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ABSTRACT

Visual speech recognition models traditionally consist of two stages, feature extraction and classifi-

cation. Several deep learning approaches have been recently presented aiming to replace the feature

extraction stage by automatically extracting features from mouth images. However, research on si-

multaneously learning features and performing classification remains limited. In addition, most of

the existing methods require large amounts of data in order to achieve state-of-the-art performance,

otherwise they under-perform. In this work, an end-to-end visual speech recognition system is pre-

sented based on fully-connected layers and Long-Short Memory (LSTM) networks which is suitable

for small-scale datasets. The model consists of two streams: one which extract features directly from

the mouth images and one which extracts features from the difference images. A Bidirectional LSTM

(BLSTM) is used for modelling the temporal dynamics in each stream which are then fused via another

BLSTM. An absolute improvement of 0.6%, 3.4%, 3.9%, 11.4% over the state-of-the-art is reported

on the OuluVS2, CUAVE, AVLetters and AVLetters2 databases, respectively.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Visual speech recognition or lip-reading is the process

of recognising speech by observing only the lip move-

ments, i.e., the audio signal is ignored. The first works

in the field (Zhao et al., 2009; Potamianos et al., 2003;

Dupont and Luettin, 2000; Matthews et al., 2002) extract fea-

tures from a mouth region of interest (ROI) and attempt to

model their dynamics in order to recognise speech. Lip-reading

systems can enable the use of silent interfaces and also enhance

acoustic speech recognition in noisy environments since the vi-

sual signal is not affected by noise.

Traditionally, two stages have been used for visual speech

recognition systems: feature extraction from the mouth region

of interest (ROI) and classification (Potamianos et al., 2003;

Dupont and Luettin, 2000; Zhou et al., 2011). Dimensionality

reduction/compression methods, like Discrete Cosine Trans-

form (DCT), are the most common feature extraction approach

which results in a compact representation of the mouth ROI.

In the second stage, the temporal evolution of the features is

modelled by a dynamic classifier, like Hidden Markov Models

∗∗Corresponding author:

e-mail: stavros.petridis04@imperial.ac.uk (Stavros Petridis)

(HMMs) or Long-Short Term Memory (LSTM) recurrent neu-

ral networks.

Several deep learning approaches (Ninomiya et al., 2015;

Ngiam et al., 2011; Petridis and Pantic, 2016; Sui et al., 2015b;

Chung and Zisserman, 2016a) have been recently presented

which automatically extract features from the pixels and

replace the traditional feature extraction stage. Few end-to-end

approaches have also been proposed which attempt to jointly

learn the extracted features and perform visual speech classi-

fication (Petridis et al., 2017a; Chung et al., 2017; Wand et al.,

2016; Assael et al., 2016; Stafylakis and Tzimiropoulos,

2017). This has led to a new generation of deep-learning-

based lipreading systems which significantly outperform the

traditional approaches.

The vast majority of modern deep learning approaches re-

quire large amounts of data in order to achieve state-of-the-

art performance and their success in smaller datasets has been

modest. This has led to some researchers claiming that deep

learning methods do not perform well on simple tasks and

small-scale datasets. Hence, traditional visual speech recog-

nition methods are a better choice when large datasets are not

available (Fernandez-Lopez and Sukno, 2018).

In this paper, an end-to-end visual speech recognition system

is presented which learns simultaneously the feature extraction

http://arxiv.org/abs/1904.01954v4
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Fig. 1: Overview of the end-to-end visual speech recognition system. The

model consists of two streams which extract features directly from the raw

mouth ROI and the diff mouth ROI (in order to capture local temporal dynam-

ics). The first and second derivatives (∆ and ∆∆, respectively) features are also

computed and appended to the bottleneck layer. A BLSTM is used to model

the temporal dynamics in each stream. The temporal dynamics across streams

are modelled by another BLSTM.

and classification stages and is suitable for small-scale datasets

where large deep models do not perform so well. The model

is an improved version of the model presented in our previous

work (Petridis et al., 2017a) and consists of two streams. One

stream encodes static information and uses raw mouth ROIs as

input. The other stream encodes local temporal dynamics and

takes as input difference (diff) images. The temporal dynamics

in each stream are modelled by a BLSTM and stream fusion

takes place via another BLSTM.

