Learning
with closed-set noisy labels has been extensively studied,
e.g., [6], [7], [8], [9]. In addition, there are some pioneer
works focusing on learning with open-set noisy labels, e.g.,
[1], [10], [11]. All these methods are designed for handling
the closed-set and open-set noisy labels independently and
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cannot handle the mixed closed-set and open-set noisy labels
well. Nevertheless, it is more practical that the two types of
noisy labels exist simultaneously in real-world applications.
For example, many large-scale face recognition datasets
are automatically collected via image search engines and
crowdsourcing platforms. The face data in these datasets
contain both two types of noisy labels [12].

One promising strategy for combating label noise is to
model label noise. Compared with model-free methods which
empirically work well but do not model label noise explicitly,
model-based methods are more reliable, as optimal classifiers
w.r.t. clean data are guaranteed [13], [14]. By utilizing the
noise transition matrix which denotes the probabilities that
clean labels flip into noisy ones, model-based methods have
been verified to be able to deal with closed-set noise well,
mainly with the kind of class-dependent (instance-independent)
closed-set label noise [7], [15].

However, prior model-based methods have the following
limitations, which make it hard for them to work well in prac-
tice. First, they cannot model open-set label noise and will
provide unbelievable solutions when there exist mixed open-
set and closed-set noise at the same time. Second, instance-
dependent label noise is common in real-world applications as
difficult instances are prone to have inaccurate labels [16]. It
is ill-posed to learn the instance-dependent transition matrix
by only exploiting the noisy training data as discussed in [14].
Therefore, when modeling instance-dependent label noise,
the class-dependent transition matrix is always exploited
to approximate the instance-dependent transition matrix.
Unfortunately, the approximation error is large, especially
when the label noise rate is high [14].

In this paper, we present a novel method for learning
with the mixed (instance-dependent) closed-set and open-set
label noise. The proposed method extends the traditional
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Fig. 1: The illustration of the cluster-dependent extended
transition matrices. We first conduct clustering on deep repre-
sentations of training examples and obtain different clusters
(the top of this figure). Then the proposed method learns
the transition matrix for different clusters and extends the
traditional transition matrix to be able to model mixed label
noise (the bottom of this figure). The transition matrices
Ti and T ◦i are concatenated vertically to form the extend
transition matrix T ?i .

transition matrix to be able to model the mixed label noise
and better approximate the instance-dependent label noise.
Specifically, as all examples with open-set label noise have
out-of-distribution instances, and we do not need to detect
specific classes for them, we integrate all open-set classes as
a meta class, which is paratactic with the other true classes
in the closed set. Then we identify anchor points belonging
to the meta class of the open-set and the true classes of the
closed set. The extended transition matrix involving the meta
class can be unbiasedly estimated by exploiting anchor points.

To further handle the instance-dependent label noise in
reality, we exploit cluster-dependent transition matrices to
better approximate the instance-dependent transition matrix.
Specifically, we divide all training examples into several
clusters (with the constraint that the cluster contains anchor
points for the meta class of the open set and true classes of
the closed set). The cluster-dependent transition matrix can
then be unbiasedly estimated for each cluster. The training
examples within the same cluster will share the same cluster-
dependent transition matrix. The cluster-dependent transi-
tion matrices capture the geometric information of instances
and thus can better approximate the instance-dependent
transition matrix than the class-dependent transition matrix.
The illustration of the proposed method is provided in Fig. 1.

1.1 Contributions
Before delving into details, we highlight the main contribu-
tions of this paper from three folds:

• We focus on learning with the mixed closed-set
and open-set noisy labels and extend the traditional
transition matrix to be able to model the mixed label
noise, which solves the open problem in [17].

• We propose the cluster-dependent extended transition
matrices to handle instance-dependent label noise
in real-world applications, which produces a more
reliable solution.

• We conduct comprehensive experiments on synthetic
and real-world label-noise datasets to demonstrate
that the proposed method achieves superior robust-
ness over the baselines.

1.2 Organization
The rest of the paper is organized as follows. In Section 2 , we
review related works on learning under label noise. In section
3, we introduce some notations and background knowledge.
In Section 4, we introduce the proposed method in detail.
Experimental results and analyses are provided in Section
5. Finally, we conclude the paper in Section 6. To improve
readability, additional instructions and experimental results
are provided in supplemental materials.

2 RELATED WORK

In this section, we review prior works about learning with
noisy labels (Section 2.1) and deep clustering (Section 2.2).

2.1 Learning with noisy labels
2.1.1 Learning with the noise transition matrix
The noise transition matrix plays an essential role in mod-
eling label noise, which reflects the probabilities that true
labels flip into other noisy ones. With the noise transition
matrix, we can infer the clean class posterior probability
with the noisy class posterior probability [6]. Thus, we can
assign clean labels for given instances, even though only
noisy training data are available. Lots of advanced methods
borrow this idea and estimate the noise transition matrix
to combat closed-set noisy labels [13]. Moreover, in order to
reduce the estimation error of the noise transition matrix,
a slack variable can be introduced to revise the initialized
transition matrix [14], [18]. An intermediate class can be
used to avoid directly estimating the noisy class posterior [7].
Besides, with a small trusted dataset, meta learning can be
further employed [15].

For learning with open-set noisy labels, true classes of
some training data are outside the set of known classes. Recall
the definition of the (traditional) transition matrix, the flip
probabilities indicate the rates of the true classes flipped to
the noisy ones. If we use the method of modeling closed-set
label noise to model open-set label noise, we will mistakenly
treat some unknown incorrect classes as true classes, which
leads to poor classification performance. To the best of our
knowledge, how to effectively model the mixed label noise
in this situation is a new challenge, and there is no pioneer
to solve the above problems.

2.1.2 Other methods of learning with noisy labels
We first briefly introduce other methods for dealing with
closed-set and open-set noisy labels separately without mod-
eling the noise explicitly, which include sample selection
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[10], [19], [20], [21], reweighting examples [1], [22], [23],
designing robust loss functions [8], [24], and (implicitly)
adding regularization [25], [26], [27], etc.

We then introduce the pioneer works for dealing with
mixed closed-set and open-set noisy labels without modeling
the noise explicitly. EvidentialMix [17] focuses on synthetic
mixed noisy labels and achieves promising performance by
combining DivideMix [9] and the SL loss [28]. Note that our
work is fundamentally different from EvidentialMix. The
main reasons are as follows: (i) EvidentialMix combines sev-
eral advanced approaches, but our work focuses on one, i.e.,
learning with the noise transition matrix; (ii) EvidentialMix
works well, but does not model label noise. Our work models
the mixed label noise explicitly and improves the reliability
of the method.

2.1.3 Class-dependent noise vs instance-dependent noise
For closed-set noisy labels, class-dependent noise assumes
that the label flip process only depends on the latent clean
class of the instance. However, such an assumption is
somewhat strong. Instead, instance-dependent noise is more
practical, where the label flip process also depends on the
instance. For example, in real-world datasets, an instance
whose feature contains less information or is of poorer quality
may be more prone to be labeled wrongly. Unfortunately, the
case of instance-dependent noise has been less studied than
class-dependent one [14]. We suggest that readers can refer
[3] for more details of learning with noisy labels.

