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Abstract

This paper probes intrinsic factors behind typical failure
cases (e.g. spatial inconsistency and boundary confusion)
produced by the existing state-of-the-art method in face
parsing. To tackle these problems, we propose a novel De-
coupled Multi-task Learning with Cyclical Self-Regulation
(DML-CSR) for face parsing. Specifically, DML-CSR de-
signs a multi-task model which comprises face parsing, bi-
nary edge, and category edge detection. These tasks only
share low-level encoder weights without high-level inter-
actions between each other, enabling to decouple auxiliary
modules from the whole network at the inference stage. To
address spatial inconsistency, we develop a dynamic dual
graph convolutional network to capture global contextual
information without using any extra pooling operation. To
handle boundary confusion in both single and multiple face
scenarios, we exploit binary and category edge detection to
jointly obtain generic geometric structure and fine-grained
semantic clues of human faces. Besides, to prevent noisy la-
bels from degrading model generalization during training,
cyclical self-regulation is proposed to self-ensemble several
model instances to get a new model and the resulting model
then is used to self-distill subsequent models, through al-
ternating iterations. Experiments show that our method
achieves the new state-of-the-art performance on the Helen,
CelebAMask-HQ, and Lapa datasets. The source code is
available at https://github.com/deepinsight/
insightface/tree/master/parsing/dml_csr.

1. Introduction

Face parsing, as a fine-grained semantic segmentation
task, intends to assign a pixel-wise label for each facial
component, e.g., eyes, nose, and mouth. The detailed anal-
ysis of semantic facial parts is essential in many high-level
applications, such as face swapping [28], face editing [15],
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Figure 1. The first three rows show typical failure cases of spatial
inconsistency and boundary confusion when applying EARGNet
[36] to face parsing. The last row displays noisy labels on the
training datasets.

and facial makeup [29]. Benefit from the learning capac-
ity of deep Convolutional Neural Networks (CNNs) and
the labor effort put in pixel-level annotations [15, 21, 35],
methods based on Fully Convolutional Networks (FCNs)
[7, 10, 18–20, 23, 36, 47, 48] have achieved a promising per-
formance on the fully supervised face parsing. Neverthe-
less, the local characteristic of the convolutional kernel pre-
vents FCNs from capturing global contextual information
[25], which is crucial for semantically parsing facial com-
ponents in an image.

To address this issue, most of the region-based face pars-
ing methods [10,20,47] integrate CNN features into variant
CRFs to learn global information. However, these methods
do not consider the correlation among various objects. To
this end, Te et al. [36] proposes the EAGRNet method to
model a region-level graph representation over a face image
by propagating information across all vertices on the graph.
Even though EAGRNet enables reasoning over non-local
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regions to get global dependencies between distant facial
components and achieves state-of-the-art performance, it
still faces the problems of spatial inconsistency and bound-
ary confusion. In EAGRNet, PSP module [45] adopts an av-
erage pooling layer [22] to capture the global context prior,
leading to an inconsistent spatial topology. Moreover, EA-
GRNet integrates additional clues of binary edges into con-
text embedding to improve the parsing results. However, it
is hard for EAGRNet to handle boundaries between highly
irregular facial parts (e.g. hair and cloth in Figure 1) and dis-
tinguish clear boundaries between different face instances
in the crowded scenarios (multi-faces in Figure 1).

Besides, learning a reliable model for face parsing re-
quires accurate pixel-level annotations. Nonetheless, there
inevitably exist careless manual labeling errors on the train-
ing dataset as shown in the last row of Figure 1. Te et
al. [36] employ the traditional fully supervised learning
scheme to train EAGRNet, failing to locate label noise be-
cause all pixels in the ground truth are processed equally.
Notably, overlooking such incomplete annotations restricts
the model generalization and prevents the performance
from increasing to a higher level.

In this paper, we propose an end-to-end face parsing
method, which is based on Decoupled Multi-task Learn-
ing with Cyclical Self-Regulation (DML-CSR). Specifi-
cally, given an input of facial image, the ResNet-101 [8]
pre-trained on ImageNet is taken as the backbone to extract
features from different levels. Afterwards, our multi-task
model consists of three tasks, namely face parsing, binary
edge detection, and category edge detection. These tasks
share low-level weights from the backbone but do not have
high-level interactions. Therefore, our multi-task learning
approach can detach additional edge detection tasks from
face parsing at the inference stage. To tackle spatial incon-
sistency raised by the pooling operation, we develop a Dy-
namic Dual Graph Convolutional Network (DDGCN) in the
face parsing branch to capture long-range contextual infor-
mation. The proposed DDGCN contains no extra pooling
operation and it can dynamically fuse the global context ex-
tracted from GCNs in both spatial and feature spaces. To
solve the boundary confusion in both single-face and multi-
face scenarios, the proposed category-aware edge detection
module exploits more semantic information than the binary
edge detection module used in EARGNet [36].