We perform experiments on four different datasets,

OuluVS2, CUAVE, AVLetters and AVLetters2 which have been

used as the main lip-reading benchmarks before the introduc-

tion of very large lip-reading datasets and traditional lip-reading

methods still achieve competetive results. A significant abso-

lute improvement on the state-of-the-art classification rate is

reported on all datasets.

2. Related Work

In the first generation of deep models, deep bot-

tleneck architectures (Ngiam et al., 2011; Hu et al., 2016;

Ninomiya et al., 2015; Mroueh et al., 2015; Takashima et al.,

2016; Petridis and Pantic, 2016) were used to reduce the dimen-

sionality of various visual and audio features extracted from

the mouth ROIs and the audio signal. Then these features are

fed to a classifier like a Support Vector Machine (SVM) or an

HMM. Ngiam et al. (Ngiam et al., 2011) applied principal com-

ponent analysis (PCA) to the mouth ROIs and bottleneck fea-

tures were extracted with a deep autoencoder. Then the utter-

ance features were fed to an SVM ignoring the temporal dy-

namics of the speech. Ninomiya et al. (Ninomiya et al., 2015)

followed a similar approach but the temporal dynamics were

taken into account by an HMM. Another similar approach was

proposed by Sui et al. (Sui et al., 2015b) who extracted bottle-

neck features from local binary patterns which were concate-

nated with DCT features and fed to an HMM. Similar ideas

have also been proposed for audiovisual speech recognition

(Huang and Kingsbury, 2013; Mroueh et al., 2015; Sui et al.,

2015a) where a shared representation of the input audio and

visual features is extracted from the bottleneck layer.

In the second generation of deep models, deep bottleneck ar-

chitectures were used which extract bottleneck features directly

from the pixels. Li (Li et al., 2016) extracted bottleneck fea-

tures from dynamic representations of images with a convolu-

tional neural network (CNN) which were then fed to an HMM

for classification. In our previous work (Petridis and Pantic,

2016), bottleneck features were extracted directly from raw

mouth ROIs by a deep feedforward network which were then

fed to an LSTM network for classification. Noda et al.

(Noda et al., 2015) predicted the phoneme that corresponds to

an input mouth ROI using a CNN, and then an HMM is used

together with audio features in order to classify an utterance.

In the third generation of deep models, few end-to-end works

have been presented which extract features directly from the

mouth ROI pixels and perform classification. The main ap-

proaches followed can be divided into two groups. In the

first one, fully connected layers are used to extract features

and LSTM layers model the temporal dynamics of the se-

quence (Petridis et al., 2017a; Wand et al., 2016). In the sec-

ond group, either 3D CNNs are used (Assael et al., 2016;

Shillingford et al., 2018) or 3D convolutional layers followed

by residual networks (ResNet) (Stafylakis and Tzimiropoulos,

2017) and then combined with LSTMs or Gated Recurrent

Units (GRUs).

These works have also been extended to audio-visual mod-

els. Chung et al. (Chung et al., 2017) applied an attention

mechanism to both the mouth ROIs and MFCCs for continu-

ous speech recognition. Petridis et al. (Petridis et al., 2017b)

used fully connected layers together with LSTMs in order to

extract features directly from raw images and spectrograms and

perform classification on the OuluVS2 database (Anina et al.,

2015). This method has been extended to extract features di-

rectly from raw images and audio waveforms using ResNets

and bidirectional GRUs (Petridis et al., 2018).

3. Databases

The databases used in this study are the OuluVS2

(Anina et al., 2015), AVLetters (Matthews et al., 2002),

CUAVE (Patterson et al., 2002) and AVLetters2 (Cox et al.,

2008). Fifty two speakers exist in the OuluVS2 database who
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repeat 3 times each of the 10 utterances, i.e., there are 156

examples per utterance. The following utterances are included

in the dataset: “Excuse me”, “Goodbye”, “Hello”, “How are

you”, “Nice to meet you”, “See you”, “I am sorry”, “Thank

you”, “Have a good time”, “You are welcome”. The provided

mouth ROIs are used and they are downscaled to 26 by 44.