2.2 Deep clustering
As an unsupervised learning method, clustering has been
widely used in various tasks. It aims to keep similar data
points in the same cluster while dissimilar ones in different
clusters. Clustering is proven to be able to find representative
data points among all data points [29]. Benefitting from the
power of deep learning, lots of approaches boost traditional
clustering techniques, e.g., k-means and spectral clustering,
by using deep models. They cluster on deep representations
instead of original features as deep representations are lower
dimensional and have a higher degree of discrimination [30].

3 PRELIMINARIES

3.1 Problem definition
We consider a c-class classification problem. Let X and Y
be the instance and label spaces, where Y = {1, . . . , c}.
We define the clean joint distribution of a pair of random
variables (X,Y ) ∈ X × Y as D. The training sample S =
{(xi, yi)}ni=1 is drawn from D, where n is the sample size.

For the closed-set noise problem with the noise rate α ∈
(0, 1), the examples in S are mislabeled with probability ξ.
Incorrect labels is still within the label space Y . For the open-
set noise problem with the noise rate β ∈ (0, 1), we need to
define a new training set S′ (with S′ ∩ S = ∅), where the
label space for S′ is represented by Y ′ (with Y ′ ∩ Y = ∅)-
this means that the instances in S′ do not have labels in Y .
When learning with open-set noisy labels, a proportion β of
instances in S are replaced with the instances in S′.

For the mixed closed-set and open-set noise problem, τ ,
ρ ∈ (0, 1) is defined by mixing the two kinds of noise above.

Specifically, a proportion τ of training examples in S are
mislabeled. Among them, a proportion τ× (1−ρ) of training
examples are corrupted by closed-set noise, and a proportion
τ×ρ of training examples are corrupted by open-set noise. We
define a pair of random variables relating to noisy examples
as (X, Ỹ ). Our aim is to train a robust classifier against mixed
closed-set and open-set noisy labels, which can assign labels
accurately to test data.

3.2 Inference with the noise transition matrix
We formally introduce the traditional transition matrix, i.e.,
T ∈ [0, 1]c×c, which is only capable of modeling the closed-
set noise. The transition matrix generally depends on the
instances and the true labels, i.e., Tij(x) = P (Ỹ = j|Y =
i,X = x) [16]. Note that the noisy class posterior P (Ỹ |X)
can be estimated by using the noisy training data. With the
transition matrix, we can bridge the noisy class posterior
P (Ỹ |X) and the clean class posterior P (Y |X) as follows:

P (Ỹ = j|X = x) =
c∑
i=1

Tij(x)P (Y = i|X = x). (1)

Namely, when learning with noisy labels, if we have the
access to the ground-truth transition matrix, we can infer
P (Y |X) with P (Ỹ |X). The transition matrix can be there-
fore used to build statistically consistent algorithm [6], [18].
Unfortunately, the instance-dependent transition matrix is
unidentifiable without any assumption [14], [18]. The existing
methods approximate the instance-dependent transition
matrix by assuming that the noise transition matrix is class-
dependent and instance-independent, i.e., T (x) = P (Ỹ = j|Y =
i,X = x) = P (Ỹ = j|Y = i). When there is no confusion,
we will short-hand T (x) as T for the class-dependent
transition matrix. Moreover, the traditional transition matrix
fails to handle the mixed closed-set and open-set noise since
it encodes no open-set class information. We will discuss how
to extend it to better handle the instance-dependent mixed
closed-set and open-set noise in the next section.

4 METHOD

In this section, we first discuss how to model the mixed
label noise by extending the traditional label noise transition
matrix (Section 4.1). Then we present how to learn the
cluster-dependent extended transition matrices for better
handling the instance-dependent mixed label noise (Section
4.2). Finally, we show how to exploit the extended transition
matrix to train a robust classifier (Section 4.3).

4.1 Class-dependent extended T
As stated in Section 3.2, the traditional noise transition matrix
is a c × c matrix linking the noisy class information to
the closed-set clean class information without considering
the open-set clean class information. It is therefore limited
to handling the open-set label noise problems. Taking the
traditional class-dependent transition matrix as an example,
we discuss how to extend it to handle the open-set label
noise. Note that in the next subsection, we will discuss how
to handle the instance-dependent mixed label noise.

Integration with a meta class. To model the open-set
label noise, we introduce a meta class which is an integration
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of all the possible open-set classes. The philosophy is that
compared with the examples with closed-set label noise, we
do not have to detect specific classes for the examples with
the open-set label noise. Therefore, we integrate all open-
set classes as a meta class. As shown in Fig. 1, we extend
the traditional transition matrix to (c+ 1)× c dimensional,
where the additional 1× c vector denoted by T ◦ represents
how the meta class (or the open-set class) flips into the
closed-set classes, i.e., P (Ỹ = j|Y = m,X = x), where j =
1, ..., c, and m represents the meta class label. The extended
transition matrix encodes the open-set class information and can
be exploited to better reduce the side-effect of the open-set
label noise.

Matrix estimation by anchor points. We then discuss
how to estimate the extended transition matrix by exploiting
anchor points. Anchor points are defined in the clean data
domain [6]. Formally, an instance x is an anchor point for
the class i if P (Y = i|X = x) is equal to one or approaches
one. Given an anchor point x, if P (Y = i|X = x) = 1, we
have that for k 6= i, P (Y = k|X = x) = 0. Then, we have,

P (Ỹ = j|X = x) =
c∑

k=1

TkjP (Y = k|X = x) = Tij . (2)

The equation holds because the transition matrix is as-
sumed to be class-dependent and instance-independent, i.e.,
Tij(x) = Tij . Therefore, the transition matrix T can be
unbiasedly estimated via estimating the noisy class posteriors
for the anchor point of each class (including the meta class).
Note that the anchor point assumption is widely adopted in
the literature of learning with noisy labels [6], [7], [13], [31].
We could follow them and assume the availability of anchor
points. However, the assumption that anchor points are given
may be strong for many real-world applications. We could
relax the assumption by just assuming that the anchor points
exist in the training data and then design algorithms to locate
them. For the closed-set classes, corresponding anchor points
can be detected effectively as did in [13], [18]. The main
challenge we face is how to locate anchor points belonging
to the meta class (or the open-set classes).

Anchor point detection. Prior work [32] has confirmed
that deep representations even when trained with noisy
labels still exhibit clustering properties, i.e., deep networks
learn embeddings that tend to group clean examples of the
same classes into the same clusters while pushing away
the examples with corrupted labels outside these clusters.
Note that the obtained deep representations are not sufficient
for learning the class posteriors. Also, deep clustering has
been verified to be effective for detecting representative data
points among all data points, e.g., the cluster centroid. By the
definition of anchor points, they are the representatives of
each class, i.e., they belong to specific classes surely. Therefore,
we exploit deep clustering and determine that the anchor
points are the data points which are close to the centroid
of the meta class cluster. Note that the proposed method is
basically different from the previous work [33]. Specifically,
the previous method exploits clusterable representations of
features and uses up to third-order consensuses of noisy
labels among neighbor representations to take the place of
anchor points. In a contrast, our method exploits clustering
to find the underlying anchor points.

