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Abstract

Speech-driven facial animation is the process which uses speech signals to automati-
cally synthesize a talking character. The majority of work in this domain creates a map-
ping from audio features to visual features. This often requires post-processing using
computer graphics techniques to produce realistic albeit subject dependent results. We
present a system for generating videos of a talking head, using a still image of a person
and an audio clip containing speech, that does not rely on any handcrafted intermediate
features. To the best of our knowledge, this is the first method capable of generating
subject independent realistic videos directly from raw audio. Our method can generate
videos which have (a) lip movements that are in sync with the audio and (b) natural fa-
cial expressions such as blinks and eyebrow movements 1. We achieve this by using a
temporal GAN with 2 discriminators, which are capable of capturing different aspects of
the video. The effect of each component in our system is quantified through an ablation
study. The generated videos are evaluated based on their sharpness, reconstruction qual-
ity, and lip-reading accuracy. Finally, a user study is conducted, confirming that temporal
GANs lead to more natural sequences than a static GAN-based approach.

Facial 

Sythesizer

Figure 1: The proposed end-to-end face synthesis model, capable of producing realistic
sequences of faces using one still image and an audio track containing speech. The generated
sequences exhibit smoothness and natural expressions such as blinks and frowns.

© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Videos are available here: https://sites.google.com/view/facialsynthesis/home
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1 Introduction
Facial animation plays a major role in computer generated imagery because the face is the
primary outlet of information. The problem of generating realistic talking heads is multi-
faceted, requiring high-quality faces, lip movements synchronized with the audio, and plau-
sible facial expressions. This is especially challenging because humans are adept at picking
up subtle abnormalities in facial motion and audio-visual synchronization.

Of particular interest is speech-driven facial animation since speech acoustics are highly
correlated with facial movements [27]. These systems could simplify the film animation
process through automatic generation from the voice acting. They can also be applied in
movie dubbing to achieve better lip-syncing results. Moreover, they can be used to generate
parts of the face that are occluded or missing in a scene. Finally, this technology can improve
band-limited visual telecommunications by either generating the entire visual content based
on the audio or filling in dropped frames.

The majority of research in this domain has focused on mapping audio features (e.g.
MFCCs) to visual features (e.g. landmarks, visemes) and using computer graphics (CG)
methods to generate realistic faces [12]. Some methods avoid the use of CG by selecting
frames from a person-specific database and combining them to form a video [3, 22]. Regard-
less of which approach is used these methods are subject dependent and are often associated
with a considerable overhead when transferring to new speakers.

Subject independent approaches have been proposed that transform audio features to
video frames [5] but there is still no method to directly transform raw audio to video. Fur-
thermore, many methods restrict the problem to generating only the mouth. Even techniques
that generate the entire face are primarily focused on obtaining realistic lip movements, and
typically neglect the importance of generating natural facial expressions.

Some methods generate frames based solely on present information [5], without tak-
ing into account the facial dynamics. This makes generating natural sequences, which are
characterized by a seamless transition between frames, challenging. Some video generation
methods have dealt with this problem by generating the entire sequence at once [25] or in
small batches [20]. However, this introduces a lag in the generation process, prohibiting their
use in real-time applications and requiring fixed length sequences for training.

We propose a temporal generative adversarial network (GAN), capable of generating a
video of a talking head from an audio signal and a single still image (see Fig. 1). First,
our model captures the dynamics of the entire face producing not only synchronized mouth
movements but also natural facial expressions, such as eyebrow raises, frowns and blinks.
This is due to the use of an RNN-based generator and sequence discriminator, which also
gives us the added advantage of handling variable length sequences. Natural facial expres-
sions play a crucial role in achieving truly realistic results and their absence is often a clear
tell-tale sign of generated videos. This is exploited by methods such as the one proposed in
[15], which detects synthesized videos based on the existence of blinks.

Secondly, our method is subject independent, does not rely on handcrafted audio or visual
features, and requires no post-processing. To the best of our knowledge, this is the first end-
to-end technique that generates talking faces directly from the raw audio waveform.

The third contribution of this paper is a comprehensive assessment of the performance of
the proposed method. An ablation study is performed on the model in order to quantify the
effect of each component in the system. We measure the image quality using popular recon-
struction and sharpness metrics, and compare it to a non-temporal approach. Additionally,
we propose using lip reading techniques to verify the accuracy of the spoken words and face
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verification to ensure that the identity of the speaker is maintained throughout the sequence.
Evaluation is performed in a subject independent way on the GRID [6] and TCD TIMIT [11]
datasets, where our model achieves truly natural results. Finally, the realism of the videos is
assessed through an online Turing test, where users are shown videos and asked to identify
them as either real or generated.