The AVLetters contains 10 speakers saying 3 times the letters

A to Z, so in total there are 30 utterances per letter. The mouth

ROIs are provided and they are downscaled to 30 by 40.

The CUAVE dataset contains 36 subjects who repeat each

digit (from 0 to 9) 5 times each, i.e, there are 180 examples

per digit. The normal portion of the database is used which

contains frontal facing speakers. The Dlib facial point tracker

(Kazemi and Sullivan, 2014) is used to track sixty eight

points on the face. Then the faces are registered to a neutral

reference frame in order to normalise them for rotation and size

differences. An affine transform is used for this purpose using

5 stable points, two eyes corners in each eye and the tip of the

nose. The center of the mouth is located based on the tracked

mouth points and a bounding box with size 90 by 150 is used

to extract the mouth ROI which is then downscaled to 30 by 50.

The AVLetters2 contains 5 speakers saying 7 times the let-

ters A to Z, so in total there are 35 utterances per letter. The

faces are first tracked and aligned using the same approach as

in the CUAVE dataset. Then a bounding box, around the mouth

centre, is extracted and downscaled to 30 by 45.

4. End-To-End Visual Speech Recognition

The proposed deep learning model for visual speech recog-

nition consists of two independent streams, as shown in Fig. 1,

which extract features directly from the raw input. Static infor-

mation is mainly encoded by the first stream which extracts fea-

tures directly from the raw mouth ROI. Local temporal dynam-

ics are modelled by the second stream which extracts features

from the diff mouth ROI (computed by taking the difference

between two consecutive frames).

Both streams consist of two parts: an encoder and a BLSTM.

The encoder follows a bottleneck architecture which com-

presses the high dimensional input image to a low dimen-

sional representation. It consists of 3 fully connected hid-

den layers of sizes 2000, 1000 and 500, respectively, with

rectified linear units used as activation units similarly to

(Hinton and Salakhutdinov, 2006). This is followed by a lin-

ear bottleneck layer of size 50. The first and second derivatives

(∆ and ∆∆ features, respectively) (Young et al., 2002) are also

computed, based on the bottleneck features, and they are ap-

pended to the bottleneck layer. In this way, the encoding layers

are forced to learn compact representations which are not only

discriminative for the task at hand but also produce discrimina-

tive ∆ and ∆∆ features. This is in contrast to the traditional ap-

proaches which have no control over the discriminative power

of the ∆ and ∆∆ features which are pre-computed at the input

level.

The BLSTM layer is added on top of the encoding layers

in order to model the temporal dynamics of the features in

each stream. The two streams are fused by concatenating the

BLSTM outputs of each stream and feeding them to another

BLSTM. A softmax layer is used as the output layer which pro-

vides a label for each input frame. The entire system is trained

end-to-end so the feature extraction and classification layers are

trained jointly. In other words, the encoding layers are trained

to extract features from mouth ROI pixels which are useful for

classification using BLSTMs.

4.1. Single Stream Training

Initialisation: Each stream is first trained independently. Re-

stricted Boltzmann Machines (RBMs) (Hinton, 2012) are used

to pre-train in a greedy layer-wise manner the encoding layers.

Four Gaussian RBMs are used since the input (pixels) is real-

valued and the hidden layers are either rectified linear or linear

(bottleneck layer). Each RBM is trained for 20 epochs using

contrastive divergence with a mini-batch size of 100 and a fixed

learning rate of 0.001. In addition, L2 regularisation is applied

with a coefficient of 0.0002.

End-to-End Training: A BLSTM is added on top of the

pre-trained encoding layers and its weights are initialised

using Glorot initialisation (Glorot and Bengio, 2010). Then the

model is trained end-to-end using Adam with a mini-batch size

of 10 utterances. A learning rate of 0.0003 was used since the

default one of 0.001 led to unstable training. In order to avoid

overfitting early stopping with a delay of 5 epochs was also

used. In addition, gradient clipping was applied to the BLSTM

layers.