Algorithm 1: Meta Class Detection Algorithm

1 Input: Clustering results on deep representations,
corresponding noisy labels of deep representations;

2 for i = 1, . . . , c do
3 Detect the cluster if the maximum number of the

class label in it is i;
4 Assign the class label i to this cluster;
5 Remove the cluster that have a corresponding

class label from the detection queue;
6 end
7 4: Output: The cluster including training examples

with the meta class.

In this paper, we utilize the deep k-means cluster tech-
nique [34] to detect anchor points. Given the training sample
(x1, . . . , xn), the number of clusters is set to k = c + 1.
The reason is that we have integrated all the possible open-
set classes as a meta class. There are total c + 1 classes
in the training set. With an initialized deep network Ψ,
we can obtain deep representations of the training sample
(Ψ(x1), . . . ,Ψ(xn)). Here, we use a noisy validation set
to obtain Ψ that has the highest accuracy on the noisy
validation set. Note that the clean labels are dominating in
noisy classes and that noisy labels are random, the accuracy
on the noisy validation set and the accuracy on the clean
test data set are positively correlated. The noisy validation
set can therefore be used. Then, deep representations of
instances can be obtained with the selected Ψ. In this way,
we can obtain robust deep representations for detecting meta
classes and anchor points. We use clustering on such deep
representations since they are lower dimensional and have
a higher degree of discrimination [30]. For k-means, we
formulate the loss function as:

`k =
n∑
i=1

c+1∑
k=1

Mik‖Ψ(xi)− µk‖22, (3)

where M is the cluster matrix with Mik = 1 if Ψ(xi) belongs
to the k-th cluster, otherwise Mik = 0. The symbol µk
represents the k-th cluster centroid. After clustering, we
use an iterative strategy to assign class labels for obtained
clusters. Specifically, as for a cluster that includes noisy
training examples, correct labels in it are still diagonally
dominant [32]. Thus, we can accurately assign class labels
to each cluster based on the maximum number of the class
label in this cluster. When we finish assigning closed-set
class labels to c clusters, we regard the remaining one as the
cluster of training examples with the meta class. We provide
visualization of clustering results in Section 5.2.4 to verify
the effectiveness of this way and support our claims. The
algorithm flow of determining the meta class is provided in
Algorithm 1.

In the following, to detect the anchor points belonging to
the closed-set classes, we follow [13], [14], [18]. Then, we use
these anchor points to estimate the transition matrix T for
modeling the closed-set label noise with Eq. (2). For detecting
the anchor points belonging to the meta class, we determine
that the anchor points are the data points that are close to
the centroid of the meta class cluster, which has been explained
above from the perspective of representatives. As for the
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anchor point detection, we only rely on the data points that
are close to the centroid of the meta class cluster. Thus, we
do not need that clustering can perform perfectly for further
assigning labels, which is too strict for complex data. Then
with Eq. (2), we use the noisy class posterior probabilities
of the anchor point to estimate the transition matrix for
modeling the open-set label noise. We denote the transition
matrix for the open-set label noise as T ◦ ∈ [0, 1]1×c.

When the estimation of the transition matrix for both
types of label noise is finished, we combine T and T ◦ to
obtain the extended transition matrix T ? ∈ [0, 1](c+1)×c to
model the mixed label noise.

4.2 Cluster-dependent extended T

We have presented how to model the mixed label noise by
using the class-dependent extended transition matrix and
how to estimate the extended transition matrix. However,
in the real-world, label noise is more likely to be instance-
dependent [14]. To handle this problem, we propose to
use cluster-dependent extended transition matrices to better
model the instance-dependent label noise, which is based
on the intuition that the instances which have similar features
are more prone to have a similar label flip process [14], [16]. We
thus can employ the same extended transition matrix to
model the mixed label noise for the instances which have
similar features. We term such extended transition matrices
as cluster-dependent extended transition matrices.

We now show how to learn the cluster-dependent tran-
sition matrices as follows. Consider the training examples
(x1, . . . , xn), we cluster on their deep representations, i.e.,
(Ψ(x1), . . . ,Ψ(xn)) again to obtain different clusters. The
total number of the clusters is set to a small number, i.e., z.
Note that in Section 4.1, we have discussed how to detect
anchor points of closed-set classes and meta classes. Since we
need to estimate the cluster-dependent transition matrix for
each cluster, after deep clustering and obtaining z clusters,
we need to ensure that there are anchor points for each classes
in each cluster for accurate estimation. Therefore, when we
set the value of z for clustering, we need to ensure the
existence of anchor points in each cluster with such a value
of z. The overall procedure to learn the cluster-dependent
extended transition matrices is summarized in Algorithm 2.
After that, the training examples within the same cluster will
share the same cluster-dependent transition matrix.

4.3 Learning with importance reweighting

In the previous subsection, we have presented the methods
about how to learn the cluster-dependent extended transition
matrices to model the mixed instance-dependent label noise.
With the learned extended transition matrix T ?i (i = 1, . . . , z),
we employ the importance reweighting technique [6] to train
a robust classifier against mixed noisy labels. For the c-
class classification problem under the mixed label noise, by
exploiting the cluster-dependent extended transition matrices
T ? (we hide the index for simplifying), the empirical risk can
be formulated as:

R̃˜̀,n =
1

n

n∑
i=1

gỹi(xi)

(T ?>g)ỹi(xi)
`(f(xi), ỹi), (4)

Algorithm 2: Cluster-dependent Transition Matrices
Learning Algorithm

1 Input: Noisy training sample St, noisy validation
sample Sv , the number of cluster-dependent
transition matrices z;

2 Train a deep model by using the noisy data St and
Sv ;

3 Get the deep representations of the examples by
employing the trained deep network;

4 Detect the meta class as shown in Algorithm 1;
5 Detect anchor points used for estimation with

clustering;
6 Cluster on the deep representations of the examples

to obtain z clusters;
7 for i = 1, . . . , z do
8 Estimate Ti for the closed-set label noise;
9 Estimate T ◦i for the open-set label noise;

10 Obtain the cluster-dependent transition matrix
T ?i as discussed in Section 4.1;

11 end
12 Output: T ?1 , . . . , T

?
z .

where ` : Rc × Y → R+ is a surrogate loss function for c-
class classification, e.g., the cross-entropy loss. Here, g(x) is the
output of the softmax layer. We use arg maxj∈{1,...,c} gj(x)
to assign labels for the test data. Note that during training,
the T ? is determined according to the cluster to which the
example xi belongs. As we detect the anchor points from the
noisy training data, as did in [13], [14], [18], data points that
are similar to anchor points will be detected if there are no
anchor points available. Also, deep networks may have poor
confidence calibration. Then, the cluster-dependent extended
transition matrices will be poorly estimated. To handle
the issues, we follow [18] to revise the cluster-dependent
extended transition matrices, which helps lead to a better
classifier. We term the systemic proposed method for training
a robust classifier against mixed label noise as Extended T.
In more detail, Extended T -i means that the number of the
cluster-dependent transition matrices is set to i. In the next
section, we show that the proposed method can cope with
mixed closed-set and open-set noisy labels well.