2 Related Work
2.1 Speech-Driven Facial Animation
The problem of speech-driven video synthesis is not new in computer vision and has been
the subject of interest for decades. Yehia et al. [27] first examined the relationship between
acoustics, vocal-tract and facial motion, showing a strong correlation between visual and
audio features and a weak coupling between head motion and the fundamental frequency of
the speech signal [28].

Some of the earliest methods for facial animation relied on hidden Markov models
(HMMs) to capture the dynamics of the video and speech sequences. Simons and Cox [21]
used vector quantization to achieve a compact representation of video and audio features,
which were used as the states for their HMM. The HMM was used to recover the most likely
mouth shapes for a speech signal. A similar approach is used in [26] to estimate the se-
quence of lip parameters. Finally, the Video Rewrite [3] method relies on the same principals
to obtain a sequence of triphones that are used to look up mouth images from a database.

Although HMMs were initially preferred to neural networks due to their explicit break-
down of speech into intuitive states, recent advances in deep learning have resulted in neural
networks being used in most modern approaches. Like past attempts, most of these methods
aim at performing a feature-to-feature translation. A typical example of this is [23], which
uses a deep neural network (DNN) to transform a phoneme sequence into a sequence of
shapes for the lower half of the face. Using phonemes instead of raw audio ensures that
the method is subject independent. Similar deep architectures based on recurrent neural
networks (RNNs) have been proposed in [9, 22], producing realistic results but are subject
dependent and require retraining or re-targeting steps to adapt to new faces.

Convolutional neural networks (CNN) are used in [12] to transform audio features to 3D
meshes of a specific person. This system is conceptually broken into sub-networks respon-
sible for capturing articulation dynamics and estimating the 3D points of the mesh. Finally,
Chung et al. [5] proposed a CNN applied on Mel-frequency cepstral coefficients (MFCCs)
that generates subject independent videos from an audio clip and a still frame. The method
uses an L1 loss at the pixel level resulting in blurry frames, which is why a deblurring step
is also required. Secondly, this loss at the pixel level penalizes any deviation from the target
video during training, providing no incentive for the model to produce spontaneous expres-
sions and resulting in faces that are mostly static except for the mouth.

2.2 GAN-Based Video Synthesis
The recent introduction of GANs in [10] has shifted the focus of the machine learning com-
munity to generative modelling. GANs consist of two competing networks: a generative
network and a discriminative network. The generator’s goal is to produce realistic samples
and the discriminator’s goal is to distinguish between the real and generated samples. This
competition eventually drives the generator to produce highly realistic samples. GANs are
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typically associated with image generation since the adversarial loss produces sharper, more
detailed images compared to L1 and L2 losses. However, GANs are not limited to these
applications and can be extended to handle videos [14, 16, 24, 25].

Straight-forward adaptations of GANs for videos are proposed in [20, 25], replacing
the 2D convolutional layers with 3D convolutional layers. Using 3D convolutions in the
generator and discriminator networks is able to capture temporal dependencies but requires
fixed length videos. This limitation was overcome in [20] but constraints need to be imposed
in the latent space to generate consistent videos.

The MoCoGAN system proposed in [24] uses an RNN-based generator, with separate
latent spaces for motion and content. This relies on the empirical evidence shown in [18]
that GANs perform better when the latent space is disentangled. MoCoGAN uses a 2D
and 3D CNN discriminator to judge frames and sequences respectively. A sliding window
approach is used so that the 3D CNN discriminator can handle variable length sequences.

GANs have also been used in a variety of cross-modal applications, including text-to-
video and audio-to-video. The text-to-video model proposed in [14] uses a combination
of variational auto encoders (VAE) and GANs in its generating network and a 3D CNN as
a sequence discriminator. Finally, Chen et al. [4] propose a GAN-based encoder-decoder
architecture that uses CNNs in order to convert audio spectrograms to frames and vice versa.

3 End-to-End Speech-Driven Facial Synthesis
The proposed architecture for speech-driven facial synthesis is shown in Fig. 2. The sys-
tem is made up of a generator and 2 discriminators, each of which evaluates the generated
sequence from a different perspective. The capability of the generator to capture various
aspects of natural sequences is directly proportional to the ability of each discriminator to
discern videos based on them.
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Figure 2: The deep model for speech-driven facial synthesis. This uses 2 discriminators
to incorporate the different aspects of a realistic video. Details about the architecture are
presented in the supplementary material.