4.2. Two-Stream Training

Initialisation: Each stream in the final model is initialised

based on the corresponding single streams which have been al-

ready trained. Then on top of all streams a BLSTM is added

in order to fuse the outputs of the single streams. The BLSTM

weights are initialised using Glorot initialisation.

End-to-End Training: Finally, the two-stream model is fine-

tuned using Adam with learning rate 0.0001. Similarly to single

stream training early stopping and gradient clipping were also

applied .

5. Experimental Setup

5.1. Evaluation Protocol

First, all datasets are divided into into training, validation and

test sets. The standard evaluation protocol for the OuluVS2

database is followed where 40 subjects are used for training and

validation and 12 for testing (oul, c). Then the 40 subjects are

randomly divided into 35 and 5 subjects for training and valida-

tion purposes, respectively. This means that there are 1050, 150

and 360 training, validation and test utterances, respectively.

For experiments on the CUAVE database the evaluation pro-

tocol suggested in (Ngiam et al., 2011) was used. The odd-

numbered subjects (18 in total) are used for testing and the

even-numbered subjects are used for training. The latter are

further divided into 12 subjects for training and 6 for validation.

This means that there are 590, 300 and 900 training, validation

and test utterances, respectively.
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Table 1: Classification Accuracy on the OuluVS2 database. The protocol sug-

gested in (oul, a), where the training and validation sets consist of 40 subjects

and the test set contains 12 subjects, is used for evaluating the end-to-end mod-

els. “Mean (Std)” refers to the mean classification accuracy over ten runs and

the corresponding standard deviation, while “Max” reports the maximum clas-

sification accuracy. ∗In cross-view training, the model is first trained with data

from all views and then fine-tuned with data from the corresponding view.
∗∗These models are pretrained on the LRW dataset (Chung and Zisserman,

2016a), which is a large database, and then fine-tuned on OuluVS2. DA: Data

Augmentation, TDNN: Time-Delay Neural Network, LVM: Latent Variable

Models

Method Mean (Std) Max

End-to-End (Raw Image) 91.8 (1.1) 94.7

End-to-End (Diff Image) 90.3 (1.2) 92.2

End-to-End (Raw

+ Diff Images)

93.6 (1.0) 95.6

Multitask CNN + BLSTM

(Han et al., 2017)

- 95.0

CNN pretrained on LRW

dataset + DA + LSTM∗∗

(Chung and Zisserman,

2016b)

- 94.1

CNN pretrained on

LRW dataset + DA∗∗

(Chung and Zisserman,

2016a)

- 93.2

Autoencoder +

TDNN + LSTM

(Koumparoulis and Potamianos,

2018)

- 90.0

maxout-CNN-BLSTM

(Fung and Mak, 2018)

- 87.6

CNN + DA

(Saitoh et al., 2016)

- 85.6

CNN + LSTM, Cross-view

Training∗ (Lee et al., 2016)

- 82.8

End-to-end CNN +

LSTM (Lee et al., 2016)

- 81.1

DCT + HMM (oul, b) - 74.8

PCA Network +

LSTM + GMM-HMM

(Zimmermann et al., 2016)

- 74.1

Raw Pixels + LVM (oul, b) - 73.0

The same protocol as the one used in (Ngiam et al., 2011),

(Matthews et al., 2002) is followed for the AVLetters datasets.

The first two utterances of each subject are used for training and

the last utterance is used for testing. This means that there are

520 training utterances and 260 test utterances.

The speaker-independent protocol suggested in (Cox et al.,

2008) is used for the AVLetters2 dataset. A 5-fold cross-

Table 2: Classification Accuracy on the CUAVE database. The end-to-end

models are evaluated using the protocol suggested in (Ngiam et al., 2011;

Srivastava and Salakhutdinov, 2014) where 18 subjects are used for training

and validation and 18 for testing. “Mean (Std)” refers to the mean classifica-

tion accuracy over ten runs and the corresponding standard deviation, while

“Max” reports the maximum classification accuracy. ‡ This model is trained

and tested using a 9-fold cross validation. ∗This model is trained on 28 subjects

and tested on 8 subjects. † These models are trained and tested using a 6-fold

cross validation.

