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Abstract. Generating realistic 3D faces is of high importance for com-
puter graphics and computer vision applications. Generally, research on
3D face generation revolves around linear statistical models of the facial
surface. Nevertheless, these models cannot represent faithfully either the
facial texture or the normals of the face, which are very crucial for photo-
realistic face synthesis. Recently, it was demonstrated that Generative
Adversarial Networks (GANs) can be used for generating high-quality
textures of faces. Nevertheless, the generation process either omits the
geometry and normals, or independent processes are used to produce 3D
shape information. In this paper, we present the first methodology that
generates high-quality texture, shape, and normals jointly, which can be
used for photo-realistic synthesis. To do so, we propose a novel GAN that
can generate data from different modalities while exploiting their correla-
tions. Furthermore, we demonstrate how we can condition the generation
on the expression and create faces with various facial expressions. The
qualitative results shown in this paper are compressed due to size limi-
tations, full-resolution results and the accompanying video can be found
in the supplementary documents. The code and models are available at
the project page: https://github.com/barisgecer/TBGAN.

Keywords: Synthetic 3D Face, Face Generation, Generative Adversar-
ial Networks, 3D Morphable Models, Facial Expression Generation

1 Introduction

Generating 3D faces with high-quality texture, shape, and normals is of paramount
importance in computer graphics, movie post-production, computer games, etc.
Other applications of such approaches include generating synthetic training data
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Fig. 1: We propose a novel GAN that can synthesize high-quality texture, shape,
and normals jointly for realistic and coherent 3D faces of novel identities. The
separation of branch networks allows the specialization of the characteristic of
each one of the modalities while the trunk network maintains the local corre-
spondences among them. Moreover, we demonstrate how we can condition the
generation on the expression and create faces with various facial expressions. We
annotate the training dataset automatically by an expression recognition net-
work to couple those expression encodings to the texture, shape, and normals
UV maps.

for face recognition [23] and modeling the face manifold for 3D face reconstruc-
tion [24]. Currently, 3D face generation in computer games and movies is per-
formed by expensive capturing systems or by professional technical artists. The
current state-of-the-art methods generate faces, which can be suitable for ap-
plications such as caricature avatar creation in mobile devices [29] but do not
generate high-quality shape and normals that can be used for photo-realistic face
synthesis. In this paper, we propose the first methodology for high-quality face
generation that can be used for photo-realistic face synthesis (i.e., joint genera-
tion of texture, shape, and normals) by capitalizing on the recent developments
on Generative Adversarial Networks (GANs).

The early face models, such as [6], represent 3D face by disentangled PCA
models of geometry, expression [13], and colored texture, called 3D morphable
models (3DMM). 3DMMs and its variants were the most popular method for
modeling shape and texture separately. However, the linear nature of PCA is
often unable to capture high-frequency signals properly, thus the quality of gen-
eration and reconstruction by PCA is sub-optimal.

GANs is a recently introduced family of techniques that train samplers of
high-dimensional distributions [25]. It has been demonstrated that when a GAN
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is trained on facial images, it can generate images that have realistic charac-
teristics. In particular, the recently introduced GANs [32, 33, 11] can generate
photo-realistic high-resolution faces. Nevertheless, because they are trained on
partially-aligned 2D images, they cannot properly model the manifold of faces
and thus (a) inevitably create many unrealistic instances and (b) it is not clear
how they can be used to generate photo-realistic 3D faces.

Recently, GANs have been applied for generating facial texture for various
applications. In particular, [54] and [23] utilize style transfer GANs to generate
photorealistic images of 3DMM-sampled novel identities. [57] directly generates
high-quality 3D facial textures by GANs and [24] replaces 3D Morphable Models
(3DMMs) with GAN models for 3D texture reconstruction while the shape is
still maintained by statistical models. [35] propose to generate 4K diffuse and
specular albedo and normals from a texture map by an image-to-image GAN.
On the other hand, [44] model 3D shape by GANs in a parametric UV map and
[53] utilize mesh convolutions with variational autoencoders to model shape in its
original structure. Although one can model 3D faces with such shape and texture
GAN approaches, these studies omit the correlation between shape, normals,
and texture which is very important for photorealism in identity space. The
significance of such correlation is most visible with inconsistent facial attributes
such as age, gender, and ethnicity (i.e. old-aged texture on a baby-face geometry).