3.1 Generator
The inputs to the generator networks consist of a single image and an audio signal, which is
divided into overlapping frames each corresponding to 0.16 seconds. The generator network
in this architecture can be conceptually divided into subnetworks as shown in Fig. 3. Using
an RNN-based generator allows us to synthesize videos frame-by-frame, which is necessary
for real-time applications.

Citation
Citation
{Li, Min, Shen, Carlson, and Carin} 2017

Citation
Citation
{Mathieu, Couprie, and LeCun} 2015

Citation
Citation
{Tulyakov, Liu, Yang, and Kautz} 2017

Citation
Citation
{Vondrick, Pirsiavash, and Torralba} 2016

Citation
Citation
{Saito, Matsumoto, and Saito} 2017

Citation
Citation
{Vondrick, Pirsiavash, and Torralba} 2016

Citation
Citation
{Saito, Matsumoto, and Saito} 2017

Citation
Citation
{Tulyakov, Liu, Yang, and Kautz} 2017

Citation
Citation
{Radford, Metz, and Chintala} 2015

Citation
Citation
{Li, Min, Shen, Carlson, and Carin} 2017

Citation
Citation
{Chen and Rao} 1998



VOUGIOUKAS ET AL.: SPEECH-DRIVEN FACIAL ANIMATION WITH TEMPORAL GANS 5

3.1.1 Identity Encoder
The speaker’s identity is encoded using a 6 layer CNN. Each layer uses strided 2D convolu-
tions, followed by batch normalization and ReLU activation functions. The Identity Encoder
network reduces the input image to a 50 dimensional encoding zid .

3.1.2 Context Encoder
Audio frames are encoded using a network comprising of 1D convolutions followed by batch
normalization and ReLU activations. The initial convolutional layer starts with a large ker-
nel, as recommended in [7], which helps limit the depth of the network while ensuring that
the low-level features are meaningful. Subsequent layers use smaller kernels until an em-
bedding of the desired size is achieved. The audio frame encodings are input into a 2 layer
GRU, which produces a context encoding zc with 256 elements.

3.1.3 Frame Decoder
The identity encoding zid is concatenated to the context encoding zc and a noise component
zn to form the latent representation. The 10-dimensional zn vector is obtained from a Noise
Generator, which is a 1-layer GRU that takes Gaussian noise as input. The Frame Decoder
is a CNN that uses strided transposed convolutions to produce the video frames from the
latent representation. A U-Net [19] architecture is used with skip connections between the
Identity Encoder and the Frame Decoder to help preserve the identity of the subject.
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Figure 3: The architecture of the (a) Generator which consists of a Context Encoder (audio
encoder and RNN), an Identity Encoder, a Frame Decoder and Noise Generator (b) Se-
quence Discriminator, consisting of an audio encoder, an image encoder, GRUs and a small
classifier.

3.2 Discriminators
Our system has two different types of discriminator. The Frame Discriminator helps achieve
a high-quality reconstruction of the speakers’ face throughout the video. The Sequence Dis-
criminator ensures that the frames form a cohesive video which exhibits natural movements
and is synchronized with the audio.

3.2.1 Frame Discriminator
The Frame Discriminator is a 6-layer CNN that determines whether a frame is real or not.
Adversarial training with this discriminator ensures that the generated frames are realistic.
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The original still frame is used as a condition in this network, concatenated channel-wise to
the target frame to form the input as shown in Fig. 3. This enforces the person’s identity on
the frame.

3.2.2 Sequence Discriminator
The Sequence Discriminator presented in Fig. 3 distinguishes between real and synthetic
videos. The discriminator receives a frame at every time step, which is encoded using a
CNN and then fed into a 2-layer GRU. A small (2-layer) classifier is used at the end of the
sequence to determine if the sequence is real or not. The audio is added as a conditional
input to the network, allowing this discriminator to classify speech-video pairs.

3.3 Training
The Frame discriminator (Dimg) is trained on frames that are sampled uniformly from a video
x using a sampling function S(x). The Sequence discriminator (Dseq), classifies based on the
entire sequence x and audio a. The loss of our GAN is an aggregate of the losses associated
with each discriminator as shown in Equation 1.