To address the problem caused by noisy labels in train-
ing datasets, we introduce a cyclically learning scheduler
inspired by self-training [3, 16, 34, 41, 42, 42, 49] to achieve
advanced cyclical self-regulation. The proposed CSR con-
tains a self-ensemble strategy that can aggregate a set of his-
torical models to obtain a new reliable model and another
self-distillation method that exploits the soft labels gener-
ated by the aggregated model to guide the successive model
learning. Finally, the proposed CSR iteration alternates be-

tween these two procedures, correcting the noisy labels dur-
ing training and promoting the model generalization. The
proposed CSR can significantly promote the reliability of
the model and labels in a cyclical training scheduler with-
out introducing extra computation costs.

To summarize, our main contributions are as follows:
• We propose a decoupled multi-task network includ-

ing face parsing, binary edge detection, and category
edge detection. The face parsing branch introduces a
DDGCN without any extra pooling operation to solve
the problem of spatial inconsistency, and an additional
category edge detection branch is designed to handle
the boundary confusion.

• We introduce a cyclical self-regulation mechanism
during training. The iteration alternates between one
self-ensemble procedure, boosting model generaliza-
tion progressively, and another self-distillation pro-
cessing, regulating noisy labels.

• Our method establishes new state-of-the-art perfor-
mance on the Helen [35] (93.8% overall F1 score),
LaPa [21] (92.4% mean F1) and CelebAMask-HQ [15]
(86.1% mean F1) datasets. Compared to EARGNet
[36], our method utilizes fewer computation resources
as the edge prediction modules can be decoupled from
the whole network, decreasing the inference time from
89ms to 31ms but achieving much better performance.

2. Related Work
Face parsing. Most existing face parsing methods can
be classified into global-based and local-based methods.
Global-based methods aim to predict a pixel-wise label di-
rectly from the whole RGB face image. Early works learn
spatial correlation between facial parts using various hand-
crafted models, such as epitome model [11] and exemplar-
based method [35]. Later, many works [10, 20, 40, 47] im-
plant the CNN-based features into the Conditional Random
Field (CRF) framework, and adopt a multi-objective learn-
ing method to model pixel-wise labels and neighborhood
dependencies simultaneously. Lin et al. [17] design a CNN-
based framework with a RoI Tanh-Warping operator to use
both central and peripheral information. Te et al. [36] in-
troduce an edge-aware graph module to effectively reason
relationship between facial regions. These global-based ap-
proaches inherently integrate the prior into the face layout,
but limit accuracy due to overlook on each individual part.

Local-based methods aim to predict each facial part in-
dividually by training separated models for different facial
regions. Luo et al. [24] exploit a hierarchical approach to
segment each detected facial component separately. Zhou
et al. [48] propose an interlinked CNN-based model to fore-
cast pixel categories after face detection, taking a large ex-
pense of memory and computation consumption. Later, Liu



Figure 2. Overview of our proposed DML-CSR method for face parsing. At the training stage, it includes three parallel sub-models of face
paring, binary edge detection and category edge detection, jointly trained by a proposed cyclical self-regulation mechanism. At the testing
stage, all edge models are decoupled from the whole model.

et al. [19] combines a shallow CNN and a spatially vari-
ant RNN in two successive stages to parse a face image at
a very fast inference speed. These local-based approaches
almost take the coarse-to-fine policy with consideration of
both global consistency and local precision. However, it
ignores the improvement of accuracy and efficiency from
backbone sharing and joint optimization.

Multi-task learning is a common strategy which jointly
trains various tasks through the shared feature mechanism
or hidden layers of a “backbone” model [2]. It has been
widely applied for solving multiple pixel-level tasks. In the
context of deep learning, multi-task learning can be cate-
gorized into hard or soft parameter sharing schemes. In
hard parameter sharing based multi-task learning for im-
age segmentation, the parameter set consists of shared and
task-specific parameters. UberNet [14] is the first hard pa-
rameter sharing model for image segmentation, where a
large number of low-, mid-, and high-level image vision
tasks are tackled concurrently. Later, most multi-task learn-
ing models [12, 27, 37] follow the hard parameter sharing
schemes and simply share the same encoder layers. In these
works, each task-specific decoding head tails at the end of
the shared encoder, leading to sub-optimal task groupings.