In order to address these gaps, we propose a novel multi-branch GAN ar-
chitecture that preserves the correlation between different 3D modalities (such
as texture, shape, normals, and expression). After converting all modalities into
UV space and concatenate over channels, we train a GAN that generates all
modalities in a meaningful local and global correspondence. In order to prevent
incompatibility issues due to the intensity distribution of different modalities,
we propose a trunk-branch architecture that can synthesize photorealistic 3D
faces with coupled texture and geometry. Further, we condition this GAN by
expression labels to generate faces in any desired expression.

From a computer graphics point of view, a photorealistic face rendering re-
quires a number of elements to be tailored, i.e. shape, normals and albedo maps,
some of which should or can be specific to a particular identity. However, the
cost of hand-crafting novel identities limits their usage on large-scale applica-
tions. The proposed approach tackles this down with reasonable photorealism
with a massively generalized identity space. Although the results in this paper
are limited to aforementioned modalities by the dataset at hand, the proposed
method allows adding more identity-specific modalities (i.e. cavity, gloss, scatter)
once such a dataset becomes available.

The contributions of this paper can be summarized as follows:

– We propose to model and synthesize coherent 3D faces by jointly training a
novel Trunk-branch based GAN (TBGAN) architecture for shape, texture,
and normals modalities. TBGAN is designed to maintain correlation while
tolerating domain-specific differences of these three modalities and can be
easily extended to other modalities and domains.
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– In the domain of identity-generic face modeling, we believe this is the first
study that utilizes normals as an additional source of information.

– We propose the first methodology for face generation that correlates expres-
sion and identity geometries (i.e. modeling personalized expression) and also
the first attempt to model expression in texture and normals space.

2 Related Work

2.1 3D face modeling

There is an underlying assumption that human faces lie on a manifold with
respect to the appearance and geometry. As a result, one can model the geometry
and appearance of the human face analytically based upon the identity and
expression space of all individuals. Two of the first attempts in the history of
face modeling were [1], which proposes part-based 3D face reconstruction from
frontal and profile images, and [48], which represents expression action units by
a set of muscle fibers.

Twenty years ago methods that generated 3D faces revolved around para-
metric generative models that are driven by a small number of anthropometric
statistics (e.g., sparse face measurements in a population) which act as con-
straints [18]. The seminal work of 3D morphable models (3DMMs) [6] demon-
strated for the first time that is possible to learn a linear statistical model from
a population of 3D faces [46, 12]. 3DMMs are often constructed by using a Prin-
cipal Component Analysis (PCA) based on a dataset of registered 3D scans of
hundreds [47] or thousands [7] subjects. Similarly, facial expressions are also
modeled by applying PCA [62, 38, 10, 2], or are manually defined using linear
blendshapes [36, 58, 9]. 3DMMs, despite their advantages, are bounded by the
capacity of linear space that under-represents the high-frequency information
and often result in overly-smoothed geometry and texture models. [14] and [59]
attempt to address this issue by using local displacement maps. Furthermore, the
3DMM line of research assumes that texture and shape are uncorrelated, hence
they can only be produced by separate models (i.e., separate PCA models for
texture and shape). Early attempts in correlated shape and texture have been
made in Active Appearance Models (AAMs) by computing joint PCA models of
sparse shape and texture [16]. Nevertheless, due to the inherent limitations of
PCA to model high-frequency texture, it is rarely used to correlate shape and
texture for 3D face generation.

Recent progress in generative models [34, 25] is being utilized in 3D face mod-
eling to tackle this issue. [44] trained a GAN that models face geometry based
on UV representations for neutral faces, and likewise, [53] modeled identity and
expression geometry by variational autoencoders with mesh convolutions. [24]
proposed a GAN-based texture modeling for 3D face reconstruction while mod-
eling geometry by PCA and [57] trained a GAN to synthesize facial textures.
To the best of our knowledge, these methodologies totally omit the correlation
between geometry and texture and moreover, they ignore identity-specific ex-
pression modeling by decoupling them into separate models. In order to address
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this issue, we propose a trunk-branch GAN that is trained jointly for texture,
shape, normals, and expression in order to leverage non-linear generative net-
works for capturing the correlation between these modalities.