5 EXPERIMENTS

In this section, we first introduce the methods for comparison
in the experiments (Section 5.1). We then introduce the details
of the experiments on synthetic datasets (Section 5.2). The
experiments on real-world datasets are finally presented
(Section 5.3 and Section 5.4).

5.1 Comparison methods
We compare the proposed method with the multiple ad-
vanced methods: (1) CE, which trains the deep models
with the standard cross entropy loss on noisy datasets.
(2) GCE [11], which handles label noise by exploiting the
negative Box-Cox transformation. (3) PCE [8], which boosts
the standard cross entropy loss with a partial trick. (4) PGCE
[8], which boosts GCE with a partial trick. (5) APL [35], which
combines two robust loss functions which boost each other.
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(6) DMI [36], which handles label noise from the perspective
of the information theory. (7) NLNL [37], which proposes
a novel learning method called Negative Learning (NL) to
reduce the side effect of label noise. (8) Co-teaching [20],
which trains two networks simultaneously and exchanges
the selected examples for network updating. (9) Co-teaching+
[10], which trains two networks simultaneously and finds
confident examples among the prediction disagreement data.
(10) JoCor [38], which reduces the diversity of networks to
improve the robustness. (11) S2E [4], which utilizes AutoML
to handle label noise. (12) Forward [13], which estimates
the class-dependent transition matrix to correct the training
loss. (13) T-Revision [18], which introduces a slack variable
to revise the estimated transition matrix and leads to a
better classifier. Note that we do not compare with some
state-of-the-art methods like SELF [39], DivideMix [9], and
EvidentialMix [17]. It is because their proposed methods are
aggregations of multiple advanced approaches, e.g., sample
selection, semi-supervised learning, and co-training, while
this work only focuses on one. Therefore, the comparison is
not fair. We implement all methods with default parameters
by PyTorch and conduct all the experiments on NVIDIA
Tesla V100 GPUs.

5.2 Experiments on synthetic noisy datasets

5.2.1 Datasets and implementation details
Datasets. We evaluate the robustness of the proposed
method on synthetic CIFAR-10 [40], which is popularly used
in learning with noisy labels. Original CIFAR-10 consists of
50,000 training images and 10,000 test images with 10 classes.
The size of images is 32×32×3. Note that the original CIFAR-
10 contains clean training labels. We thus corrupt the training
data manually to generate noisy labels. Specifically, for class-
dependent closed-set noise, we consider the symmetric noise
in the main paper [13]. For instance-dependent closed-set
noise, we borrow noise generation in [14]. For open-set noise,
we follow [1] and borrow the images from SVHN [41], CIFAR-
100 [40], and ImageNet32 (32×32×3 ImageNet images) [42] to
act as outside images. Note that only images whose labels
exclude 10 classes in CIFAR-10 are considered. We then use
the outside images to replace some training images in CIFAR-
10. This corresponds to the setting of Type I in [1]. For Type II
open-set noise, we consider the case where images damaged
by Gaussian random noise.

For the mixed noise that consists of class-dependent
closed-set noise, the overall noise rate τ ranges in
{0.2, 0.4, 0.6, 0.8}. The proportion ρ of open-set noise ranges
in {0.25, 0.5, 0.75}. For the mixed noise that consists of
instance-dependent closed-set noise, the overall noise rate
τ ranges in {0.2, 0.4, 0.6}. The range of the proportion ρ is
not changed. The purpose of doing so is to ensure that clean
labels is diagonally dominated in noisy classes [14], [16]. As
we focus on learning with mixed noisy labels in this paper,
we do not set ρ to be zero. We leave out 10% of noisy training
data as a validation set. Note that even validation set is noisy,
it still can be used for model selection effectively [39]. To
avoid randomness, results are reported over five trials.
Implementation. We employ a PreAct ResNet-18 network
[43]. For learning the transition matrix, we follow the
optimization method in [13], [18]. We next use the SGD

optimizer with momentum 0.9, batch size 128, and weight
decay 5×10−4 to initialize the network. The initial learning
rate is set to 10−2, and divided by 10 after the 40th epochs
and 80th epochs. 100 epochs are set totally. Following [18], we
then exploit the Adam optimizer with a learning rate 5×10−7

to revise the transition matrix. Typical data augmentations
including random crop and horizontal flip are applied.

We use up-to-three cluster-dependent transition matrices,
i.e., Extended T -3. We consider it is possible that the
proposed method show higher performance if we set a larger
number of clusters, e.g., Extended T -5 or T -6. However,
too many cluster-dependent transition matrices may make
optimization difficult. It is hard to achieve an optimal choice
of the number of used cluster-dependent transition matrices
theoretically. In more detail, in the first perspective of data,
it is difficult to achieve an optimal choice of the number of
the clusters. In the second perspective of learning models,
it is difficult to determine the optimal choice, since we
need an accurate quantification for the model capacity and
approximation power. The quantification is still mysterious
for the whole community, even though learning with clean
labels. In this paper, we empirically determine the number of
cluster-dependent transition matrices to justify our claims.

5.2.2 Analyses of classification accuracy

We report comprehensive experimental results with class-
dependent closed-set noise in Table 1 and 2 and results with
instance-dependent closed-set noise in Table 3 and 4. More
experimental results are provided in Appendix A.

For CIFAR-10+SVHN with class-dependent closed-set
noise, we can clearly see that the proposed method con-
sistently outperforms the prior state-of-the-art approaches
for learning with mixed label noise. Specifically, in the cases
of high label noise rates, e.g., τ = 0.6 and τ = 0.8, our
method Extended T -3 achieves the best classification per-
formance. This means that the proposed cluster-dependent
transition matrices can reduce the estimation error brought
by randomness and uncertainty in the estimation process,
which helps lead to better classifiers. For CIFAR-10+Gaussian
with class-dependent closed-set noise, we can see that when
the noise rate is low, e.g., τ = 0.2, DMI outperforms the
proposed method slightly. When the noise rate increases, the
proposed method consistently outperforms all baselines. To
sum up, the synthetic experiments reveal that our method is
powerful in handling mixed label noise, particularly in the
case of high noise rates.

For CIFAR-10+SVHN with instance-dependent closed-set
noise, in the case where τ = 0.2 and ρ = 0.25, S2E achieves
the best performance. In the other cases, the proposed
method surpasses the baselines. The experimental results
on CIFAR10+Gaussian is similar. Note that the proposed
Extended T -3 almost outperforms Extended T and Extended
T -2 all the time. Such results show that the cluster-dependent
transition matrices can better approximate the instance-
dependent transition matrices than the class-dependent
transition matrix.