Ladv(Dimg,DSeq,G) =Ex∼Pd [logDimg(S(x),x1)]+Ez∼Pz [log(1−Dimg(S(G(z)),x1))]+

Ex∼Pd [logDseq(x,a)]+Ez∼Pz [log(1−Dseq(G(z),a))]
(1)

An L1 reconstruction loss is also used to improve the synchronization of the mouth move-
ments. However we only apply the reconstruction loss to the lower half of the image since it
discourages the generation of facial expressions. For a ground truth frame F and a generated
frame G with dimensions W ×H the reconstruction loss at the pixel level is:

LL1 = ∑
p∈[0,W ]×[H

2 ,H]

|Fp−Gp| (2)

The final objective is to obtain the optimal generator G∗, which satisfies Equation 3.
The model is trained until no improvement is observed on the reconstruction metrics on the
validation set for 10 epochs. The λ hyperparameter controls the contribution of each loss
factor and was set to 400 following a tuning procedure on the validation set.

argmin
G

max
D
Ladv +λLL1 (3)

We used Adam [13] for all the networks with a learning rate of 0.0002 for the Gener-
ator and 0.001 Frame Discriminator which decay after epoch 20 with a rate of 10%. The
Sequence Discriminator uses a smaller fixed learning rate of 5 ·10−5.

4 Experiments
Our model is implemented in PyTorch and takes approximately a week to train using an
Nvidia GeForce GTX 1080 Ti GPU. During inference the average generation time per frame
is 7ms on the GPU, permitting the use of our method use in real time applications. A se-
quence of 75 frames can be synthesized in 0.5s. The frame and sequence generation times
increase to 1s and 15s respectively when processing is done on the CPU.
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4.1 Datasets
The GRID dataset has 33 speakers each uttering 1000 short phrases, containing 6 words taken
from a limited dictionary. The TCD TIMIT dataset has 59 speakers uttering approximately
100 phonetically rich sentences each. We use the recommended data split for the TCD
TIMIT dataset but exclude some of the test speakers and use them as a validation set. For the
GRID dataset speakers are divided into training, validation and test sets with a 50%−20%−
30% split respectively. As part of our preprocessing all faces are aligned to the canonical
face and images are normalized. We increase the size of the training set by mirroring the
training videos. The amount of data used for training and testing is presented in Table 1.

Dataset Samples (Tr) Hours (Tr) Samples (V) Hours (V) Samples (T) Hours (T)

GRID 31639 26.36 6999 5.83 9976 8.31
TCD 8218 9.13 686 0.76 977 1.09

Table 1: The samples and hours of video in the training (Tr), validation (V) and test (T) sets.

4.2 Metrics
We use common reconstruction metrics such as the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) index to evaluate the generated videos. During the evaluation
it is important to take into account the fact that reconstruction metrics penalize videos for any
spontaneous expression. The frame sharpness is evaluated using the cumulative probability
blur detection (CPBD) measure [17], which determines blur based on the presence of edges
in the image and the frequency domain blurriness measure (FDBM) proposed in [8], which
is based on the spectrum of the image. For these metrics larger values imply better quality.

The content of the videos is evaluated based on how well the video captures identity of
the target and on the accuracy of the spoken words. We verify the identity of the speaker
using the average content distance (ACD) [24], which measures the average Euclidean dis-
tance of the still image representation, obtained using OpenFace [1], from the representation
of the generated frames. The accuracy of the spoken message is measured using the word
error rate (WER) achieved by a pre-trained lip-reading model. We use the LipNet model [2],
which surpasses the performance of human lipreaders on the GRID dataset. For both content
metrics lower values indicate better accuracy.

4.3 Ablation Study
In order to quantify the effect of each component of our system we perform an ablation study
on the GRID dataset (see Table 2). We use the metrics from section 4.2 and a pre-trained
LipNet model which achieves a WER of 21.4% on the ground truth videos. The average
value of the ACD for ground truth videos of the same person is 0.74 · 10−4 whereas for
different speakers it is 1.4 ·10−3. The L1 loss achieves slightly better PSNR and SSIM results,
which is expected as it does not generate spontaneous expressions, which are penalized by
these metrics unless they happen to coincide with those in ground truth videos. This variation
introduced when generating expressions is likely the reason for the small increase in ACD.
The blurriness is minimized when using the adversarial loss as indicated by the higher FDBM
and CPBD scores and Fig. 4. Finally, the effect of the sequence discriminator is shown in
the lip-reading result achieving a low WER.
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Method PSNR SSIM FDBM CPBD ACD WER

Ground Truth Videos N/A N/A 0.121 0.281 0.74 ·10−4 21.40%
L1 loss 28.47 0.859 0.101 0.210 0.90 ·10−4 27.90%
L1 +Advimg 27.71 0.840 0.114 0.274 1.04 ·10−4 27.94%
L1 +Advimg +Advseq 27.98 0.844 0.114 0.277 1.02 ·10−4 25.45%

Table 2: Assessment of each model in the ablation study performed on the GRID dataset

(a) L1 loss on entire frame (b) Proposed loss on frames
Figure 4: Frames using (a) only an L1 loss on the entire face compared to (b) frames produced
using the proposed method. Frames generated using an L1 loss on the entire face (a) are
blurrier than those produced from the proposed method (b).