2.2 Photorealistic face synthesis

Although most of the aforementioned 3D face models can synthesize 2D face
images, there are also some dedicated 2D face generation studies. [42] combines
non-parametric local and parametric global models to generate various set of
face images. Recent family of GAN approaches [52, 32, 33, 11] offers the state-of-
the-art high quality random face generation without constraints.

Some other GAN-based studies allow to condition synthetic faces by ren-
dered 3DMM images [23], by landmarks [5] or by another face image [4] (i.e. by
disentangling identity and certain facial attributes). Similarly, facial expression
is also conditionally synthesized by an audio input [31], by action unit codes [51],
by predefined 3D geometry [65] or by expression of an another face image [37].

In this work, we jointly synthesize the aforementioned modalities for co-
herent photorealistic face synthesis by leveraging high-frequency generation by
GANs. Unlike many of its 2D and 3D alternatives, the resulting generator mod-
els provide absolute control over disentangled identity, pose, expression and il-
lumination spaces. Unlike many other GAN works that are struggling due to
misalignments among the training data, our entire latent space correspond to
realistic 3D faces as the data representation is naturally aligned on UV space.

2.3 Boosting face recognition by synthetic training data

There have been also some works to synthesize face images to be used as syn-
thetic training data for face recognition methods either by directly using GAN-
generated images [61] or by controlling pose-space with a conditional-GAN [60,
30, 56]. [41] propose many augmentation techniques, such as rotation, expression,
and shape, based on 3DMMs. Other GAN-based approaches that capitalize 3D
facial priors include [66], which rotates faces by fitting 3DMM and preserves
photorealism by translation GANs and [64], which frontalize face images by a
GAN and 3DMM regression network. [19] complete missing parts of UV texture
representations of 2D images after 3DMM fitting by a translation GAN. [23]
first synthesizes face images of novel identities by sampling from 3DMM and
then removes the photorealistic domain gap by an image-to-image translation
GAN.

All of these studies show the significance of photorealistic and identity-generic
face synthesization for the next generation of facial recognition algorithms. Al-
though this study focuses more on the graphical aspect of face synthesization,
we show that synthetic images can also improve face recognition performance.
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Fig. 2: UV extraction process. In (a) we present a raw mesh, in (b) the regis-
tered mesh using the Large Scale Face Model (LSFM) template [8], in (c) the
unwrapped 3D mesh in the 2D UV space, and (d) the interpolated 2D UV map.
Interpolation is carried out using the barycentric coordinates of each pixel in the
registered 3D mesh.

3 Approach

3.1 UV Maps for Shape, Texture and Normals

In order to feed the shape, the texture, and the normals of the facial meshes into
a deep network we need to reparameterize them into an image-like tensor format
to apply 2D-convolutions 3. We begin by describing all the raw 3D facial scans
with the same topology and number of vertices (dense correspondence). This is
achieved by morphing non-rigidly a template mesh to each one of the raw scans.
We employ a standard non-rigid iterative closest point algorithm as described
in [3, 17] and we deform our chosen template so that it captures correctly the
facial surface of the raw scans. As a template mesh, we choose the mean face of
the LSFM model proposed in [8], which consists approximately of 54K vertices
that are sufficient enough to depict non-linear, high facial details.

After reparameterizing all the meshes into the LSFM [8] topology, we cylin-
drically unwrap the mean face of the LSFM [8] to create a UV representation
for that specific mesh topology. In the literature, a UV map is commonly uti-
lized for storing only the RGB texture values. Apart from storing the texture
values of the 3D meshes, we utilize the UV space to store the 3D coordinates
of each vertex (x, y, z) and the normal orientation (nx, ny, nz). Before storing
the 3D coordinates into the UV space, all meshes are aligned in the 3D spaces
by performing General Procrustes Analysis (GPA) [26] and are normalized to
be in the scale of [1,−1]. Moreover, we store each 3D coordinate and normals
in the UV space given the respective UV pixel coordinate. Finally, we perform
a barycentric interpolation based on the barycentric coordinates of each pixel
on the registered mesh to fill out the missing areas in order to produce a dense
illustration of the UV map. In Fig. 2, we illustrate a raw 3D scan, the registered
3D scan on the LSFM [8] template, the sparse UV map of 3D coordinates and
finally the interpolated one.

