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Abstract—Parametrisation of the shape of deformable objects
is of paramount importance in many computer vision applica-
tions. Many state-of-the-art statistical deformable models per-
form landmark localisation via optimising an objective function
over a certain parametrisation of the object’s shape. Arguably,
the most popular way is by employing statistical techniques.
The points of shape samples of an object lie in a 2D lattice
and they are normally represented by concatenating the 2D
coordinates into a vector. As the 2D coordinates can be naturally
represented as a complex number, in this paper we study
statistical complex number representations of an object’s shape.
In particular, we show that the real representation provides
a similar statistical prior as the widely linear complex model,
while the circular complex representation results in a much more
condensed encoding.

I. INTRODUCTION

The problem of shape representation has created a wealth
of research in the fields of computer vision and pattern
recognition [1], [2], [3], [4], [5]. Seminal first works included
analysis of shapes via the use of non-linear morphological
operators [1], [2]. In the early 2000s, the seminal shape rep-
resentation for matching was the, so-called, shape context [3],
which employs a histogram-based manner in order to describe
the coarse arrangement of the shape with respect to a point that
lies either inside or on the boundary of the shape. Recently, a
very interesting method was proposed [4] that represents the
shape as a non-linear surface, learned via the application of
one-class Support Vector Machine (SVM), as well as a method
to design rotation-invariant kernels for shape matching [5]. Ad-
ditionally, state-of-the-art discriminative shape representations
learned via the application of deep learning strategies [6] have
been currently employed.

In this paper, we propose to learn statistical representations
in the complex domain, rather than the real. This is motivated
by the fact that 2D shapes can be naturally represented via
the use of complex numbers. A lot of research has been
recently conducted within the signal processing community
towards the, so-called, Widely Linear Models (WLM) [7], [8],
[9], [10]. Statistical representations in the WLM assume that
the complex vector is written as a linear combination of the
complex and the complex conjugate part. We show that the
WLM representation provides a statistical prior space that is
equivalent to the space learned via the concatenation of the
real and imaginary parts of the shape (i.e., concatenation of

x and y coordinates). On the contrary, we show that under
the assumption that the shapes are proper complex random
vectors and by performing circular complex PCA, we end up
with much more condensed representations.

To the best of our knowledge, the complex shape repre-
sentations have only been used in order to achieve rotation
invariance for the task of shape matching [5] and fitting [11].
In these works, in order to achieve rotation invariance the
shape feature vectors need to be described using the complex
Bingham distribution [12]. Unfortunately, there is not a known
solution to estimate the normalising constant of a complex
Bingham distribution, hence it is approximated by a zero-mean
complex Gaussian [13].

In summary the contributions of this paper are
• We study the first, to the best of our knowledge, linear

complex shape representation for the purpose of learning
statistical shape priors.

• We show that the standard representation that is currently
used in order to learn a statistical shape parametrisation
have the same representation power as WLM.

• We show that by treating shapes as proper complex
random vectors, we end up with a much more condensed
statistical representation.

II. SHAPE REPRESENTATION

A shape representation is a function that maps a number of
features to a given shape. A very common way to describe a
shape is by using a finite number of points, called landmarks.
In the following subsections, we present how landmarks can
be represented in different spaces and experimentally show the
advantages and disadvantages of each representation.

A. Real Representation

The simplest and more straightforward method to represent
the i-th landmark of a two-dimensional shape s is by the vector
of its Cartesian coordinates in the real plane as li = [x, y]T .
The shape vector can then be retrieved by concatenating the
vectors of all n landmarks into a single vector as sr =
[lT1 , . . . , l

T
n ]T = [x1, y1, . . . , xn, yn]T , xi, yi ∈ R.

Thus, the shape space defined within the real domain can
be denoted as S ⊂ R2n. Note that this approach is adopted
by the majority of deformable models in the computer vision
literature.