4.4 Qualitative Results

Our method is capable of producing realistic videos of previously unseen faces and audio
clips taken from the test set. The examples in Fig. 5 show the same face animated using sen-
tences from different subjects (male and female). The same audio used on different identities
is shown in Fig. 6. From visual inspection it is evident that the lips are consistently moving
similarly to the ground truth video. Our method not only produces accurate lip movements
but also natural videos that display characteristic human expressions such as frowns and
blinks, examples of which are shown in Fig. 7.

(a) Female voice uttering the word “bin” (b) Male voice uttering the word “white”
Figure 5: Generated sequences for (a) the word “bin” (b) the word “white” from the GRID
test set. Coarticulation is evident in (a) where “bin” is followed by the word “blue”.
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Figure 6: Animation of different faces using the same audio. The movement of the mouth is
similar for both faces as well as for the ground truth sequence. Both audio and still image
are unseen during training.
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(a) Example of generated frown (b) Example of generated blink
Figure 7: Facial expressions generated using our framework include (a) frowns and (b)
blinks.

The works that are closest to ours are those proposed in [22] and [5]. The former method
is subject dependent and requires a large amount of data for a specific person to generate
videos. For the latter method there is no publicly available implementation so we compare
our model to a static method that produces video frames using a sliding window of audio
samples like that used in [5]. This is a GAN-based method that uses a combination of an
L1 loss and an adversarial loss on individual frames. We will also use this method as the
baseline for our quantitative assessment in the following section. This baseline produces
less coherent sequences, characterized by jitter, which becomes worse in cases where the
audio is silent (e.g. pauses between words). This is likely due to the fact that there are
multiple mouth shapes that correspond to silence and since the model has no knowledge of
its past state generates them at random. Fig. 8 shows a comparison between our approach
and the baseline in such cases.
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(a) Audio-visual inconsistency during silence (b) Extraneous frames that break continuity
Figure 8: Examples of consecutive frames showcasing the failures of the static baseline
including (a) opening the mouth when words are not spoken (b) producing irrelevant frames
that do not take into account the previous face state, thus breaking the sequence continuity.

4.5 Quantitative Results
We measure the performance of our model on the GRID and TCD TIMIT datasets using the
metrics proposed in section 4.2 and compare it to the static baseline. Additionally, we present
the results of a 30-person survey, where users were shown 30 videos from each method and
were asked to pick the more natural ones. The results in Table 3 show that our method
outperforms the static baseline in both frame quality and content accuracy. Although the dif-
ference in performance is slight for frame-based measures (e.g. PSNR, ACD) it is substantial
in terms of user preference and lipreading WER, where temporal smoothness of the video
and natural expressions play a significant role.

We further evaluate the realism of the generated videos through an online Turing test. In
this test users are shown 10 videos, which were chosen at random from GRID and TIMIT
consisting of 6 fake videos and 4 real ones. Users are shown the videos in sequence and are
asked to label them as real or fake. Responses from 153 users were collected with the average
user labeling correctly 63% of the videos. The distribution of user scores is shown in Fig. 9.
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Method PSNR SSIM FDBM CPBD ACD User WER
G

R
ID Proposed Model 27.98 0.844 0.114 0.277 1.02 ·10−4 79.77% 25.4%

Baseline 27.39 0.831 0.113 0.280 1.07 ·10−4 20.22% 37.2%

T
C

D Proposed Model 23.54 0.697 0.102 0.253 2.06 ·10−4 77.03% N/A
Baseline 23.01 0.654 0.097 0.252 2.29 ·10−4 22.97% N/A

Table 3: Performance comparison of the proposed method against the static baseline. The
pretrained LipNet model is not available for the TCD TIMIT so the WER metric is omitted.

Figure 9: Distribution of user scores for the Turing test.

5 Conclusion and Future Work
In this work we have presented an end-to-end model using temporal GANs for speech-driven
facial animation. Our model is capable of producing highly detailed frames scoring high in
terms of PSNR, SSIM and in terms of the sharpness measures on both datasets. According
to our ablation study this can be mainly attributed to the use of a Frame Discriminator.

