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Abstract. Margin-based deep face recognition methods (e.g. SphereFace, Cos-
Face, and ArcFace) have achieved remarkable success in unconstrained face recog-
nition. However, these methods are susceptible to the massive label noise in the
training data and thus require laborious human effort to clean the datasets. In
this paper, we relax the intra-class constraint of ArcFace to improve the robust-
ness to label noise. More specifically, we design K sub-centers for each class
and the training sample only needs to be close to any of the K positive sub-
centers instead of the only one positive center. The proposed sub-center Arc-
Face encourages one dominant sub-class that contains the majority of clean faces
and non-dominant sub-classes that include hard or noisy faces. Extensive exper-
iments confirm the robustness of sub-center ArcFace under massive real-world
noise. After the model achieves enough discriminative power, we directly drop
non-dominant sub-centers and high-confident noisy samples, which helps recap-
ture intra-compactness, decrease the influence from noise, and achieve compara-
ble performance compared to ArcFace trained on the manually cleaned dataset.
By taking advantage of the large-scale raw web faces (Celeb500K), sub-center
Arcface achieves state-of-the-art performance on IJB-B, IJB-C, MegaFace, and
FRVT.
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1 Introduction

Face representation using Deep Convolutional Neural Network (DCNN) embedding
with margin penalty [26,15,32,5] to simultaneously achieve intra-class compactness
and inter-class discrepancy is the method of choice for state-of-the-art face recogni-
tion. To avoid the sampling problem in the Triplet loss [26], margin-based softmax
methods [15,32,31,5] focused on incorporating margin penalty into a more feasible
framework, the softmax loss, which has global sample-to-class comparisons within the
multiplication step between the embedding feature and the linear transformation matrix.
Naturally, each column of the linear transformation matrix is viewed as a class center
representing a certain class [5].

* Equal contributions.
InsightFace is a nonprofit Github project for 2D and 3D face analysis.
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(a) ArcFace vs. Sub-center ArcFace (b) Example of Sub-classes

Fig. 1. (a) Difference between ArcFace and the proposed sub-center ArcFace. In this paper, we
introduce sub-class into ArcFace to relax the intra-class constraint, which can effectively improve
robustness under noise. (b) The sub-classes of one identity from the CASIA dataset [40] after
using the sub-center ArcFace loss (K = 10). Noisy samples and hard samples (e.g. profile and
occluded faces) are automatically separated from the majority of clean samples.

Even though remarkable advances have been achieved by the margin-based soft-
max methods [8,15,32,31,5,39], they all need to be trained on well-annotated clean
datasets [30,5], which require intensive human efforts. Wang et al. [30] found that faces
with label noise significantly degenerate the recognition accuracy and manually built a
high-quality dataset including 1.7M images of 59K celebrities. However, it took 50 an-
notators to work continuously for one month to clean the dataset, which further demon-
strates the difficulty of obtaining a large-scale clean dataset for face recognition.

Since accurate manual annotations can be expensive [30], learning with massive
noisy data 1 has recently attracted much attention [14,4,11,41,33]. However, computing
time-varying weights for samples [11] or designing piece-wise loss functions [41] based
on the current model’s predictions can only alleviate the influence from noisy data to
some extent as the robustness and improvement depend on the initial performance of
the model. Besides, the co-mining method [33] requires to train twin networks together
thus it is less practical for training large models on large-scale datasets.

As shown in Fig. 1(a), the objective of ArcFace [5] has two parts: (1) intra-class
compactness: pushing the sample close to the corresponding positive center; and (2)
inter-class discrepancy: pushing the sample away from all other negative centers. If a
face is a noisy sample, it does not belong to the corresponding positive class. In Arc-
Face, this noisy sample generates a large wrong loss value, which impairs the model
training. In this paper, we relax the intra-class constraint of forcing all samples close
to the corresponding positive center by introducing sub-classes into ArcFace. For each
class, we design K sub-centers and the training sample only needs to be close to any
of the K positive sub-centers instead of the only one positive center. As illustrated in
Fig. 1(b), the proposed sub-center ArcFace will encourage one dominant sub-class that
contains the majority clean faces and multiple non-dominant sub-classes that include
hard or noisy faces. This happens because the intra-class constraint of sub-center Arc-

1 Generally, there are two types of label noise in face recognition [30,11,41,33]: one is open-set
label noise, i.e., faces whose true labels are out of the training label set but are wrongly labeled
to be within the set; and the other one is close-set label noise, i.e., faces whose true labels are
in the training label set but are wrongly labeled.
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Face enforces the training sample to be close to one of the multiple positive sub-classes
but not all of them. The noise is likely to form a non-dominant sub-class and will not be
enforced into the dominant sub-class. Therefore, sub-center ArcFace is more robust to
noise. Extensive experimental results in this paper indicate that the proposed sub-center
ArcFace is more robust than ArcFace [5] under massive real-world noises.

Although the proposed sub-center ArcFace can effectively separate clean data from
noisy data. However, hard samples are also kept away. The existing of sub-centers can
improve the robustness but also undermine the intra-class compactness, which is im-
portant for face recognition [34]. As the devil of face recognition is in the noise [30],
we directly drop non-dominant sub-centers and high-confident noisy samples after the
model achieves enough discriminative power. By pushing hard samples close to the
dominant sub-center, we gradually recapture intra-class compactness and further im-
prove the accuracy.