In soft parameter sharing based multi-task learning for
image segmentation, each task has its own group of param-
eters, and a feature sharing mechanism is used to handle the
cross-task communication. Cross-stitch network [26] is a
typical multi-task architecture adopting the soft-parameter

sharing schemes. It linearly combines the activations from
every task-specific layer, regarding as soft feature fusion
strategy. Afterwards, Ruder et al. [33] extends this method
to learn the selective sharing layers. Compared to the hard
parameter sharing approaches, the problem of multi-task
learning based on soft parameter sharing approaches is a
lack of scalability, as the growth of tasks make the size of
the multi-task network increase linearly [38].

3. Methodology
This section starts with the analysis of representative

failure cases when applying EARGNet [36] to face parsing.
These issues motivate the proposal of a more accurate and
robust training method, called Decoupled Multi-task Learn-
ing with Cyclical Self-Regulation (DML-CSR). The overall
pipeline is illustrated in Figure 2.

3.1. Limitations of EAGRNet

Even though EAGRNet [36] achieves notable perfor-
mance on face parsing, it has the following issues dur-
ing training on public benchmark datasets (e.g. Helen [35],
CelebAMask-HQ [15] and LaPa [21]).
Spatial Inconsistency. As shown in the first-row of Figure
1, EAGRNet improperly predicts “neck” pixels within the
cloth area, resulting in spatial inconsistency of cloth. As
EAGRNet employs an adaptive average pooling within PSP
module [45] to capture global contextual information, the
detailed spatial relationship and constraint between original



pixels may be neglected. Therefore, a small part of area
within a large region can be predicted as wrong classes.
Since directly adopting the general object segmentation
method to face parsing is sub-optimal, we explore to avoid
the unnecessary pooling operation in our model design.
Boundary Confusion. As intuitively illustrated in the
second-row of Figure 1, EARGNet fails to distinguish
boundaries between (1) “cloth” and “hair”, and (2) the tar-
get face and the surrounding face under crowded scenario.
Generally, component boundaries between different facial
organs and instance boundaries between close faces can be
confusing for face parsing models. As the edge network
built in EARGNet simply integrates the binary edge prior
into contextual features by the dot product and the pooling
operation, it only recovers partial boundaries of regions.
Impact from Label Noise. As the pixel-level annotation
is difficult and expensive, most of the face parsing bench-
marks (e.g. Helen [35] and LaPa [21]) are annotated in
a semi-automatic approach. Therefore, label noises in-
evitably exist in these datasets. As given in the last row
of Figure 1, annotators mark the “eyes” as “glasses”. Such
annotation errors can limit the model performance, espe-
cially for tail classes (e.g. “necklace”). Nevertheless, the
EARGNet method is a fully supervised method and lacks a
regulation mechanism to tackle label noise.

3.2. Decoupled Multi-task Learning

Based on above analysis, we propose an end-to-end de-
coupled multi-task network to solve problems of spatial in-
consistency and boundary confusion. Herein, we define
three parallel tasks of face parsing, binary edge detection
and category edge detection. To prevent using any pooling
operation in context embedding, a customized GCN [13]
module is designed to gain global contextual relationships
for the parsing branch. To alleviate the boundary confusion,
a binary edge detection branch as well as a category-aware
semantic edge detection branch are jointly trained to gain
rich edge information. During training, feature representa-
tions are simultaneously optimized for these three tasks, but
the auxiliary edge prediction branches are removed during
testing, without introducing any extra computation cost.

An overview of our model architecture is depicted in Fig-
ure 2. Given an input facial image, the ResNet-101 [8] pre-
trained on ImageNet is taken as backbone to extract features
from different levels, marked as {C1, C2, C3, C4, C5}. Af-
terwards, remaining parts involve: (1) a face parsing branch,
which consists of a context embedding and a parsing head
[36], (2) a binary edge detection branch utilizing the same
edge decoder as [32], and (3) a category edge detection
branch, which features abundant information of component
edges. Each task shares same feature representations of first
four layers in the backbone model. For the edge detection
branches, feature maps from C2, C3 and C4 are concate-

Figure 3. Illustration of the proposed DDGCN for context embed-
ding. DDGCN is composed of two branches, and each consists of
a Graph Convolutional Network (GCN) to model contextual infor-
mation in the spatial-dimensions and feature-dimensions for a con-
volutional feature map X . No pooling step is involved in DDGCN
to avoid spatial inconstancy.

nated as input. For the parsing branch, context embedding
features from C5 are concatenated with the feature maps
from C2 as the input. Since edge branches preserve bound-
ary information in low-level feature maps, joint edge pre-
diction can assist high-level semantic predictions. At the
testing phase, these two edge branches are decoupled from
the whole model, avoiding extra computation overhead.
Context Embedding without Pooling. Context embedding
is crucial for face parsing [4,39,43,45], but the pooling op-
eration results in the problem of spatial inconsistency. To
this end, we design a Dynamic Dual Graph Convolution
Network (DDGCN), which exploits 1D convolution to build
adjacent matrix of GCN over different 2D dimensions. As
shown in Figure 3, the proposed DDGCN comprises one
weighted GCN (labeled as HS) with parameter λ in the spa-
tial space and another weighted GCN (labeled as HF ) with
parameter γ in the feature space.