Furthermore, our method produces more coherent sequences and more accurate mouth
movements compared to the static approach, as demonstrated by a resounding user prefer-
ence and the difference in the WER. We believe that these improvements are not only a result
of using a temporal generator but also due to the use of the conditional Sequence Discrim-
inator. Unlike previous approaches [5] that prohibit the generation of facial expressions,
the adversarial loss on the entire sequence encourages spontaneous facial gestures. This has
been demonstrated with examples of blinks and frowns. All of the above factors make the
videos generated using our approach difficult to separate from real videos as revealed from
the Turing test results, with the average user scoring only slightly better than chance. It is
also noteworthy that no user was able to perfectly classify the videos.

This model has shown promising results in generating lifelike videos. Moving forward,
we believe that different architectures for the sequence discriminator could help produce
more natural sequences. Finally, at the moment expressions are generated randomly by the
model so a natural extension of this method would attempt to also capture the mood of the
speaker from his voice and reflect it in the facial expressions.
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A Audio Preprocessing
The sequence of audio samples is divided into overlapping audio frames in a way that ensures
a one-to-one correspondence with the video frames. In order to achieve this we pad the audio
sequence on both ends and use the following formula for the stride:

stride =
rateaudio

ratevideo
(4)

B Network Architecture
This section describes, in detail, the architecture of the networks used in our temporal GAN.
All our networks use ReLU activations except for the final layers. The encoders and genera-
tor use the hyperbolic tangent activation to ensure that their output lies in the set [−1,1] and
the discriminator uses a Sigmoid activation.

B.1 Audio Encoder
The Audio Encoder network obtains features for each audio frame. It is made up of 7 Layers
and produces an encoding of size 256. This encoding is fed into a 2 layer GRU which will
produce the final context encoding.

Conv1D

4/2

Conv1D

4/2

Conv1D

4/2

Conv1D

4/2

Conv1D

4/2

8000 x 1

Conv1D

250/50

160 x 16 80 x 32 40 x 64 20 x 128 10 x 256 5 x 512

FC

256 x 1

Figure 10: The deep audio encoder used to extract 256 dimensional features from audio
frames containing 8000 samples. Convolutions are described using the notation kernel /
stride. The feature dimensions after each layer are shown above the network using the nota-
tion feature size × number of feature maps.

B.2 Noise Generator
The Noise Generator is responsible for producing noise that is sequentially coherent. The
network is made up of GRUs which take as input at every instant a 10 dimensional vector
sampled from a Gaussian distribution with mean 0 and variance of 0.6. The Noise Generator
is shown in Fig. 11.

B.3 Identity Encoder and Frame Decoder
The Identity Encoder is responsible for capturing the identity of the speaker from the still
image. The Identity Encoder is a 6 layer CNN which produces an identity encoding zid of
size 50. This information is concatenated to the context encoding zc and the noise vector zn
at every instant and fed as input to the Frame Decoder, which will generate a frame of the
sequence. The Frame Decoder is a 6 layer CNN that uses strided transpose convolutions to
generate frames. The Identity Encoder - Frame Decoder architecture is shown in Fig. 12
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RNN RNN...

z1n

RNN

z2n zTn

n1∼N(0,0.6) n2∼N(0,0.6) nT∼N(0,0.6)

Figure 11: The network that generates the sequential noise
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Figure 12: The U-Net architecture used in the system with skip connections from the hidden
layers of the Identity Encoder to the Frame Decoder. Convolutions are denoted by Conv2D
and transpose convolutions as Convtr2D. We use the notation (kernelx, kernely) / stride for
2D convolutional layers.

C Datasets

The model is evaluated on the GRID and TCD TIMIT datasets. The subjects used for train-
ing, validation and testing are shown in Table 4

Dataset Training Validation Testing
GRID 1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 17, 22, 26,

28, 32
9, 20, 23,
27, 29, 30,
34

2, 4, 11, 13,
15, 18, 19, 25,
31, 33

TCD TIMIT 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17,
19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31,
32, 35, 37, 38, 39, 40, 42, 43, 46, 47, 48,
50, 51, 52, 53, 57, 59

34, 36, 44,
45, 49, 54,
58

8, 9, 15, 18,
25, 28, 33, 41,
55, 56

Table 4: The subject IDs for the training, validation and test sets for the GRID and TCD
TIMIT datasets.
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