To summarise, our key contributions are as follows:

– We introduce sub-class into ArcFace to improve its robustness on noisy training
data. The proposed sub-center ArcFace consistently outperforms ArcFace under
massive real-world noises.

– By dropping non-dominant sub-centers and high-confident noisy samples, our method
can achieve comparable performance compared to ArcFace trained on the manu-
ally cleaned dataset.

– Sub-center Arcface can be easily implemented by using the parallel toolkit and
thus enjoys scalability to large-scale datasets. By taking advantage of the large-
scale raw web faces (e.g. Celeb500K [1]), the proposed sub-center Arcface achieves
state-of-the-art performance on IJB-B, IJB-C, MegaFace, and FRVT 1:1 Verifica-
tion.

2 Related work

Face Recognition with Margin Penalty. The pioneering work [26] uses the Triplet
loss to exploit triplet data such that faces from the same class are closer than faces from
different classes by a clear Euclidean distance margin. Even though the Triplet loss
makes perfect sense for face recognition, the sample-to-sample comparisons are local
within mini-batch and the training procedure for the Triplet loss is very challenging
as there is a combinatorial explosion in the number of triplets especially for large-scale
datasets, requiring effective sampling strategies to select informative mini-batch [25,26]
and choose representative triplets within the mini-batch [36,21,28]. Some works tried
to reduce the total number of triplets with proxies [19,23], i.e., sample-to-sample com-
parison is changed into sample-to-proxy comparison. However, sampling and proxy
methods only optimise the embedding of partial classes instead of all classes in one
iteration step.

Margin-based softmax methods [15,8,32,31,5] focused on incorporating margin penalty
into a more feasible framework, softmax loss, which has extensive sample-to-class com-
parisons. Compared to deep metric learning methods (e.g., Triplet [26], Tuplet [21,28]),
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margin-based softmax methods conduct global comparisons at the cost of memory con-
sumption on holding the center of each class. Sample-to-class comparison is more ef-
ficient and stable than sample-to-sample comparison as (1) the class number is much
smaller than sample number, and (2) each class can be represented by a smoothed center
vector which can be updated during training.
Face Recognition under Noise. Most of the face recognition datasets [40,9,2,1] are
downloaded from the Internet by searching a pre-defined celebrity list, and the original
labels are likely to be ambiguous and inaccurate [30]. Learning with massive noisy data
has recently drawn much attention in face recognition [37,11,41,33] as accurate manual
annotations can be expensive [30] or even unavailable.

Wu et al. [37] proposed a semantic bootstrap strategy, which re-labels the noisy sam-
ples according to the probabilities of the softmax function. However, automatic clean-
ing by the bootstrapping rule requires time-consuming iterations (e.g. twice refinement
steps are used in [37]) and the labelling quality is affected by the capacity of the original
model. Hu et al. [11] found that the cleanness possibility of a sample can be dynamically
reflected by its position in the target logit distribution and presented a noise-tolerant
end-to-end paradigm by employing the idea of weighting training samples. Zhong et
al. [41] devised a noise-resistant loss by introducing a hypothetical training label, which
is a convex combination of the original label with probability ρ and the predicted label
by the current model with probability 1 − ρ. However, computing time-varying fusion
weight [11] and designing piece-wise loss [41] contain many hand-designed hyper-
parameters. Besides, re-weighting methods are susceptible to the performance of the
initial model. Wang et al. [33] proposed a co-mining strategy which uses the loss values
as the cue to simultaneously detect noisy labels, exchange the high-confidence clean
faces to alleviate the error accumulation caused by the sampling bias, and re-weight the
predicted clean faces to make them dominate the discriminative model training. How-
ever, the co-mining method requires training twin networks simultaneously and it is
challenging to train large networks (e.g. ResNet100 [10]) on a large-scale dataset (e.g.
MS1M [9] and Celeb500K [1]).
Face Recognition with Sub-classes. Practices and theories that lead to “sub-class”
have been studied for a long time [42,43]. The concept of “sub-class” applied in face
recognition was first introduced in [42,43], where a mixture of Gaussians was used to
approximate the underlying distribution of each class. For instance, a person’s face im-
ages may be frontal view or side view, resulting in different modalities when all images
are represented in the same data space. In [42,43], experimental results showed that sub-
class divisions can be used to effectively adapt to different face modalities thus improve
the performance of face recognition. Wan et al. [29] further proposed a separability cri-
terion to divide every class into sub-classes, which have much less overlaps. The new
within-class scatter can represent multi-modality information, therefore optimising this
within-class scatter will separate different modalities more clearly and further increase
the accuracy of face recognition. However, these work [42,43,29] only employed hand-
designed feature descriptor on tiny under-controlled datasets.

Concurrent with our work, Softtriple [22] presents a multi-center softmax loss with
class-wise regularizer. These multi-centers can capture the hidden distribution of the
data better [20] due to the fact that they can capture the complex geometry of the orig-
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inal data and help reduce the intra-class variance. On the fine-grained visual retrieval
problem, the Softtriple [22] loss achieves better performance than the softmax loss as
capturing local clusters is essential for this task. Even though the concept of “sub-class”
has been employed in face recognition [42,43,29] and fine-grained visual retrieval [22],
none of these work has considered the large-scale (e.g. 0.5 million classes) face recog-
nition problem under massive noise (e.g. around 50% noisy samples within the training
data).