5.2.3 Discussion on classification accuracy

We further discuss the negative impact of closed/open-set
label noise based on the above experimental results. As
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Method τ 0.2 0.4 0.6 0.8
ρ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CE 90.01
±0.12

89.82
±0.35

90.18
±0.16

87.82
±0.35

88.20
±0.16

88.27
±0.17

83.18
±0.65

84.91
±0.11

86.44
±0.67

75.07
±0.85

78.44
±0.92

81.72
±0.34

GCE 90.71
±0.20

90.56
±0.22

90.88
±0.20

90.04
±0.21

90.06
±0.25

89.54
±0.14

85.82
±0.22

86.21
±0.26

86.26
±0.16

82.57
±0.76

83.80
±0.28

84.12
±0.29

PCE 90.55
±0.10

90.04
±0.12

90.36
±0.37

88.73
±0.70

88.75
±0.54

87.29
±0.61

84.05
±0.88

85.02
±0.30

85.26
±0.93

83.15
±0.36

82.33
±1.27

82.29
±1.48

PGCE 90.62
±0.10

90.04
±0.28

90.46
±0.42

89.22
±0.36

90.17
±0.83

90.16
±0.50

85.77
±0.42

86.01
±0.67

86.04
±1.09

80.36
±1.44

82.63
±0.92

83.12
±0.97

APL 90.23
±0.17

90.53
±0.14

90.01
±0.38

90.21
±0.25

88.25
±0.29

88.21
±0.43

84.27
±0.39

84.51
±0.37

84.52
±0.29

82.95
±0.18

82.02
±0.50

82.11
±0.36

DMI 90.71
±0.10

90.04
±0.33

90.58
±0.17

89.87
±0.72

89.94
±0.27

89.02
±0.47

85.96
±0.85

85.21
±0.64

85.76
±0.95

81.95
±1.07

82.01
±0.78

80.27
±0.60

NLNL 89.85
±0.19

89.72
±0.32

89.98
±0.27

87.39
±0.28

87.80
±0.50

88.78
±0.29

82.90
±0.55

84.58
±0.41

84.37
±0.72

76.39
±0.59

79.65
±0.54

78.39
±1.08

Co-teaching 90.50
±0.07

90.62
±0.15

90.87
±0.13

86.64
±0.25

87.48
±0.40

87.31
±0.28

75.10
±0.48

76.25
±1.08

78.78
±2.48

46.36
±2.22

49.20
±2.89

53.44
±2.34

Co-teaching+ 88.46
±0.54

89.51
±0.38

88.32
±0.40

86.39
±0.51

86.71
±0.21

84.92
±0.56

63.18
±4.87

65.29
±9.84

56.41
±8.83

10.07
±1.07

17.06
±8.07

15.38
±2.93

JoCor 88.25
±0.06

89.15
±0.21

89.15
±0.45

84.16
±1.07

82.12
±1.03

82.02
±0.74

67.29
±1.23

69.02
±1.72

71.70
±1.73

43.93
±0.32

42.82
±1.31

40.12
±3.44

S2E 89.42
±1.35

89.68
±1.13

89.87
±1.80

88.24
±2.48

88.99
±1.94

88.78
±1.57

81.16
±2.49

85.44
±1.62

85.48
±2.32

57.45
±4.17

74.16
±4.52

78.39
±3.46

Forward 89.37
±0.14

89.27
±0.86

89.64
±0.80

87.54
±0.24

87.76
±0.54

87.01
±0.39

80.19
±2.72

83.21
±0.89

83.92
±1.98

78.05
±2.02

80.32
±1.84

78.66
±1.72

T-Revision 90.23
±0.14

89.97
±0.23

90.02
±0.14

88.68
±0.24

88.79
±0.29

89.02
±0.47

85.07
±1.03

85.37
±1.09

85.42
±0.83

81.04
±2.04

81.36
±0.97

82.98
±1.17

Extended T 90.86
±0.13

90.89
±0.28

90.78
±0.16

90.94
±0.22

90.72
±0.37

90.68
±0.38

87.34
±0.38

86.92
±0.93

87.18
±0.75

83.68
±0.47

83.94
±1.02

84.83
±1.42

Extended T -2 90.92
±0.08

90.58
±0.54

91.03
±0.22

90.73
±0.28

90.54
±0.30

90.42
±0.51

87.32
±0.77

87.03
±1.07

87.08
±0.99

84.02
±0.76

84.02
±1.08

84.77
±1.53

Extended T -3 90.89
±0.17

90.77
±0.18

91.02
±0.17

90.67
±0.42

90.67
±0.41

90.72
±0.69

87.48
±0.63

87.19
±0.92

87.29
±0.73

84.42
±0.93

84.31
±0.94

84.88
±1.07

TABLE 1: Mean and standard deviations of test accuracies (%) on CIFAR-10+SVHN with class-dependent closed-set noise. The
experimental results with the best mean are bolded.

Method τ 0.2 0.4 0.6 0.8
ρ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CE 89.05
±0.40