3 Another line of research is mesh convolutional networks [15, 39, 53] which cannot
preserve high-frequency details of the texture and normals at the current state-of-
the-art.
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3.2 Trunk-Branch GAN to Generate Coupled Texture, Shape and
Normals

In order to train a model that handles multiple modalities, we propose a novel
trunk-branch GAN architecture to generate entangled modalities of the 3D face
such as texture, shape, and normals as UV maps. For this task, we exploit the
MeIn3D dataset [8] which consists of approximately 10,000 neutral 3D facial
scans with wide diversity in age, gender, and ethnicity.

Given a generator network GL with a total of L convolutional upsampling
layers and gaussian noise z ∼ N (0, I) as input, the activation at the end of
layer d (i.e., Gd(z)) is split into three branch networks GL−dT , GL−dN , GL−dS each
of which consists of L−d upsampling convolutional layers that generate texture,
normals and shape UV maps respectively. The discriminator DL starts with the
branch networks DL−d

T , DL−d
N , DL−d

S whose activations are concatenated before
fed into trunk network Dd. The output of DL is regression of real/fake score.

Although the proposed approach is compatible with most of the GAN archi-
tectures and loss functions, in our experiments, we base TBGAN on progressive
growing GAN architecture [32] train it by WGAN-GP loss [27] as following:

LGL = Ez∼N (0,I)

[
−DL

(
GL(z)

)]
(1)

LDL = Ex∼pdata, z∼N (0,I)

[
DL
(
GL(z)

)
−DL(x) + λ ∗GP (x,GL(z))

]
(2)

where gradient penalty calculated byGP (x, x̂) =
(
‖∇DL (αx̂+ (1− α)x)

)
‖2 − 1)

2

and α denotes uniform random numbers between 0 and 1. λ is a balancing fac-
tor which is typically λ = 10. An overview of this trunk-branch architecture is
illustrated in Fig. 1

3.3 Expression Augmentation by Conditional GAN

Further, we modify our GAN in order to generate 3D faces with expression
by conditioning it with expression annotations (pe). Similar to the MeIn3D
dataset, we have captured approximately 35, 000 facial scans of around 5, 000
distinct identities during a special exhibition in the Science Museum, London. All
subjects were recorded in various guided expressions with a 3dMD face capturing
apparatus. All of the subjects were asked to provide meta-data regarding their
age, gender, and ethnicity. The database consists of 46% male, 54% female, 85%
White, 7% Asian, 4% Mixed Heritage, 3% Black, and 1% other.

In order to avoid the cost and potential inconsistency of manual annotation,
we render those scans and automatically annotate them by an expression recog-
nition network. The resulting expression encodings ((∗,pe) ∼ p data ) are used
as label vector during the training of our trunk-branch conditional GAN. This
training scheme is illustrated in Fig. 1. pe is basically a vector of 7 for univer-
sal expressions (neutral, happy, angry etc.), randomly drawn from our dataset.
During the training, Eq. 1 and 2 are updated to condition expression encodings
by AC-GAN [45] as following:
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LGL += E(∗,pe)∼pdata, z∼N (0,I)

[∑
e

pe log(DL
e (GL(z,pe)))

]
(3)

LDL += E(x,pe)∼pdata, z∼N (0,I)

[∑
e

pe log(DL
e (x)) + pe log(DL

e (GL(z,pe)))

]
(4)

which performs softmax cross entropy between expression prediction of the dis-
criminator (DL

e (x)) and the random expression vector input (pe) for real (x)
and generated samples (GL(z,pe)).

Unlike previous expression models that omit the effect of the expression on
textures, the resulting generator is capable of generating coupled texture, shape,
and normals map of a face with controlled expression. Similarly, our genera-
tor respects the identity-expression correlation thanks to correlated supervision
provided by the training data. This is in contrast to the traditional statisti-
cal expression models which decouples expression and identity models into two
separate entities.