3 The Proposed Approach

3.1 ArcFace

ArcFace [5] introduced an additive angular margin penalty into the softmax loss,

`ArcFace = − log
es cos(θyi+m)

es cos(θyi+m) +
∑N
j=1,j 6=yi e

s cos θj
, (1)

where θj is the angle between the embedding feature xi ∈ R512×1 of the i-th face
sample and the j-th class center Wj ∈ R512×1. Given that the corresponding class
label of xi is yi, θyi represents the angle between xi and the ground-truth center Wyi .
m = 0.5 is the angular margin parameter, s = 64 is the feature re-scale parameter,
and N is the total class number. As there is a `2 normalisation step on both xi and Wj ,
θj = arccos

(
WT
j xi

)
.

Taking advantage of parallel acceleration on both xi and Wj , the implementation
of ArcFace2 can efficiently handle million-level identities on a single server with 8
GPUs (11GB 1080ti). This straightforward solution has changed the ingrained belief
that large-scale global comparison with all classes is usually not attainable due to the
bottleneck of GPU memory [26,28].

3.2 Sub-center ArcFace

Even though ArcFace [5] has shown its power in efficient and effective face feature
embedding, this method assumes that training data are clean [5,30]. However, this is
not true especially when the dataset is in large scale. How to enable ArcFace to be
robust to noise is one of the main challenges that impeding the development of face
representation and recognition [30]. In this paper, we address this problem by proposing
the idea of using sub-classes for each identity, which can be directly adopted by ArcFace
and will significantly increase its robustness.
Foster Sub-classes. As illustrated in Fig. 2, we set a sufficiently large K for each iden-
tity. Based on a `2 normalisation step on both embedding feature xi ∈ R512×1 and all
sub-centers W ∈ RN×K×512, we get the subclass-wise similarity scores S ∈ RN×K
by a matrix multiplicationWTxi. Then, we employ a max pooling step on the subclass-
wise similarity score S ∈ RN×K to get the class-wise similarity score S ′ ∈ RN×1. The

2 https://github.com/deepinsight/insightface/tree/master/recognition
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Fig. 2. Training the deep face recognition model by minimizing the proposed sub-center ArcFace
loss. The main contribution in this paper is highlighted by the blue dashed box. Based on a `2 nor-
malisation step on both embedding feature xi ∈ R512×1 and all sub-centers W ∈ RN×K×512,
we get the subclass-wise similarity score S ∈ RN×K by a matrix multiplication WTxi. After a
max pooling step, we can easily get the class-wise similarity score S ′ ∈ RN×1. The following
steps are same as ArcFace [5].

Table 1. The strictness and robustness analysis of different comparison strategies. In the angular
space, “Min” is closest and “Max” is farest. “intra” refers to comparison between the training
sample and the positive sub-centers (K). “inter” refers to comparison between the training sample
and all negative sub-centers ((N − 1)×K). “outlier” denotes the open-set noise and “label flip”
denotes the close-set noise.

Constraints Sub-center? Strictness? Robustness to outlier? Robustness to label flip?
(1) Min(inter) - Min(intra) ≥ m

√
+++ ++ +

(2) Max(inter) - Min(intra) ≥ m
√

+ ++ ++
(3) Min(inter) - Max(intra) ≥ m ++++
(4) Max(inter) - Max(intra) ≥ m ++ +
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(b) Clean Data Isolation

Fig. 3. (a) Angle distribution of samples to their corresponding centers predicted by the pre-
trained ArcFace model [5]. Noise exists in the CASIA dataset [40,30]. (b) Angle distribution of
samples from the dominant and non-dominant sub-classes. Clean data are automatically isolated
by sub-center ArcFace (K=10).
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(a) K=3, Dominant
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(b) K=3, Non-dominant
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(c) K=1, All
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(d) K = 3 ↓ 1, Non-dominant

Fig. 4. Data distribution of ArcFace (K=1) and the proposed sub-center ArcFace (K=3) before
and after dropping non-dominant sub-centers. MS1MV0 [9] is used here. K = 3 ↓ 1 denotes
sub-center ArcFace with non-dominant sub-centers dropping.

proposed sub-center ArcFace loss can be formulated as:

`ArcFacesubcenter
= − log

es cos(θi,yi+m)

es cos(θi,yi+m) +
∑N
j=1,j 6=yi e

s cos θi,j
, (2)

where θi,j = arccos
(
maxk

(
WT
jk
xi
))

, k ∈ {1, · · · ,K}.
Robustness and Strictness Analysis. Given a large K, sub-classes are able to capture
the complex distribution of the whole training data. Except for applying max pooling
on the subclass-wise cosine similarity score, we can also consider other different com-
parison strategies. In Tab. 1, we give the strictness and robustness analysis of four com-
parison strategies. (1) adds angular margin between the closest inter-class sub-center
and the closest intra-class sub-center. For intra-class comparison, choosing the closest
positive sub-center can relax the intra-class constraint and improve the robustness under
noise. For inter-class comparison, choosing the closest negative sub-center will enhance
the inter-class constraint as sub-centers can better capture the complex geometric dis-
tributions of the whole data set compared to a single center for each class. However, the
enhanced inter-class comparison is less robust under the close-set noise. The training
procedure of (2) can not converge as the initial status between inter-classes is orthog-
onal and relaxing both of the inter-class and intra-class comparisons will disorient the
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training, as there is no loss from inter-class comparisons. (3) and (4) can not foster sub-
classes as stiffening intra-class comparison will compress sub-centers into one point in
the high-dimension feature space thus undermine the robustness to noise.