89.02
±0.31

88.93
±0.76

87.65
±0.31

86.26
±0.98

86.37
±0.52

82.62
±0.83

82.15
±0.47

81.09
±1.74

74.22
±1.42

76.72
±1.90

77.83
±1.29

GCE 90.01
±0.22

90.30
±0.47

90.04
±0.27

88.68
±0.72

88.65
±0.72

87.88
±0.94

85.24
±0.92

86.24
±0.95

86.02
±0.73

80.75
±0.85

81.29
±1.72

81.74
±1.96

PCE 90.21
±0.12

89.37
±0.25

90.33
±0.86

88.12
±0.77

87.88
±0.92

88.12
±0.35

86.32
±1.01

85.21
±0.84

86.02
±0.77

78.92
±0.66

77.92
±3.63

78.22
±1.04

PGCE 90.05
±0.27

90.92
±0.37

90.22
±0.63

89.38
±0.26

89.05
±0.29

88.68
±0.74

86.05
±1.82

87.02
±0.77

85.36
±0.92

80.12
±1.25

81.09
±2.71

80.20
±2.67

APL 88.62
±0.77

89.05
±0.66

89.12
±0.37

89.02
±0.46

88.15
±0.49

87.92
±0.47

84.22
±0.95

85.12
±0.76

85.19
±1.06

79.33
±1.43

80.15
±0.98

81.12
±1.07

DMI 90.45
±0.13

90.82
±0.16

91.05
±0.28

89.37
±0.63

89.32
±0.72

88.36
±1.96

85.47
±0.92

85.15
±0.67

85.88
±0.70

76.45
±0.92

76.37
±2.03

76.73
±2.47

NLNL 89.32
±0.27

89.34
±0.58

88.79
±0.47

87.21
±0.26

87.05
±0.34

86.92
±0.80

83.11
±0.38

83.15
±0.67

82.18
±0.94

75.24
±0.73

78.63
±0.62

77.45
±1.57

Co-teaching 90.42
±0.08

90.10
±0.27

89.97
±0.25

86.52
±0.42

87.02
±0.59

87.22
±0.47

78.65
±0.93

79.85
±1.02

77.78
±1.25

50.92
±2.77

51.33
±2.06

52.70
±1.89

Co-teaching+ 89.45
±0.28

89.27
±0.19

88.65
±0.41

86.05
±0.52

85.77
±0.82

86.07
±0.39

75.62
±2.73

76.88
±2.95

75.62
±0.95

30.98
±9.83

30.06
±9.77

28.65
±8.84

JoCor 88.15
±0.27

88.45
±0.53

88.29
±0.27

81.22
±0.73

82.16
±0.83

83.05
±1.04

66.27
±0.95

68.22
±1.93

67.45
±1.80

42.86
±2.36

43.71
±3.05

44.05
±1.52

S2E 90.21
±0.17

89.37
±0.98

89.92
±0.40

88.27
±1.73

88.43
±1.63

87.93
±1.99

80.59
±4.06

81.22
±4.24

81.77
±3.81

70.54
±5.64

72.88
±5.13

76.46
±3.95

Forward 88.25
±0.32

89.02
±0.45

89.10
±0.96

87.24
±0.77

86.73
±0.92

86.30
±1.00

84.15
±0.46

84.16
±0.68

84.25
±0.82

77.58
±2.63

78.94
±2.72

78.92
±3.02

T-Revision 89.26
±0.88

89.65
±0.39

89.67
±0.47

89.05
±0.34

88.56
±0.45

88.06
±0.92

85.67
±1.03

85.26
±0.90

85.21
±0.79

80.25
±1.91

80.77
±2.60

80.73
±2.41

Extended T 90.42
±0.18

90.80
±0.31

90.30
±0.43

89.78
±0.77

90.03
±0.52

90.05
±0.62

87.02
±0.92

88.24
±1.02

86.33
±0.64

83.83
±0.85

84.52
±1.90

83.14
±0.66

Extended T -2 90.33
±0.63

91.05
±0.09

91.02
±0.18

89.23
±0.74

89.73
±0.72

90.02
±0.72

88.31
±1.02

88.01
±1.17

86.52
±1.01

84.22
±1.16

83.92
±0.97

83.92
±1.09

Extended T -3 90.32
±0.71

91.03
±0.18

90.53
±0.56

90.01
±0.17

90.03
±0.71

89.88
±0.47

87.55
±1.37

87.02
±0.83

86.67
±0.89

83.89
±2.03

84.36
±1.82

84.05
±1.43

TABLE 2: Mean and standard deviations of test accuracies (%) on CIFAR-10+Gaussian with class-dependent closed-set noise.
The experimental results with the best mean are bolded.

we can see, when we increase the proportion of the open-
set noisy labels (with a fixed τ ), there is no significant
degradation for the classification performance of baselines
and the proposed method. Additionally, in some cases, the

classification performance is improved with an increasing ρ.
We conduct some discussions for this.

For the training examples with closed- or open-set incor-
rect labels, they all have out-of-distribution inputs. Specifically,
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Method τ 0.2 0.4 0.6
ρ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CE 89.72
±0.30

89.02
±0.45

88.70
±0.25

83.12
±1.25

85.03
±0.62

84.32
±0.68

65.80
±4.74

81.04
±2.77

82.46
±1.92

GCE 89.14
±0.21

89.06
±0.35

88.27
±0.71

84.71
±0.92

84.88
±0.90

85.02
±0.73

72.62
±3.75

81.02
±0.94

83.02
±0.67

PCE 88.36
±0.40

88.24
±0.42

88.49
±0.47

84.44
±0.77

85.87
±0.99

85.74
±0.84

72.67
±3.26

82.06
±0.74

82.74
±1.08

PGCE 89.02
±0.16

88.02
±0.72

87.69
±1.46

84.06
±1.30

85.22
±1.06

85.62
±0.88

70.64
±4.79

81.05
±1.92

82.02
±1.45

APL 88.62
±0.70

87.92
±0.62

88.50
±0.46

82.05
±0.42

82.68
±1.33

82.94
±1.77

62.06
±9.87

78.22
±5.42

78.03
±4.46

DMI 90.04
±0.12

89.76
±0.46

89.04
±0.16

83.97
±0.79

84.89
±0.77

85.05
±0.90

71.83
±4.33

81.54
±1.40

83.88
±1.17

NLNL 87.33
±0.62

88.16
±0.64

88.79
±0.75

79.22
±2.52

81.22
±0.79

82.02
±0.83

57.14
±8.72

76.88
±3.76

77.27
±4.02

Co-teaching 89.34
±0.45

89.67
±0.20

89.20
±0.73

78.25
±3.02

80.15
±2.93

81.22
±0.97

69.66
±4.27

75.22
±2.04

77.83
±0.96

Co-teaching+ 88.25
±0.45

88.10
±0.94

88.20
±0.37

83.36
±1.07

82.97
±1.43

84.65
±0.92

43.83
±7.81

70.30
±2.91

74.65
±4.87

JoCor 88.01
±0.25

87.04
±0.82

88.07
±0.42

80.22
±0.52

80.50
±1.02

81.62
±0.77

65.02
±2.04

73.63
±1.95

75.28
±0.95

S2E 90.45
±0.91

89.78
±1.43

90.04
±1.73

85.62
±1.71

86.04
±1.90

86.02
±1.41

70.29
±6.20

81.95
±3.09

82.09
±2.71

Forward 88.01
±0.46

88.12
±0.29

88.10
±0.62

83.12
±1.17

84.15
±1.26

85.14
±0.76

68.90
±1.52

79.33
±3.66

81.37
±2.42

T-Revision 89.47
±0.76

89.52
±0.83

89.66
±0.44

86.15
±0.92

86.17
±1.24

86.92
±1.07

73.06
±2.96

83.98
±0.95

84.77
±2.10

Extended T 89.88
±0.36

89.67
±0.19

89.70
±0.52

86.58
±0.94

86.62
±1.09

87.15
±1.05

74.96
±2.02

84.09
±1.72

85.92
±1.72

Extended T -2 89.93
±0.19

90.01
±0.43

90.14
±0.36

86.72
±0.78

87.01
±0.82

87.31
±0.90

75.33
±2.01

84.55
±0.78

85.94
±1.29

Extended T -3 90.20
±0.52

90.10
±0.47

90.25
±0.38

87.26
±1.28

87.39
±1.21

87.58
±1.37

76.01
±1.33

84.77
±1.09

86.00
±1.90

TABLE 3: Mean and standard deviations of test accuracies (%) on CIFAR-10+SVHN with instance-dependent closed-set noise.
The experimental results with the best mean are bolded.