3.4 Photorealistic Rendering with Generated UV maps

For the renderings to appear photorealistic, we use the generated identity-specific
mesh, texture, and normals, in combination with the generic reflectance proper-
ties, and employ a commercial rendering application: Marmoset Toolbag [40].

In order to extract the 3D representation from the UV domain we employ
the inverse procedure explained in section 3.1 based on the UV pixel coordinates
of each vertex of the 3D mesh. Fig. 3 shows the rendering results, under a single
light source, when using the generated geometry (Fig. 3(a)) and the generated
texture (Fig. 3(b)). Here the specular reflection is calculated on the per-face
normals of the mesh and exhibits steep changes between on the face’s edges.
By interpolating the generated normals on each face (Fig. 3(c)), we are able
to smooth the specular highlights and correct any high-frequency noise on the
geometry of the mesh. However, these results do not correctly model the human
skin and resemble a metallic surface. In reality, the human skin is rough and as a
body tissue, it both reflects and absorbs light, thus exhibiting specular reflection,
diffuse reflection, and subsurface scattering.

Although we can add such modalities as additional branches with the avail-
ability of such data, we find that rendering can be still improved by adding
some identity-generic maps. Using our training data, we create maps that define
certain reflectance properties per-pixel, which will match the features of the av-
erage generated identity, as shown in bottom-left of Fig. 1. Scattering (c) defines
the intensity of subsurface scattering of the skin. Translucency (d) defines the
amount of light, that travels inside the skin and gets emitted in different direc-
tions. Specular albedo (e) gives the intensity of the specular highlights, which
differ between hair-covered areas, the eyes, and the teeth. Roughness (f) de-
scribes the scattering of specular highlights and controls the glossiness of the
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(a) shape (b) Shp+tex (c) Shp+tex+nor (d) Final

Fig. 3: Zoom-in on rendering results with (a) only the shape, (b) adding the
albedo texture, (c) adding the generated normals, and (d) using identity-generic
detail normal, specular albedo, roughness, scatter and translucency maps.

skin. A detail normal map (g) is also tilled and added on the generated normal
maps, to mimic the skin pores and a detail weight map (h) controls the appear-
ance of the detail normals, so that they do not appear on the eyes, lips, and
hair. The final result (Fig. 3(d)) properly models the skin surface and reflection,
by adding plausible high-frequency specularity and subsurface scattering, both
weighted by the area of the face where they appear.

4 Results

In this section, we give qualitative and quantitative results of our method for
generating 3D faces with novel identities and various expressions. In our exper-
iments, there are total L = 8 up- and down-sampling layers where d = 6 of
them in the trunk and 2 layers in each branch. These choices are empirically
validated to ensure sufficient correlation among modalities without incompati-
bility artifacts. Running time is a few milliseconds to generate UV images from
a latent code on a high-end GPU. Transforming from UV image to mesh is just
sampling with UV coordinates and can be considered free of cost. Renderings in
this paper take a few seconds due to high resolution but this cost depends on the
application. The memory needed for the generator network is 1.25GB compared
to the 6GB PCA model of the same resolution and %95 of the total variance.

In the following sections, we first visualize generated UV maps and their
contributions to the final renderings on several generated faces. Next, we show
the generalization ability of the identity and expression generators on some facial
characteristics. We also demonstrate its well-generalization latent space by inter-
polating between different identities. Additionally, we perform full-head comple-
tion to the interpolated faces. Finally, we perform face recognition experiments
by using the generated face images as additional training data.

4.1 Qualitative Results

Combining coupled modalities: Fig. 4 presents the generated shape, nor-
mals, and texture maps by the proposed GAN and their additive contributions
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(a) Shape (b) Normals (c) Texture (d) Shape (e) Shp+Nor (f) All

Fig. 4: Generated UV representations and their corresponding additive render-
ings. Please note the strong correlation between UV maps, high fidelity and
photorealistic renderings. The figure is best viewed in zoom.

to the final renderings. As can be seen from local and global correspondences,
the generated UV maps are highly correlated and coherent. Attributes like age,
gender, race, etc. can be easily grasped from all of the UV maps and rendered im-
ages. Please also note that some of the minor artifacts of the generated geometry
in Fig. 4(d) are compensated by the normals in Fig. 4(e).