Dominant and Non-dominant Sub-classes. In Fig. 1(b), we have visualised the clus-
tering results of one identity from the CASIA dataset [40] after employing the sub-
center ArcFace loss (K = 10) for training. It is obvious that the proposed sub-center
ArcFace loss can automatically cluster faces such that hard samples and noisy samples
are separated away from the dominant clean samples. Note that some sub-classes are
empty as K = 10 is too large for a particular identity. In Fig. 3(a) and Fig. 3(b), we
show the angle distribution on the CASIA dataset [40]. We use the pre-trained ArcFace
model [5] to predict the feature center of each identity and then calculate the angle be-
tween the sample and its corresponding feature center. As we can see from Fig. 3(a),
most of the samples are close to their centers, however, there are some noisy samples
which are far away from their centers. This observation on the CASIA dataset matches
the noise percentage estimation (9.3% ∼ 13.0%) in [30]. To automatically obtain a
clean training dataset, the noisy tail is usually removed by a hard threshold (e.g. an-
gle ≥ 77◦ or cosine ≤ 0.225). Since sub-center ArcFace can automatically divide the
training samples into dominant sub-classes and non-dominant sub-classes, we visualise
these two different kinds of samples in Fig. 3(b). As we can see from the two his-
tograms, sub-center ArcFace can automatically separate clean samples from hard and
noisy samples. More specifically, the majority of clean faces (85.6%) go to the domi-
nant sub-class, while the rest hard and noisy faces go to the non-dominant sub-classes.

Drop Non-dominant Sub-centers and High-confident Noises. Even though using
sub-classes can improve the robustness under noise, it undermines the intra-class com-
pactness as hard samples are also kept away as shown in Fig. 3(b). In [9], MS1MV0
(around 10M images of 100K identities) is released with the estimated noise percentage
around 47.1% ∼ 54.4% [30]. In [6], MS1MV0 is refined by a semi-automatic approach
into a clean dataset named MS1MV3 (around 5.1M images of 93K identities). Based
on these two datasets, we can get clean and noisy labels on MS1MV0. In Fig. 4(a) and
Fig. 4(b), we show the angle distributions of samples to their closest sub-centers (train-
ing settings: [MS1MV0, ResNet-50, Sub-center ArcFace K=3]). In general, there are
four categories of samples: (1) easy clean samples belonging to dominant sub-classes
(57.24%), (2) hard noisy samples belonging to dominant sub-classes (12.40%), (3) hard
clean samples belonging to non-dominant sub-classes (4.28%), and (4) easy noisy sam-
ples belonging to non-dominant sub-classes (26.08%). In Fig. 4(c), we show the angle
distribution of samples to their corresponding centers from the ArcFace model (train-
ing settings: [MS1MV0, ResNet50, ArcFace K=1]). By comparing the percentages of
noisy sample in Fig. 4(a) and Fig. 4(c), we find that sub-center ArcFace can signifi-
cantly decrease the noise rate to around one third (from 38.47% to 12.40%) and this
is the reason why sub-center ArcFace is more robust under noise. During the training
of sub-center ArcFace, samples belonging to non-dominant sub-classes are pushed to
be close to these non-dominant sub-centers as shown in Fig. 4(b). Since we have not
set any constraint on sub-centers, the sub-centers of each identity can be quite differ-
ent and even orthogonal. In Fig. 4(d), we show the angle distributions of non-dominant
samples to their dominant sub-centers. By combining Fig. 4(a) and Fig. 4(d), we find
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that even though the clean and noisy data have some overlaps, a constant angle thresh-
old (between 70◦ and 80◦) can be easily searched to drop most of high-confident noisy
samples.

Based on the above observations, we propose a straightforward approach to re-
capture intra-class compactness. We directly drop non-dominant sub-centers after the
network has enough discriminative power. Meanwhile, we introduce a constant an-
gle threshold to drop high-confident noisy data. After that, we retrain the model from
scratch on the automatically cleaned dataset.

3.3 Comparison with Softtriple and Re-weighting Methods

The proposed sub-center ArcFace is different from Softtriple [22] in the following as-
pects:

– Softtriple shows improvement in fine-grained retrieval by employing multi-centers.
However, we have not found obvious improvement when we directly use sub-
centers on the clean dataset as sub-centers can undermine the intra-class com-
pactness which is important for the face recognition problem. Our experimental
analysis indicates that sub-centers can increase robustness under noise such that
sub-center ArcFace can be trained on raw web faces without any manual cleaning
step.

– Softtriple employs the softmax pooling (from sub-class similarity to class simi-
larity) considering the smoothness. By contrast, we use the built-in max pooling
without any performance drop. Max pooling is much more efficient than softmax
pooling, especially for large-scale classification problem.