B. Complex Representation

A 2D landmark can also be naturally represented as a
complex number. Kendall [14] was the first that proposed this
approach. Specifically, [14] introduces the concept of “pre-
shapes”, which are complex vectors reformed in a suitable way
in order to ensure translation, scale and rotation invariance.

In our case, we use the complex shape vectors (the “raw”
landmarks [14]) instead of the “pre-shapes”. By denoting a
landmark in the complex space as zi = xi + iyi, then a
complex shape vector is defined as sc = [z1, . . . , zn]T =
[x1+iy1, . . . , xn+iyn]T . Consequently, it can be readily seen
that this leads to an n-dimensional vector, thus the complex
shape space is Cn.

C. Widely Linear Representation

A new method to better handle complex data and exploit
second-order statistics was recently proposed [7]. This formu-
lation links the real and complex representations and highlights
the differences and relation between them. Furthermore, it
provides a more powerful and mathematically elegant way to
use complex data. In particular, instead of employing only
the complex data, we also take into consideration its complex
conjugate, so that the transformation depends linearly on both
of them. This is the reason why it was named Widely Linear.

Given the complex shape vector sc defined in Section II-B,
the augmented shape vector s is defined as the concatenation
of the complex shape with its conjugate, i.e.

s ,

[
sc
s∗c

]
∈ C2n

∗ (1)

Let us define an augmented matrix as block matrix with a
specific structure: the south-east block is the conjugate of the
north-west block, and the south-west block is the conjugate of
the north-east block, thus

A ,

[
A1 A2

A∗2 A∗1

]
(2)

A real composite shape vector, similar to the one we
defined in Section II-A, can be retrieved by concatenating
the real and imaginary parts of a complex shape vector as

s̃ ,

[
Re(sc)
Im(sc)

]
∈ R2n.

The two shape spaces C2n
∗ and R2n are isomorphic. The

isomorphism between them is a unitary matrix (up to a factor
2) Tn (TH

n Tn = TnTH
n = 2In) defined as

Tn =

[
In jIn
In −jIn

]
(3)

where In is an n × n identity matrix. Tn can be thought as
a linear map from the real data to the complex ones, namely
s = Tns̃⇒ s̃ = 1

2TH
n s

III. PCA IN DIFFERENT DOMAINS

Principal Component Analysis (PCA) [15] has been used for
many tasks such as dimensionality reduction and feature ex-
traction, lossy data compression, data visualization and model

construction. Furthermore, the application of PCA to acquire
low-dimensional face representations initiated the development
and application of CA techniques in computer vision. In the
following subsections, we first present the commonly-used
PCA application on real shape samples and, then, show how to
construct shape models by applying PCA on different domains.

A. Real Composite PCA

PCA was originally defined on real-valued random vari-
ables. In the case of complex data one can concatenate the
real and imaginary parts and perform an eigenanalysis in the
new composite real data. This approach, referred to as Real
Composite PCA (RCPCA), has the advantage of avoiding the
complex domain.

Specifically, as shown in Section II-C, the real composite
shape vector s̃ of n landmarks lays in the R2n domain. A
training set T of m such shape vectors can be formulated as
the matrix S̃ = [s̃1, . . . , s̃m] ∈ R2n×m. The sample covariance
matrix in R2n×2n is calculated as Σr = S̃S̃T

RCPCA aims to find an orthonormal subspace Ur ∈
R2n×k of k components so as to maximize the vari-
ance. This optimization problem is expressed as Ur =
arg max

Ur

tr[UT
r ΣrUr], s.t. UT

r Ur = I and the solution is

given by performing eigenanalysis on the covariance matrix
Σr, i.e. Σr = UrΛUT

r . Given the orthonormal basis Ur,
the mean shape s̄ and a vector of k parameters (weights)
p = [p1, , . . . , pk], a new shape instance can be generated us-
ing the function Sr ∈ R2n defined as Sr(Ur, s̄,p) = s̄+Urp.