Method Mean (Std) Max

End-to-End (Raw Image) 85.5 (0.7) 86.4

End-to-End (Diff Image) 82.8 (1.0) 83.9

End-to-End (Raw

+ Diff Images)

87.3 (0.7) 88.4

SVM +MKL

(Benhaim et al., 2013) ‡

- 85.0

Visemic AAM + HMM

(Papandreou et al., 2009) †

- 83.0

Patch-based Features +

HMM (Lucey and Sridharan,

2006) ∗

- 77.1

AAM +HMM

(Papandreou et al., 2007) †

- 75.7

Deep Boltzmann

Machines + SVM

(Srivastava and Salakhutdinov,

2014)

69.0 (1.5) -

Deep Autoencoder +

SVM (Ngiam et al., 2011)

68.7 (1.8) -

validation is used, where three speakers are used for training,

one for validation and one for testing. This means that in each

iteration of the cross-validation there are 546, 182 and 182

training, validation and test utterances, respectively.

The target classes are a one-hot encoding for the 10 (case

of CUAVE and OuluVS2) or 26 utterances (case of AVLetters

and AVLetters2). The label of each utterance is used to label

each frame and the end-to-end model is trained with these

frame labels. The majority label over each utterance is used for

labeling the entire sequence.

Every time a deep network is trained the results vary due to

random initialisation. Hence, in order to present a more ob-

jective evaluation each experiment is repeated 10 times and the

mean and standard deviation of classification accuracy on the

utterance level are reported.

5.2. Preprocessing

The impact of subject dependent characteristics first needs

to be reduced since almost all the experiments are subject in-

dependent1. This is achieved by subtracting the mean image,

1Only the evaluation protocol on AVLetters is subject dependent.
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Table 3: Classification Accuracy on the AVLETTERS database. The end-to-

end models are trained using the standard evaluation protocol (Matthews et al.,

2002) where the first 2 utterances of each subjects are used for training and

the last one for testing. “Mean (Std)” refers to the mean classification accu-

racy over ten runs and the corresponding standard deviation, while “Max” re-

ports the maximum classification accuracy. PLS: Partial Least Squares, DBNF:

Deep BottleNeck Features, LBP-TOP: Local Binary Patterns-Three Orthogonal

Planes.

Method Mean (Std) Max

End-to-End (Raw Image) 65.9 (2.1) 68.9

End-to-End (Diff Image) 57.3 (1.8) 60.0

End-to-End (Raw

+ Diff Images)

66.3 (2.0) 69.2

Manifold Kernel PLS

(Bakry and Elgammal, 2013)

- 65.3

Deep Boltzmann

Machines + SVM

(Srivastava and Salakhutdinov,

2014)

64.7 (2.5) -

RTMRBM (Hu et al., 2016) - 64.6

Deep Autoencoder +

SVM (Ngiam et al., 2011)

64.4 (2.4) -

LBP-TOP + SVM

(Zhao et al., 2009)

- 58.9

DCT + DBNF

(Petridis and Pantic, 2016)

- 58.1

CNN + LSTM

(Feng et al., 2017)

57.7 (0.8) -

Multiscale Spatial Analysis

(Matthews et al., 2002)

- 44.6

computed over the entire utterance, from each frame.

The next step is the normalisation of data. All images are

z-normalised, i.e. the mean and standard deviation should be

equal to 0 and 1 respectively, as suggested in in (Hinton, 2012)

before pre-training the encoding layers.

6. Results

In this section we present results for the two-stream end-to-

end model, shown in Fig. 1, and also for each individual stream

separately. We report the mean classification accuracy and

standard deviation of the 10 models trained on each database,

OuluVS2, CUAVE, AVLetters and AVLetters2 in Tables 1 to

4, respectively. Just a single accuracy value (with no standard

deviation), which is most likely the maximum performance

achieved, is provided in almost all previous works. Hence, in

order to facilitate a fair comparison, the maximum performance

achieved over the 10 runs is also reported.

Results for the OuluVS2 database are shown in Table 1.