Method τ 0.2 0.4 0.6
ρ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CE 87.33
±0.21

88.90
±0.73

89.25
±0.38

84.33
±0.70

85.02
±0.77

84.06
±1.05

67.92
±4.09

80.05
±3.05

81.25
±2.32

GCE 89.20
±0.37

89.06
±0.11

89.27
±0.53

84.17
±0.37

85.06
±0.83

85.04
±0.95

73.40
±3.08

80.24
±1.27

81.33
±1.64

PCE 88.92
±0.30

88.92
±0.31

89.06
±0.78

84.64
±0.96

85.32
±0.71

84.92
±0.46

73.25
±2.37

81.06
±3.08

80.25
±2.93

PGCE 89.62
±0.33

89.65
±0.72

89.31
±1.07

83.92
±1.67

84.92
±0.47

85.01
±0.90

70.06
±6.72

80.35
±2.62

81.37
±1.69

APL 88.09
±0.87

88.21
±0.39

89.05
±0.92

83.26
±0.72

84.64
±1.58

84.72
±1.21

65.82
±5.09

78.66
±1.81

79.65
±1.93

DMI 89.03
±1.02

89.33
±0.40

89.63
±0.59

84.79
±0.61

84.63
±0.98

84.61
±0.92

71.82
±3.77

82.45
±2.94

82.77
±2.61

NLNL 88.02
±0.36

88.44
±0.29

88.45
±0.24

80.11
±2.05

81.66
±0.91

82.35
±1.23

58.83
±5.04

75.32
±2.83

77.36
±1.81

Co-teaching 89.93
±0.20

89.76
±0.74

90.01
±0.46

82.35
±1.10

80.12
±1.17

81.15
±0.94

67.35
±4.31

73.62
±0.95

78.68
±1.62

Co-teaching+ 88.26
±0.35

89.65
±0.42

89.33
±0.59

82.79
±2.04

79.82
±3.17

82.33
±2.51

50.77
±6.63

72.77
±3.59

75.29
±5.46

JoCor 88.09
±0.32

88.52
±0.93

88.03
±0.45

80.65
±0.96

80.23
±1.05

81.68
±1.22

63.83
±2.91

71.05
±3.15

76.44
±3.17

S2E 89.70
±1.03

89.75
±1.07

89.93
±1.25

85.24
±1.47

83.77
±2.04

84.25
±1.97

66.82
±3.90

78.68
±2.73

81.37
±2.15

Forward 88.54
±0.60

88.27
±0.48

88.36
±0.59

82.07
±2.06

83.75
±1.26

83.32
±1.73

68.17
±3.96

78.27
±3.27

81.05
±1.98

T-Revision 89.62
±0.84

89.77
±0.92

90.05
±0.79

85.22
±0.99

85.06
±1.07

85.34
±1.87

73.42
±2.94

82.30
±1.95

83.08
±1.49

Extended T 89.77
±0.26

90.05
±0.64

90.08
±0.62

85.39
±0.65

86.08
±1.24

85.38
±1.27

73.92
±2.89

83.17
±1.42

83.45
±1.63

Extended T -2 89.92
±0.64

90.19
±0.73

90.14
±0.62

86.01
±1.26

86.19
±1.43

85.62
±1.54

74.05
±1.83

83.62
±2.01

83.92
±1.99

Extended T -3 89.97
±0.90

90.10
±0.58

90.16
±0.36

86.27
±0.92

86.36
±1.89

86.01
±1.53

74.55
±1.04

84.01
±1.75

84.19
±1.84

TABLE 4: Mean and standard deviations of test accuracies (%) on CIFAR-10+Gaussian with instance-dependent closed-set noise.
The experimental results with the best mean are bolded.

for the training examples with closed-set (resp. open-set)
incorrect labels, they have out-of-distribution labels (resp.
instances). Empirically, open-set noisy labels would be more
harmful to degenerate the classification performance if deep
models are severely overfitted [1]. This seems to a bit con-
tradict the results in this paper. However, this contradiction

comes from different experimental settings compared with
[1]. To be specific, in this paper, we follow a standard machine
learning paradigm [44] and use a noisy validation set for
early stopping, which exploits the memorization effect of
deep models [20], [45]. Although the examples with open-
set incorrect labels may bring more serious degradation
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to the performance if the networks severely overfit them,
in the early training stage, e.g., before early stopping, the
networks mainly fit the examples with clean labels [4], [45].
The examples with open-set incorrect labels are more likely
identified as outliers and hard to be fitted. Therefore, they
do not do much harm. Such explanations and analyses are
similar to those in [1], which are mainly conducted with
experiments.

5.2.4 Estimation and visualization results
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Fig. 2: Illustrations of the transition matrix estimation errors.
Figure (a) illustrates the estimation error for modeling open-
set label noise. Figure (b) illustrates the estimation error
for modeling mixed label noise. The error bar for standard
deviation in each figure has been shaded.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3: Illustrations of the visualization results on the CIFAR-
10+SVHN dataset with class-dependent closed-set noise.

We report the estimation error of the transition matrix
T ◦ for open-set noise, and of the transition matrix T ?

for mixed noise. Note that only our method extends the
traditional transition matrix to model the open-set noise and
further model the mixed noise. Therefore, we do not report
the estimation results of other model-based methods. The
experiments are conducted on CIFAR10+SVHN. Here, we
consider controlled class-dependent closed-set noise. It is

because we can show the estimation results more clearly. The
estimation errors are calculated with `1 norm. The results are
presented in Fig. 2.

Note that we use clustering on deep representations
as discussed. Here we visualize the results for better jus-
tification. The experiments are also conducted on CIFAR-
10+SVHN with class-dependent closed-set noise. We exploit
2D t-SNE [46]. The visualizations are provided in Fig. 3. We
simply set the meta class to class 10. We can see, under our
settings, deep representations exhibit clustering properties [32].
In fact, for the proposed method, we do not need perfect
clustering performance, as we only aim to detect a small
number of anchor points belonging to the meta class, which
are close to the centroid of the meta class cluster. It is possible
that there are few data points belonging to the closed-set
classes in the meta class cluster. We can choose multiple data
points in the meta class cluster to estimate the transition
matrix, which can alleviate the mentioned issue [31]. All
experimental results verify the effectiveness of the proposed
method and justify our claims well.

5.3 Experiments on Clothing1M
5.3.1 Implementation details
We verify the effectiveness of our method on the real-world
noisy dataset Clothing1M [2]. Clothing1M has 1M images with
real-world noisy labels, and 50k, 14k, 10k images with clean
labels for training, validating, testing, but with 14 classes.
Note that we do not use the 50k and 14k clean data in
all the experiments, since it is more practical that there is
no available clean data. For preprocessing, we resize the
image to 256×256, crop the middle 224×224 as input, and
perform normalization. We leave 10% noisy training data as
a validation set for model selection.

Following prior works [7], [13], [18], we exploit a ResNet-
50 pre-trained on ImageNet. As did in [14], we only exploit
1M noisy data to initialize the network and estimate the
transition matrices. For initialization, we use SGD with
momentum 0.9, weight decay 10−3, batch size 32, and
run with learning rates 10−3 and 10−4 for 5 epochs each.
For revising the transition matrices, Adam is used and the
learning rate is changed to 5× 10−7.