Diversity: Our model is well-generalized with different age, gender, ethnicity
groups and many facial attributes. Although Fig. 5 shows diversity in some of
those categories, the reader is encouraged to see identity variation throughout
the paper and the supplementary video.

Expression: We also show that our expression generator is capable of syn-
thesizing quite a diverse set of expressions. Moreover, the expressions can be
controlled by the input label as can be seen in Fig. 6. The reader is encouraged
to see more expression generations in the supplementary video.

Interpolation between identities: As shown in the supplementary video and
in Fig. 7, our model can easily interpolate between any generation in a visually
continuous set of identities which is another indication that the model is free
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(a) Age (b) Ethnicity (c) Gender (d) Weight (e) Roundness

Fig. 5: Variation of generated 3D faces by our model. Each block shows diversity
in a different aspect. Readers are encouraged to zoom in on a digital version.

Fig. 6: (Top) generations of six universal expressions (i.e. each two columns re-
spective the following expressions: Happiness, Sadness, Anger, Fear, Disgust,
Surprise). (Middle) texture and (Bottom) normals maps are used to generate
the corresponding 3D faces. Please note how expressions are represented and
correlated in the texture and normals space.

from mode collapse. Interpolation is done by randomly generating two identities
and generates faces by evenly spaced samples in latent space between the two.

Full head completion: We also extend our facial 3D meshes to full head rep-
resentations by employing the framework proposed in [50]. We achieve this by
regressing from a latent space that represents only the 3D face to the PCA latent
space of the Universal Head Model (UHM) [50, 49]. We begin by building a PCA
model of the inner face based on the 10, 000 neutral scans of the MeIn3D dataset.
Similarly, we exploit the extended full head meshes of the same identities uti-
lized by UHM model and project them to the UHM subspace to acquire the
latent shape parameters of the entire head topology. Finally, we learn a regres-
sion matrix by solving a linear least-square optimization problem as proposed
in [50], which maps the latent space of the face shape to the full head represen-
tation. Fig. 7 demonstrates the extended head representations of our approach
in conjunction with the synthesized crop faces.

Comparison to decoupled modalities and PCA: Results in Fig. 8 reveal
a set of advantages of such unified 3D face modeling over separate GAN and
statistical models. Clearly, the figure shows that the correlation among texture,
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Fig. 7: Interpolation between pair of identities in the latent space. Smooth transi-
tion indicates generalization of our GAN model. The last two rows show complete
full head representations respective to the first two rows.

      (a)                   (b)                  (c)                             (d)  

Fig. 8: Comparison with seperate GAN models and PCA model. (a) Generation
by our model. (b) Same texture with random shape and normals. (c) Same tex-
ture and shape with random normals (i.e. beard). (d) Generation by a PCA
model constructed by the same training data and the same identity-generic ren-
dering tools as explained in Sec. 3.4.

shape, and normals is an important component for realistic face synthesis. Also,
generations by PCA models are missing photorealism and details significantly.

4.2 Pose-invariant Face Recognition

In this section, we present an experiment that demonstrates that the proposed
methodology can generate faces of different and diverse identities. That is, we
use the generated faces to train one of the most recent state-of-the-art face
recognition method, ArcFace [20], and show that the proposed shape and texture
generation model can boost the performance of pose-invariant face recognition.
Training Data: We randomly synthesize 10K new identities from the proposed
model and render 50 images per identity with a random camera and illumination
parameters from the Gaussian distribution of the 300W-LP dataset [67, 23]. For
clarity, we call this dataset “Gen” in the rest of the text. Fig. 9 illustrates some
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Fig. 9: Examples of generated data (“Gen”) by the proposed method.

examples of “Gen” dataset which show larger pose variations than the real-world
collected data. We augment “Gen” with an in-the-wild training data, CASIA
dataset [63], which consists of 10,575 identities with 494,414 images.