– Softtriple adds a similarity regularization between sub-centers. However, it is not
reasonable that noisy data should be similar in our case. To enhance intra-class
compactness, we only keep the dominant sub-center and drop the non-dominant
sub-centers after the model has enough discriminative power. To decrease the af-
fection from noisy data, we directly drop high-confident noisy data instead of em-
ploying complicated re-weighting strategies [41,11].

– Softriple only employs a small cosine margin (0.01) to explicitly break the tie
during training. On the contrary, we use a large angular margin (0.5) setting as
done by ArcFace.

The main difference between the proposed sub-center ArcFace and re-weighting
methods [11,41] is that sub-center ArcFace is less affected by the noisy data from the
beginning of the model training. By contrast, the discriminative power of the initial
model is important for both NT [11] and NR [41] methods as their adaptive weights are
predicted from the model.

Our sub-center ArcFace achieves high accuracy in face recognition while keeps
extreme simplicity, only adding two hyper-parameters: the sub-center number and the
constant threshold to drop high-confident noisy data.
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4 Experiments

4.1 Experimental Settings

Datasets. Our training datasets include MS1MV0 (∼10M images of 100K identities) [9],
MS1MV3 (∼5.1M faces of 91K identities) [6], and Celeb500K [1]. MS1MV0 is a raw
data with the estimated noise percentage around 47.1% ∼ 54.4% [30]. MS1MV3 is
cleaned from MS1MV0 by a semi-automatic approach [6]. Celeb500K [1] is collected
as MS1MV0 [9], using half of the MS1M name list [9] to search identities from Google
and download the top-ranked face images. Our testing datasets consist of IJB-B [35],
IJB-C [17], MegaFace [13], and Face Recognition Vendor Test (FRVT). Besides, we
also report our final results on widely used verification datasets (e.g. LFW [12], CFP-
FP [27], and AgeDB-30 [18]).
Implementation Details. For data pre-possessing, we follow ArcFace [5] to gener-
ate the normalised face crops (112 × 112) by utilising five facial points predicted by
RetinaFace [7]. We employ ResNet-50 and ResNet-100 [10,5] to get the 512-D face
embedding feature. Following [5], the feature scale s is set to 64 and the angular mar-
gin m is set to 0.5. All experiments in this paper are implemented by MXNet [3]. We
set the batch size for back-propagation as 512 and train models on 8 NVIDIA Tesla P40
(24GB) GPUs. We set momentum to 0.9 and weight decay to 5e − 4. For the training
of ArcFace on MS1MV0 and MS1MV3, the learning rate starts from 0.1 and is divided
by 10 at the 100K, 160K, and 220K iteration steps. We finish the training process at
240K steps. For the training of the proposed sub-center ArcFace, we also employ the
same learning rate schedule to train the first round of model (K=3). Then, we drop non-
dominant sub-centers (K = 3 ↓ 1) and high-confident noisy data (> 75◦) by using the
first round model through an off-line way. Finally, we retrain the model from scratch
using the automatically cleaned data.

4.2 Ablation Study

To facilitate comparisons, we abbreviate different settings by the experiment number
(E*) in the table and only focus on the TAR@FAR=1e-4 of IJB-C, which is more ob-
jective and less affected by the noise within the test data [38].
Real-world Noise. In Tab. 2, we conduct extensive experiments to investigate the pro-
posed Sub-center ArcFace. We train ResNet-50 networks on different datasets (MS1MV0,
MS1MV3 and Celeb500K) with different settings. From Tab. 2, we have the follow-
ing observations: (a) ArcFace has an obvious performance drop (from E14 96.50% to
E1 90.27%) when the training data is changed from the clean MS1MV3 to the noisy
MS1MV0. By contrast, sub-center ArcFace is more robust (E2 93.72%) under massive
noise. (b) Too many sub-centers (too large K) can obviously undermine the intra-class
compactness and decrease the accuracy (from E2 93.72% to E5 67.94%). This obser-
vation indicates that robustness and strictness should be balanced during training, thus
we select K=3 in this paper. (c) The nearest sub-center assignment by the max pool-
ing is slightly better than the softmax pooling [22] (E2 93.72% vs. E3 93.55%). Thus,
we choose the more efficient max pooling operator in the following experiments. (d)
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Table 2. Ablation experiments of different settings on MS1MV0, MS1MV3 and Celeb500K. The
1:1 verification accuracy (TAR@FAR) is reported on the IJB-B and IJB-C datasets. ResNet-50 is
used for training.