B. Circular PCA

Another approach is to extend directly PCA to the complex
domain in a straightforward manner [7]. Instead of matrix
transpose, the conjugate transpose (or Hermitian) is employed
and the Hermitian covariance matrix is taken into account.
Eigenanalysis is performed as usual, and real eigenvalues
(because of the Hermitian covariance matrix) and complex
eigenvectors are calculated. This so-called Circular Principal
Component Analysis (CPCA) assumes implicitly that the data
are proper and circular. A complex random signal x is proper
if it is uncorrelated with its complex conjugate and circular
iff x and x′ = eiαx have the same probability distribution for
any given real α [16], [17]) and is optimized for circular data.
However, note that in most practical applications, data are not
circular and proper.

Let us assume that we have m complex training shape
vectors Sc = [s1c , . . . , s

m
c ] with sic ∈ Cn. The sample

covariance matrix in Cn×n is Σc = ScS
H
c In CPCA, a set

of bases Uc ∈ Cn×p can be retrieved by solving the fol-
lowing maximization problem Uc = arg max

Uc

tr[UH
c ΣcUc],

s.t. UH
c Uc = I. The solution of the above optimization

problem consists of the eigenvectors of the complex matrix
estimated by applying eigencomposition as Σc = UcΛcU

H
c .

Similar to RCPCA, given the orthonormal basis Uc, the
mean shape s̄c and a vector of k parameters (weights) p =
[p1, . . . , pk], a function Sc ∈ Cn can be defined which gener-
ates a complex shape instance as Sc(Uc, s̄c,p) = s̄c + Ucp.



Note that, contrary to the real domain, the parameters belong
in the complex domain, i.e. pi ∈ C, ∀i = 1, . . . , k.

C. Widely Linear PCA

The above complex PCA is optimal under a noise model of
a circular Gaussian. That is, it employs only the information
of the covariance Σc = ScS

H
c , assuming that the pseudo-

covariance C = ScS
T
c is zero. To incorporate the pseudo-

covariance information we have to use the augmented complex
random shapes. Widely Linear PCA (WLPCA) proposed in [7]
exploits the general non-circularity of complex data. WLPCA
is more general than CPCA and it has be shown that is related
to its isomorphic RCPCA [8].

Using the unitary transform in Eq. 3, the augmented covari-
ance matrix of a set of m complex augmented shape vectors
[s1, . . . , sm] can be defined as Σ = SSH = TnΣrT

H
n and

the corresponding problem for the widely linear approach is to
find a projection matrix U such that U = arg max

U
tr[UHΣU],

s.t. UHU = I. In order to solve the above optimization prob-
lem we need to perform the eigenvalue decomposition to the
augmented covariance matrix Σ. It has been shown [8], [18]
that the eigenvalues and eigenvectors of the augmented matrix
are related with the respective eigenvalues and eigenvectors of
the real covariance matrix Σr as U = TnUrT

H
m
2

.
Given an augmented subspace U, the corresponding mean

shape s̄ and a set of parameters p = [pT ,pH]T , a new shape
instance can be generated using the function

S(U, s̄,p) = s̄ + Up⇒ S(U, s̄,p) = s̄ + U1p + U2p
∗ (4)

where U1 and U2 are defined using the augmented matrix
structure of Eq. 2.

IV. EXPERIMENTS

In this section we present a comprehensive comparison of
the performance of the different shape representations. We
evaluate the reconstruction power of each shape representa-
tion for three different deformable objects, i.e. human body
and hands (articulated objects) as well as human face (non-
articulated object).
Databases We use the 68 points annotations provided by [19],
[20] for the well-known HELEN [21] (2000 images) and
LFPW [22] (811 images). All the images are collected from
Flickr and are captured under “in-the-wild” conditions, hence
they include a large variance of head poses and expressions.
We randomly separated the total of 2811 shapes into 2000 and
811 that were used for training and testing, respectively.

For the case of human body, we employ the Fashion-
Pose [23] dataset which is one of the few available databases
that include images captured in totally unconstrained condi-
tions. It is a recently collected dataset that contains 7543
annotated images which were acquired from online fashion
blogs. Each image contains a person where the full body is
visible and is annotated by 13 landmarks even in the images
where occlusions have occurred. Both the large variation of
dressing style and pose increase the difficulty of the dataset.