The best overall result is achieved by the end-to-end 2-stream

Table 4: Classification Accuracy on the AVLETTERS2 database. The end-

to-end models are trained using the speaker-independent evaluation protocol

(Cox et al., 2008) where a 5-fold cross-validation is used. “Mean (Std)” refers

to the mean classification accuracy over ten runs and the corresponding standard

deviation, while “Max” reports the maximum classification accuracy. RTM-

RBM: Recurrent Temporal Multimodal Restricted Boltzman Machine, LBP-

TOP: Local Binary Patterns-Three Orthogonal Planes, KSRC: Kernel Sparse

Representation Classifier.

Method Mean (Std) Max

End-to-End (Raw Image) 36.8 (2.9) 42.6

End-to-End (Diff Image) 28.9 (2.0) 32.2

End-to-End (Raw

+ Diff Images)

35.0 (1.6) 37.8

RTMRBM (Hu et al., 2016) - 31.2

LBP-TOP + KSRC

(Frisky et al., 2015)

- 25.9

AAM + HMM

(Cox et al., 2008)

- 8.3

model, with a mean classification accuracy of 93.6%. It is

obvious that even the mean performance is consistently higher

than the maximum performance of most previous works. When

it comes to maximum performance the proposed end-to-end ar-

chitecture sets the new state-of-the-art on OuluVS2 with 95.6%.

We should also point out, that the proposed 2-stream model

outperforms even the CNN models (Chung and Zisserman,

2016a,b) trained with external data. Both models are pre-

trained on a large dataset, LRW (Chung and Zisserman, 2016a),

and fine-tuned on OuluVS2. In addition, the proposed model

also outperforms the CNN model (Han et al., 2017) trained on

all views in a multitask scenario where the goal is to correctly

predict both the phrase and the view of the given sequence.

Results for the CUAVE database are shown in Table 2.

Comparison between different works is difficult since there

is not a standard evaluation protocol for this database. The

evaluation protocol followed in this study is only used by

(Ngiam et al., 2011) and (Srivastava and Salakhutdinov, 2014).

The best overall performance is achieved by the end-to-

end 2-stream model, with a mean classification accuracy of

87.3% which is an absolute improvement of 18.3% over

(Srivastava and Salakhutdinov, 2014). The maximum classifi-

cation accuracy of 88.4% achieved by this models is the new

state-of-the-art performance on the CUAVE dataset, which is

an absolute improvement of 3.4% over (Benhaim et al., 2013).

Results for the AVLetters database are shown in Table 3. The

best overall performance is achieved by the end-to-end 2-stream

model, with a mean classification accuracy of 66.3% which is

an absolute improvement of 1.6% over the previous state-of-

the-art model (Srivastava and Salakhutdinov, 2014). However,

we should note that in this case the improvement over the sin-

gle stream which uses raw images as input is not statistically

significant. The two-stream end-to-end model sets also the

new state-of-the-art for the maximum classification accuracy

with 69.2%, which is an absolute improvement of 3.9% over
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Fig. 2: Per-subject performance on OuluVS2 database.
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Fig. 3: Per-subject performance on AVLETTERS database.

(Bakry and Elgammal, 2013). At this point we should men-

tion the work of Pei et al. (Pei et al., 2013) which reports a

maximum performance of 69.6%. However, this work uses a

non-standard evaluation protocol where the data are randomly

divided into 60% and 40% for training and testing, respectively.

Results for the AVLetters2 database are shown in Table 4. In

this case, the best overall performance is achieved by the end-

to-end single stream model based on raw images, with a mean

classification accuracy of 36.8%. The main reason the 2-stream

does not perform so well is bad tracking of facial points for

some subjects. As a consequence, the mouth ROIs extracted

are jittery which affects the performance of the diff stream. The

single stream end-to-end model sets also the new state-of-the-

art for the maximum classification accuracy with 42.6%, which

is an absolute improvement of 10.4% over (Hu et al., 2016). We

should emphasize that we use a subject-independent evaluation

and due to the small number of subjects the classification accu-

racy is much lower than the other databases. Much higher re-

sults have been reported in the literature for a subject-dependent

evaluation protocol with the highest performance of 91.2% re-

ported in (Pei et al., 2013).