Settings
IJB-B IJB-C

1e−6 1e−5 1e-4 1e−3 1e−2 1e−6 1e−5 1e-4 1e−3 1e−2
(1) MS1MV0,K=1 34.14 74.74 87.87 93.27 96.40 67.08 81.11 90.27 94.59 97.08
(2) MS1MV0,K=3 40.89 85.62 91.70 94.88 96.93 86.18 90.59 93.72 95.98 97.60
(3) MS1MV0,K=3, softmax pooling [22] 38.4 85.49 91.53 94.76 96.83 85.43 90.40 93.55 95.87 97.36
(4) MS1MV0,K=5 39.24 85.48 91.47 94.68 96.96 85.49 90.38 93.62 95.88 97.59
(5) MS1MV0,K=10 19.81 49.03 63.84 76.09 87.73 45.98 55.74 67.94 79.44 89.29
(6) MS1MV0, K = 3 ↓ 1, drop > 70◦ 47.61 90.60 94.44 96.44 97.71 90.40 94.05 95.91 97.42 98.42
(7) MS1MV0, K = 3 ↓ 1, drop > 75◦ 46.78 89.40 94.56 96.49 97.83 89.17 94.03 95.92 97.40 98.41
(8) MS1MV0, K = 3 ↓ 1, drop > 80◦ 38.05 88.26 94.04 96.19 97.64 86.16 93.09 95.74 97.19 98.33
(9) MS1MV0, K = 3 ↓ 1, drop > 85◦ 42.89 87.06 93.33 96.05 97.59 81.53 92.01 95.10 97.01 98.24
(10) MS1MV0, K=3, regularizer [22] 39.92 85.51 91.53 94.77 96.92 85.44 90.41 93.64 95.85 97.40
(11) MS1MV0,Co-mining [33] 40.96 85.57 91.80 94.99 97.10 86.31 90.71 93.82 95.95 97.63
(12) MS1MV0,NT [11] 40.84 85.56 91.57 94.79 96.83 86.14 90.48 93.65 95.86 97.54
(13) MS1MV0,NR [41] 40.86 85.53 91.58 94.77 96.80 86.07 90.41 93.60 95.88 97.44
(14) MS1MV3, K=1 35.86 91.52 95.13 96.61 97.65 90.16 94.75 96.50 97.61 98.40
(15) MS1MV3, K=3 40.16 91.30 94.84 96.66 97.74 90.64 94.68 96.35 97.66 98.48
(16) MS1MV3, K = 3 ↓ 1 40.18 91.32 94.87 96.70 97.81 90.67 94.74 96.43 97.66 98.47
(17) Celeb500K, K=1 42.42 88.18 90.96 92.19 93.00 88.18 90.87 92.15 95.47 97.64
(18) Celeb500K, K=3 43.84 90.91 93.76 95.12 96.00 90.92 93.66 94.90 96.21 98.02
(19) Celeb500K, K = 3 ↓ 1 44.64 92.71 95.65 96.94 97.89 92.73 95.52 96.91 97.87 98.42

Dropping non-dominant sub-centers and high-confident noisy samples can achieve bet-
ter performance than adding regularization [22] to enforce compactness between sub-
centers (E7 95.92% vs. E10 93.64%). Besides, The performance of our method is not
very sensitive to the constant threshold (E6 95.91%, E7 95.92% and E8 95.74%), and
we select 75◦ as the threshold for dropping high-confident noisy samples in the fol-
lowing experiments. (e) Co-mining [33] and re-weighting methods [11,41] can also im-
prove the robustness under massive noise, but sub-center ArcFace can do better through
automatic clean and noisy data isolation during training (E7 95.92% vs. E11 93.82%,
E12 93.65% and E13 93.60%). (f) On the clean dataset (MS1MV3), sub-center Arc-
Face achieves similar performance as ArcFace (E16 96.43% vs. E14 96.50%). (g) The
proposed sub-center ArcFace trained on noisy MS1MV0 can achieve comparable per-
formance compared to ArcFace trained on manually cleaned MS1MV3 (E7 95.92% vs.
E14 96.50%). (h) By enlarging the training data, sub-center ArcFace can easily achieve
better performance even though it is trained from noisy web faces (E19 96.91% vs. E13
96.50%).
Synthetic Noise. In Tab. 3, we investigate the robustness of the proposed sub-center
ArcFace under synthetic open-set and close-set noise. We train ResNet-50 networks on
MS1MV3 with different noise types and levels. To simulate the training data with con-
trolled open-set noise, we randomly select 75% and 50% identities from MS1MV3 [6]
and the face images of the rest identities are assigned with random labels of selected
identities. To simulate the training data with controlled close-set noise, we use all iden-
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Table 3. Ablation experiments of different settings under synthetic open-set and close-set noise.
The 1:1 verification accuracy (TAR@FAR) is reported on the IJB-B and IJB-C datasets. ResNet-
50 is used for training.

Settings
IJB-B IJB-C

1e−6 1e−5 1e-4 1e−3 1e−2 1e−6 1e−5 1e-4 1e−3 1e−2
Synthetic Open-set Noise

(1) 75%CleanID,K=1 37.49 90.02 94.48 96.48 97.72 90.10 94.18 96.00 97.45 98.38
(2) 75%CleanID+25%NoisyID,K=1 37.80 86.68 92.96 94.72 95.80 86.19 92.03 94.52 95.89 97.29
(3) 75%CleanID+25%NoisyID,K=3 38.31 87.87 94.17 95.83 97.15 87.23 93.01 95.57 96.95 97.75
(4) 75%CleanID+25%NoisyID,K = 3 ↓ 1 38.36 88.14 94.20 96.15 97.94 87.51 93.27 95.89 97.29 98.43
(5) 50%CleanID,K=1 34.43 89.36 93.97 96.26 97.63 88.35 93.49 95.65 97.28 98.35
(6) 50%CleanID+50%NoisyID,K=1 35.96 81.45 90.77 92.69 94.56 80.97 88.49 92.25 93.84 95.10
(7) 50%CleanID+50%NoisyID,K=3 34.15 85.13 92.62 94.98 96.77 84.43 91.00 94.50 95.79 97.33
(8) 50%CleanID+50%NoisyID,K = 3 ↓ 1 34.55 86.43 93.85 96.13 97.37 85.22 91.82 95.50 96.73 98.16