Originally, the training set contained 6543 images and the
testing set 1000 images. In our experiments, we keep the same
size for both of them.

Finally, in the case of human hand, we use our in-house
dataset which includes 1200 images that are manually an-
notated with 39 points. We collected the data from Google
Images, trying to acquire as much variability as possible. For
the purpose of our experiments, we split the dataset into two
sets of 1000 and 200 shapes that are used for training and
testing, respectively.
Results The evaluation of the employed shape representations
is based on the reconstruction error [24], [25]. The recon-
struction of a shape vector s in all domains can be retrieved
using the generalized equation sr = s̄+UUH(s− s̄), where U
denotes the basis and s̄ is the mean shape vector. Of course, U
and s̄ need to be replaced by the corresponding bases and mean
vectors of each domain. Given a matrix of m testing shape
vectors S and their reconstructions Sr, the reconstruction error
is computed as er = 1

m‖S− Sr‖2F .
Figure 1 shows the reconstruction error for all the shape

representations in the three different datasets. Complex cir-
cular representation outperforms the other two in all the
datasets even though the widely linear and the real model are
considered to be more general. This leads us to the conclusion
that the complex circular is more robust and more condensed
than the other two representations as it needs much fewer
components to succeed better results.

Figures 2, 3 and 4 demonstrate indicative shapes generated
by the real, complex and widely linear models, respectively.
Specifically, the central shape of each figure shows the mean
shape of the object. The shapes on the top and bottom of the
mean shape are synthesised using the first eigenvector (the
shape on the top is produced with a positive weight and the
one on the bottom with a negative). The shapes on the right
and left are generated from the second eigenvector. Finally, the
shapes on the main and secondary diagonals are synthesized
using the third and fourth components, respectively.

As it can be seen, the complex shape model is able to
include more information than the other two representations.
Widely linear and real representations have similar behaviour.
However, the complex eigenvectors are more condensed. For
example, in the case of face, the first eigenvector incorporates
both the horizontal (yaw) and vertical (pitch) pose, while the
real and widely linear representations require two components
to express the same deformations. This can be a valuable
advantage within the optimization procedure of a statistical de-
formable model (e.g. Active Appearance Model, Constrained
Local Model), since the search space of the cost function is
more compact.

V. CONCLUSION

In this paper we examined how to represent shape in
different ways and particularly in the complex domain. We
explained how to perform widely linear PCA and complex
PCA and what are the differences between them. Additionally,
we showed that the standard representation that is currently



0 10 20 30 40
0

2

4

6

Number of components

R
ec

o
n

st
ru

ct
io

n
 E

rr
o

r

Face Database

 

 

Real

Complex

Widely Linear

0 5 10 15
2

2.5

3

3.5

4

Number of components

R
ec

o
n
st

ru
ct

io
n
 E

rr
o
r

Body Database

 

 

Real

Complex

Widely Linear

0 10 20 30
0

2

4

6

Number of components

R
ec

o
n

st
ru

ct
io

n
 E

rr
o

r

Hand Database

 

 

Real

Complex

Widely Linear

Fig. 1. Reconstruction experiments on face (left), body (center) and hand (right) databases using the three shape representations.

Fig. 2. The mean shape and shape instances generated from the first four
eigenvectors for the real(left), complex(center) and widely linear(right) shape
representations for human face.

Fig. 3. The mean shape and shape instances generated from the first four
eigenvectors for the real(left), complex(center) and widely linear(right) shape
representations for human hand.

Fig. 4. The mean shape and shape instances generated from the first four
eigenvectors for the real(left), complex(center) and widely linear(right) shape
representations for human body.

used in order to learn a statistical shape parametrisation has the
same representation power as the widely linear model. Finally,
we examined the reconstruction and representation power of
each model on three different articulated and non-articulated
objects through quantitative and qualitative experimental re-
sults.
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