Fig. 2 shows the classification accuracy per subject for the

OuluVS2 dataset. It is clear that the deviation across different

test subjects is not very large. Almost all subjects achieve a

classification accuracy over 80% with 8 of them achieving over

95%. A similar pattern is also observed in the CUAVE dataset

(Figure is not shown due to lack of space).

Fig. 3 shows the classification accuracy per subject for

AVLetters. Contrary to OuluVS2 and CUAVE the performance

varies a lot between different subjects with minimum and max-

imum accuracies of 54% and 81% for subject S06 and S08,

respectively. This could be the consequence of the small size

of the dataset which does not allow for good generalisation

across all subjects or due to differences in the cropped mouth

regions. Since the cropped regions are provided it is not easy

to verify that all regions were cropped consistently. The same

observation about performance variance can be made also for

the AVLetters2 dataset (Figure not shown due to lack of space)

with a minimum and maximum accuracy of 26% and 50% for

subjects S05 and S02, respectively.

The most common confusion pair2 for the OuluVS2 dataset

is between “Hello” (3rd phrase) and “Thank you” (8th phrase)

which is consistent with confusions presented in (Petridis et al.,

2017a; Lee et al., 2016). The most frequently confused pairs in

the CUAVE dataset are zero and two, and six and nine and this

is consistent with (Petridis et al., 2017a).

The most common confusions for the AVLetters dataset are

between B and P, D and T, and U and Q. This is not surprising

since both letters in each pair have the same visual representa-

tion. They consist of two phonemes where the first ones belong

to the same viseme class and the second one is the same. The

letters which are classified correctly most of the time are the

following: M, O, R, W, Y. Similar confusions are observed on

AVLetters2 as well.

Finally, we should also mention that we experimented with

CNNs for the encoders but this led to worse performance than

the proposed model. This is consistent with the previous results

based on CNN models reported on the OuluVS2 and AVLet-

ters databases which are much lower than the proposed sys-

tem (see the works of (Fung and Mak, 2018; Saitoh et al., 2016;

Lee et al., 2016) in Table 1 and (Feng et al., 2017) in Table

3). This is also reported in (Wand et al., 2016) and it is likely

due to the small training sets. Only works which have used

external data like (Chung and Zisserman, 2016a,b) or used all

views (Han et al., 2017) have been able to report results based

on CNN models on OuluVS2 close to the results presented in

this work.

In order to further test this assumption, we compare the per-

formance of the end-to-end two-stream model with a state-of-

the-art lip-reading model as a function of the amount of training

data. The model we consider is based on ResNet and BGRUs

(Petridis et al., 2018; Stafylakis and Tzimiropoulos, 2017) and

achieves the state-of-the-art performance on the LRW database.

The model is trained using the same training protocol as in

(Petridis et al., 2018). Fig. 4a and 4b show the classification

accuracy of the two models for varying training set sizes, from

10% to 100%, on the OuluVS2 and CUAVE datasets, respec-

tively. In the former case, the ResNet model quickly reaches the

same level of performance as the proposed end-to-end model.

In the latter case, the performance gap between the ResNet

model and the proposed model decreases as the training set size

increases. However, even when the entire training set is used the

performance remains below the proposed model. This probably

happens due to the small size of CUAVE training set, which is

about half the size of the OuluVS2 training set. This is also

another indication that CNN models do not reach their full po-

tential for lip-reading applications when trained on small scale

datasets and alternative models, like the one proposed here, can

be better suited in this scenario.

7. Conclusion

In this work, we present an end-to-end visual speech recog-

nition system suitable for small-scale datasets which jointly

2Confusions matrices are not included due to lack of space.
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Fig. 4: The performance of our approach and the state-of-the-art model based

on ResNets and BGRUs (Petridis et al., 2018) as a function of the size of the

training set.

learns to extract features directly from the pixels and perform

classification using LSTM networks. Results on four datasets,

OuluVS2, CUAVE, AVLetters and AVLetters2, demonstrate

that the proposed model achieves state-of-the-art performance

on all of them significantly outperforming all other approaches

reported in the literature, even CNNs pre-trained on external

databases. A natural next step would be to extend the system

in order to be able to recognise sentences instead of isolated

words.
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