Synthetic Close-set Noise
(9) 75%CleanIM,K=1 38.44 89.41 94.76 96.42 97.71 89.31 94.19 96.19 97.39 98.43
(10) 75%CleanIM+25%NoisyIM,K=1 36.16 83.46 92.29 94.85 95.61 82.20 91.24 94.28 95.58 97.58
(11) 75%CleanIM+25%NoisyIM,K=3 36.09 83.16 91.45 94.33 95.23 81.28 90.02 93.57 94.96 96.32
(12) 75%CleanIM+25%NoisyIM,K = 3 ↓ 1 37.79 85.50 94.03 95.53 97.42 84.09 93.17 95.13 96.85 97.61
(13) 50%CleanIM,K=1 36.85 90.50 94.59 96.49 97.65 90.46 94.32 96.08 97.44 98.33
(14) 50%CleanIM+50%NoisyIM,K=1 17.54 43.10 71.76 82.08 93.38 28.40 55.46 75.80 88.22 94.68
(15) 50%CleanIM+50%NoisyIM,K=3 17.47 41.63 66.42 78.70 91.37 26.03 54.23 72.04 86.36 94.19
(16) 50%CleanIM+50%NoisyIM,K = 3 ↓ 1 22.19 68.11 85.86 88.13 95.08 44.34 69.25 78.12 90.51 96.16

tities (∼ 100K) from MS1MV3 [6] but randomly select 25% and 50% face images of
each identity and assign random labels to these face images.

From Tab. 3, we have the following observations: (a) Performance drops as the ra-
tio of synthetic noise increases, especially for the close-set noise (E2 94.52% vs. E6
92.25% and E10 94.28% vs. E14 75.80%). In fact, close-set noise is also found to
be more harmful than open-set noise in [30]. (b) Under the open-set noise, the pro-
posed sub-center can effectively enhance the robustness of ArcFace (E3 95.57% vs. E2
94.52% and E7 94.50% vs. E6 92.25%). By dropping non-dominant sub-centers and
high-confident noisy samples, the performance of sub-center arcface can even approach
Arcface trained on the clean dataset (E4 95.89% vs. E1 96.00% and E8 95.50% vs. E5
95.65%). (c) Under the close-set noise, the performance of sub-center Arcface is worse
than ArcFace (E11 93.57% vs. E10 94.28% and E15 72.04% vs. E14 75.80%), as the
inter-class constraint of sub-center Arcface is more strict than ArcFace. By dropping
non-dominant sub-centers and high-confident noisy samples, the performance of sub-
center Arcface outperforms ArcFace (E12 95.13% vs. E10 94.28% and E16 78.12%
vs. E14 75.80%) but still lags behind ArcFace trained on the clean dataset (E12 95.13%
vs. E9 96.19% and E16 78.12% vs. E13 96.08%), which indicates the capacity of the
network to drop noisy samples depends on its initial discriminative power. Sub-center
ArcFace trained on 50% close-set noise is far from accurate (E15 72.04%) and the step
of dropping noisy samples is also not accurate. Therefore, it is hard to catch up with
ArcFace trained on the clean dataset. However, in the real-world data, close-set noise
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Table 4. Column 2-3: 1:1 verification TAR (@FAR=1e-4) on the IJB-B and IJB-C dataset. Col-
umn 4-5: Face identification and verification evaluation on MegaFace Challenge1 using Face-
Scrub as the probe set. “Id” refers to the rank-1 face identification accuracy with 1M distractors,
and “Ver” refers to the face verification TAR at 10−6 FAR. Column 6-8: The 1:1 verification
accuracy on the LFW, CFP-FP and AgeDB-30 datasets. ResNet-100 is used for training.

Settings
IJB MegaFace Quick Verification Datasets

IJB-B IJB-C Id Ver LFW CFP-FP AgeDB-30
MS1MV0, K=1 87.91 90.42 96.52 96.75 99.75 97.17 97.26
MS1MV0, K = 3 ↓ 1 94.94 96.28 98.16 98.36 99.80 98.80 98.31
MS1MV3, K=1 [5,6] 95.25 96.61 98.40 98.51 99.83 98.80 98.45
Celeb500K, K = 3 ↓ 1 95.75 96.96 98.78 98.69 99.86 99.11 98.35

Table 5. FRVT 1:1 verification results. Sub-center ArcFace (K = 3 ↓ 1) employs ResNet-100
and is trained on the Celeb500K dataset. FNMR is the proportion of mated comparisons below a
threshold set to achieve the false match rate (FMR) specified. FMR is the proportion of impostor
comparisons at or above that threshold.