5.3.2 Experimental results
The experimental results on Clothing1M are shown in Ta-
ble 5. As can be seen, the proposed method significantly
outperforms the baselines. Moreover, the cluster-dependent
transition matrices make the networks more robust against
real-world noise. Extended T -3 can achieve a +1.24% im-
provement over Extended T .

5.4 Experiments on real-world face datasets
5.4.1 Datasets and implementation details
Training data. The training datasets include VggFace-2 [47]
and MS1MV0 [48]. VggFace-2 is a noisy dataset collected
from Google image search. MS1MV0 is a raw dataset with a
large amount of noisy labels [49], [50].
Test data. We use four popular benchmarks as test datasets,
including CFP [51], AgeDB [52], CALFW [53], and CPLFW
[54]. For test data used for experiments on real-world face
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Method CE GCE PCE PGCE APL DMI NLNL Co-teaching
Accuracy 68.88 69.45 69.48 69.93 54.46 70.12 43.92 67.94
Method Co-teaching+ JoCor S2E Forward T-Revision Extended T Extended T -2 Extended T -3

Accuracy 66.52 69.06 68.03 69.91 70.97 71.35 71.82 72.59

TABLE 5: Test accuracies (%) of different methods training on Clothing1M. The best results are bolded.

datasets, CFP consists of face images of celebrities in frontal
and profile views. AgeDB contains images annotated with
accurate to the year, noise-free labels. CALFW considers a
more general cross-age situation and provides a face image
set with large intra-class variations. CPLFW is similar to
CALFW, but considers a cross-pose case. The important
statistics of the datasets are summarized in Table 6.

Datasets #Identities #Images

Train VggFace-2 [47] 9.1K 3.3M
MS1MV0 [48] 100K 10M

Test

CFP [51] 500 7,000
AgeDB [52] 568 16,488
CALFW [53] 5,749 12,174
CPLFW [54] 5,749 11,652

TABLE 6: Face datasets for training and testing.

Data processing. We follow ArcFace [55] to generate the nor-
malised face crops by exploiting five facial points (two eyes,
nose tip, and two mouth corners) predicted by RetinaFace
[56]. The size of the face crops is 112×112.
Network structure and activation function. To be fair,
in this paper, we employ the same architecture and the
activation function for testing different baselines. We use
MobileFaceNet [57] and Arc-Softmax [55], which are popular
in the face recognition task. The dimension of the face
embedding feature is 512. For the angular margin m and
feature scale s, we set 0.5 and 32, respectively.
Training and testing. At the training stage, we train the deep
models with SGD with momentum 0.9, with a total batch
size 512 on 4 GPUs parallelly and weight decay 5 × 10−4.
For learning an initial classifier, the learning rate is initially
0.1 and divided by 10 at the 5th, 10th, and 15th epochs. We
set 20 epochs in total. For learning the classifier and slack
variable, Adam is used and the learning rate is changed to
5× 10−7. At the test stage, we use MobileFaceNet to extract
the 512-D feature embeddings of test face images. We follow
the unrestricted with labelled outside data protocol [58] to
report the verification performance on test face datasets.

5.4.2 Experimental results

We use two training datasets, i.e., VggFace-2 and MS1MV0, to
separately train the deep networks. In Table 7 and 8, we show
the results of the proposed method and baselines on CFP
[51], AgeDB [52], CALFW [53], and CPLFW [54], respectively.
We can observe that most of the results obtained by training
on VggFace-2 are higher than the results on MS1MV0. It
is because that MS1MV0 contains more noisy labels, and
therefore is more challenging [12], [50]. To our method, we
can effectively model the mixed noise, and thus can achieve
higher performance than the baselines. Specifically, when
training on VggFace-2, Extended T consistently outperforms
the baselines. The improvement of classification performance
brought by changing the number of clusters is not too obvi-
ous. It is because that the noise rate of VggFace-2 is low [55].
When training on MS1MV0, we can see that the proposed

Method CFP AgeDB CALFW CPLFW Ave.
CE 95.30 92.69 89.94 85.97 90.98
GCE 94.26 91.06 89.98 85.28 90.15
PCE 94.05 91.33 90.19 84.62 90.05
PGCE 93.92 91.25 90.39 84.77 90.08
APL 94.16 90.29 88.32 85.09 89.47
DMI 94.39 92.83 90.06 85.86 90.79
NLNL 86.74 87.63 84.79 80.06 84.81
Co-teaching 95.47 92.53 89.58 85.32 90.73
Co-teaching+ 95.26 92.01 85.12 85.19 89.40
JoCor 92.32 90.97 84.58 82.11 87.50
S2E 92.09 91.64 89.70 84.63 89.52
Forward 95.07 92.40 89.10 85.79 90.59
T-Revision 95.38 92.79 89.86 85.94 90.99
Extended T 95.57 93.06 90.33 86.24 91.30
Extended T -2 95.59 93.15 90.42 86.36 91.38
Extended T -3 95.73 93.14 90.67 86.52 91.51

TABLE 7: Test accuracies (%) of different methods training
on VggFace-2. The best results are bolded.

Method CFP AgeDB CALFW CPLFW Ave.
CE 88.79 92.35 91.36 82.92 88.86
GCE 89.02 91.87 91.32 82.77 88.75
PCE 89.33 90.62 91.72 83.06 88.68
PGCE 90.36 91.25 91.94 83.75 89.33
APL 87.06 91.55 91.29 82.02 87.98
DMI 89.02 92.18 90.94 83.01 88.79
NLNL 83.06 85.47 84.21 74.02 81.69
Co-teaching 91.25 93.05 91.24 84.02 89.89
Co-teaching+ 91.36 91.87 90.93 84.53 89.67
JoCor 86.16 89.30 88.09 79.84 85.85
S2E 91.52 91.61 91.03 81.47 88.91
Forward 90.02 92.32 91.28 82.95 89.14
T-Revision 90.29 92.49 91.60 83.82 89.55
Extended T 90.33 92.59 91.65 83.91 89.62
Extended T -2 91.65 93.05 92.30 84.67 90.42
Extended T -3 92.08 93.71 92.61 85.31 90.93

TABLE 8: Test accuracies (%) of different methods training
on MS1MV0. The best results are bolded.

method surpasses the baselines again. Specifically, compared
with Forward and T-Revision, the proposed method leads
them clearly. Compared with the methods which empirically
work well, the proposed method still outperforms them.
It is worth noting that the cluster-dependent transition
matrices bring a significant performance improvement. The
improvement shows that the cluster-dependent transition
matrices can model the complex label noise more accurately
in this realistic scenario.

6 CONCLUSION

In this paper, we investigate into learning with mixed closed-
set and open-set noisy labels, which is more practical but
lacks systematic study in current works. We extend the
traditional transition matrices to be able to model mixed
label noise and exploit the cluster-dependent transition
matrix to better handle the instance-dependent label noise.
Empirical evaluations on synthetic and real-world datasets
show the effectiveness of the proposed method for modeling
label noise and leading to better classifiers. We believe that
our work will urge the research community to explore the
robustness of algorithms in this realistic noisy label scenario.
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