Test Data: For evaluation, we employ Celebrities in Frontal Profile (CFP) [55]
and Age Database (AgeDB) [43]. CFP [55] consists of 500 subjects, each with
10 frontal and 4 profile images. The evaluation protocol includes frontal-frontal
(FF) and frontal-profile (FP) face verification. In this paper, we focus on the most
challenging subset, CFP-FP, to investigate the performance of pose-invariant
face recognition. There are 3,500 same-person pairs and 3,500 different-person
pairs in CFP-FP for the verification test. AgeDB [43, 21] contains 12, 240 im-
ages of 440 distinct subjects. The minimum and maximum ages are 3 and 101,
respectively. The average age range for each subject is 49 years. There are four
groups of test data with different year gaps (5 years, 10 years, 20 years and 30
years, respectively) [21]. In this paper, we only use the most challenging subset,
AgeDB-30, to report the performance. There are 3,000 positive pairs and 3,000
negative pairs in AgeDB-30 for the verification test.

Data Prepossessing: We follow the baseline [20] to generate the normalized
face crops (112× 112) by utilizing five facial points.

Training and testing Details: For the embedding networks, we employ the
widely used ResNet50 architecture [28]. After the last convolutional layer, we also
use the BN-Dropout-FC-BN [20] structure to get the final 512-D embedding
feature. For the hyper-parameter setting and loss functions, we follow [20, 22,
21]. The overlapping identities between the CASIA data set and the test set are
removed for strict evaluations, and we only use a single crop for all testing.

Result Analysis: In Table 1, we show the contribution of the generated data on
pose-invariant face recognition. We take UV-GAN [19] as the baseline method,
which attaches the completed UV texture map onto the fitted mesh and gener-
ates instances of arbitrary poses to increase pose variation during training and
minimize pose discrepancy during testing. As we can see from Table 1, generated
data significantly boost the verification performance on CFP-FP from 95.56%
to 97.12%, decreasing the verification error by 51.2% compared to the result of
UV-GAN [19]. On AgeDB-30, combining CASIA and generated data achieves
similar performance compared to using single CASIA because we only include
intra-variance from pose instead of age.

In Figure 10, we show the angle distributions of all positive pairs and negative
pairs from CFP-FP. By incorporating generation data, the overlap indistinguish-
able area between the positive histogram and the negative histogram is obviously
decreased, which confirms that ArcFace can learn pose-invariant feature embed-
ding from the generated data. In Table 2, we select some verification pairs from
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Methods CFP-FP AgeDB-30

UVGAN [19] 94.05 94.18

Ours (CASIA) 95.56 95.15
Ours (CASIA+Gen) 97.12 95.18

Table 1: Verification performance (%)
of different models on CFP-FP and
AgeDB-30.

0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Positive and Negative Pairs

0

20

40

60

80

100

120

140

160

180

P
ai

r 
N

um
be

rs

Negative
Positive

(a) CASIA

0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Positive and Negative Pairs

0

20

40

60

80

100

120

140

160

180

P
ai

r 
N

um
be

rs

Negative
Positive

(b) CASIA+Gen

Fig. 10: Angle distributions of CFP-FP
positive (red) and negative (blue) pairs
in the 512-D feature space.

Training Data

CASIA 84.06◦ 82.39◦ 84.72◦ 88.06◦ 84.37◦

CASIA+Gen 57.60◦ 63.12◦ 66.10◦ 59.72◦ 60.25◦

Table 2: The angles between face pairs from CFP-FP predicted by different
models trained from the CASIA and combined data. The generated data can
obviously enhance the pose-invariant feature embedding.

CFP-FP and calculate the cosine distance (angle) between these pairs predicted
by different models trained from the CASIA and combined data. Intuitively, the
angles between these challenging pairs are significantly reduced when generated
data are used for the model training.

5 Conclusion

We presented the first 3D face model for joint texture, shape, and normal gen-
eration based on Generative Adversarial Networks (GANs). The proposed GAN
model implements a new architecture for exploiting the correlation between dif-
ferent modalities and can synthesize different facial expressions in accordance
with the embeddings of an expression recognition network. We demonstrate that
randomly synthesized images of our unified generator show strong relations be-
tween texture, shape, and normals and that rendering with normals provides
excellent shading and overall visual quality. Finally, in order to demonstrate the
generalization of our model, we have used a set of generated images to train a
deep face recognition network.
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