Rank Submissions WILD VISA VISA MUGSHOT MUGSHOT VISABORDER
FNMR FNMR FNMR FNMR FNMR FNMR

@FMR ≤ 1e-5 @FMR ≤ 1e-6 @FMR ≤ 1e-4 @FMR ≤ 1e-5 @FMR ≤ 1e-5 @FMR ≤ 1e-6
DT=14 YRS

1 deepglint-002 0.0301 0.0027 0.0004 0.0032 0.0041 0.0043
2 everai-paravision-003 0.0302 0.0050 0.0011 0.0036 0.0053 0.0092
3 Sub-center ArcFace 0.0303 0.0081 0.0027 0.0055 0.0087 0.0083
4 dahua-004 0.0304 0.0058 0.0019 0.0036 0.0051 0.0051
5 xforwardai-000 0.0305 0.0072 0.0018 0.0036 0.0051 0.0074
6 visionlabs-008 0.0308 0.0036 0.0007 0.0031 0.0044 0.0045
7 didiglobalface-001 0.0308 0.0092 0.0016 0.0030 0.0048 0.0088
8 vocord-008 0.0310 0.0038 0.0008 0.0042 0.0054 0.0045
9 paravision-004 0.0311 0.0046 0.0012 0.0030 0.0041 0.0091
10 ntechlab-008 0.0312 0.0061 0.0011 0.0056 0.0106 0.0042
11 tevian-005 0.0325 0.0062 0.0020 0.0057 0.0081 0.0070
12 sensetime-003 0.0355 0.0027 0.0005 0.0027 0.0033 0.0051
13 yitu-003 0.0360 0.0026 0.0003 0.0066 0.0083 0.0064

is not dominant, much less than 50% (e.g. only a small part of celebrities frequently
appear in others’ album).

4.3 Benchmark Results

Results on IJB-B [35] and IJB-C [35]. We employ the face detection scores and the
feature norms to re-weigh faces within templates [24,16]. In Tab. 4, we compare the
TAR (@FAR=1e-4) of ArcFace and the proposed sub-center ArcFace trained on noisy
data (e.g. MS1MV0 and Celeb500K). The performance of ArcFace significantly drops
from 96.61% to 90.42% on the IJB-C dataset when the training data is changed from the
manually cleaned data (MS1MV3) to the raw noisy data (MS1MV0). By contrast, the
proposed sub-center ArcFace is robust to massive noise and can achieve similar results
compared with ArcFace trained on the clean data (96.28% vs. 96.61%). When we apply
sub-center ArcFace on large-scale training data (Celeb500K), we further improve the
TAR (@FAR=1e-4) to 95.75% and 96.96% on IJB-B and IJB-C, respectively.
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Results on MegaFace [13]. We adopt the refined version of MegaFace [5] to give a
fair evaluation. As shown in Tab. 4, the identification accuracy of ArcFace obviously
drops from 98.40% to 96.52% when the training data is changed from MS1MV3 to
MS1MV0, while the proposed sub-center ArcFace is more robust under massive noise
within MS1MV0, achieving the identification accuracy of 98.16%. ArcFace trained on
MS1MV3 only slightly outperforms our method trained on MS1MV0 under both ver-
ification and identification protocols. Finally, the sub-center ArcFace model trained on
the large-scale Celeb500K dataset achieves state-of-the-art identification accuracy of
98.78% on the MegaFace dataset.
Results on LFW [12], CFP-FP [27], and AgeDB-30 [18]. We follow the unrestricted
with labelled outside data protocol to report the verification performance. As reported
in Tab. 4, sub-center ArcFace trained on noisy MS1MV0 achieves comparable perfor-
mance compared to ArcFace trained on clean MS1MV3. Moreover, our method trained
on the noisy Celeb500K outperforms ArcFace [5], achieving the verification accuracy
of 99.86%, 99.11%, 98.35% on LFW, CFP-FP and AgeDB-30, respectively.
Results on FRVT. The Face Recognition Vendor Test (FRVT) is the most strict industry-
level face recognition test, and the participants need to submit the whole face recogni-
tion system (e.g. face detection, alignment and feature embedding) to the organiser. No
test image has been released for hyper-parameter searching and the submission inter-
val is no less than three months. Besides, the submitted face recognition system should
complete face detection and face feature embedding within 1000ms on Intel Xeon CPU
(E5-2630 v4 @ 2.20GHz processors) by using the single-thread inference. We build
our face recognition system by RetinaFace (ResNet-50) [7] and sub-center ArcFace
(ResNet-100), and accelerate the inference by the openVINO toolkit. In Tab. 5, we
show the top-performing 1:1 algorithms measured on false non-match rate (FNMR)
across several different tracks. As we can see from the results, the proposed sub-center
ArcFace trained on the Celeb500K dataset achieves state-of-the-art performance on the
wild track (0.0303, rank 3rd). Considering several hundred of industry submissions to
FRVT, the overall performance of our single model is very impressive.

5 Conclusion

In this paper, we have proposed sub-center ArcFace which first enforces sub-classes
by nearest sub-center selection and then only keeps the dominant sub-center to achieve
intra-class compactness. As we relax the intra-class compactness from beginning, the
proposed sub-center ArcFace is robust under massive label noise and can easily train
face recognition models from raw downloaded data. Extensive experimental results
show that our method consistently outperforms ArcFace on real-world noisy datasets
and achieve comparable performance compared to using manually refined data.
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