Y = X © (λ×HS) © (γ ×HF ), (1)

where © denotes the operation of concatenation. The pa-
rameters λ and γ are learnable weights for both HS and HF ,
respectively. Different from DGCN [44], we remove the
pooling operation during coordinate space projection and,
we merge spatial and channel features into the input X via
a dynamic concatenation instead of the addition operation.
To avoid buffer storage for gradient computation, all BN
layers are replaced by Inplace-ABN [31]. As the proposed
DDGCN is only applied to the C5 feature map, our context
embedding is more efficient than EAGRNet, which employs
low-level features for graph representation learning.
Binary and Category Edge Assisted Face Parsing. As
current training datasets for face parsing do not provide la-
bels for the boundary detection, we first generate pseudo
labels of binary and category-aware edges as illustrated in
Figure 4. More specifically, binary edge pixels are identi-
fied from the pixel-wise label map by referring the neigh-
boring four pixels. If there exists one neighboring pixel of
zero value, the current pixel is regarded as an edge pixel.



By employing the same criteria, the category-aware edges
are generated independently for each facial component.

To learn shared features for the layers {C1, C2, C3, C4}
by simultaneously training the parsing and edge detection
tasks, we design a loss function for each task and then sum
them together with different weights. Different from the
general semantic segmentation, face parsing features on tiny
components. To retain the structure of small components,
we also employ the Lovász-softmax [1] loss, which utilizes
the mean intersection-over-union score to measure differ-
ence between ground truth and predicted mask. Hence, the
cross-entropy [6] and Lovász-softmax [1] losses are com-
bined together to optimize the parsing module. Addition-
ally, the weighted cross-entropy [6] loss is employed to op-
timize both binary and category-aware edge detection. Con-
sequently, the total multi-task loss is defined as

LMT = λ0 · (Lp
ce + Lp

lovász)︸ ︷︷ ︸
parse

+λ1 · Lb
ce + λ2 · Lc

ce︸ ︷︷ ︸
edges

, (2)

where Lb
ce and Lc

ce represent the weighted cross-entropy losses [6]
corresponding to binary and category-aware semantic edges, re-
spectively. The hyper-parameters λ0, λ1, and λ2 denote the differ-
ent weights for each task.

Besides the above parallel optimization, we also develop a
boundary assisted semantic loss which enlarges the parsing loss
of boundary pixels according to the binary and category-aware
boundary maps. As edge maps are highly related to segmenta-
tion maps, it is beneficial to inject two types of edge cues into
the parsing module to improve the segmentation accuracy for the
components with clear contours. To this end, we define a dual
edge attention loss

Lb
attn =

1

N

N∑
i=1

1

bi
∗ Lp

i ⊙Bi, (3)

Lc
attn =

1

NC

N∑
i=1

C∑
j=1

wj ∗
1

cij
∗ Lp

i ⊙ Cij , (4)

where N is the total number of images in a batch, bi is
the number of boundary pixels in a binary edge label map
Bi ∈ RH×W , cij is the number of boundary pixels of
a specific category j in a category-aware edge label map
Cij ∈ RH×W , wj is a category-aware weight to emphasize
a specific class j (e.g. the tail class of “necklace’) which
can increase the weights of tail classes, and Lp

i ∈ RH×W is
the cross-entropy between a predicted parsing result and the
ground-truth. Different from the binary boundary attention
loss proposed in [21], we further introduce category-aware
boundary-attention semantic loss, significantly improving
segmentation results of underrepresented classes.

The overall loss of our decoupled multi-task learning can
be summarized as

LDML = λ0 · (Lp
ce + Lp

lovász)︸ ︷︷ ︸
parse

+ λ1 · Lb
ce + λ3 · Lb

attn︸ ︷︷ ︸
binary−edge

+λ2 · Lc
ce + λ4 · Lc

attn︸ ︷︷ ︸
category−edge

,
(5)

(a) Binary edge generation (b) Category-aware edge generation

Figure 4. Binary edge label generation and category-aware edge
label generation from the pixel-wise label map.

where λ3 and λ4 correspond to weights of attention losses
for binary and category-aware edges, respectively.

3.3. Cyclical Self-Regulation

To alleviate label noise, we introduce a Cyclical Self-
regulation (CSR) training strategy to achieve online refine-
ment labels. The proposed CSR depicted in Figure 2 in-
cludes two parts, self-ensemble and self-distillation.
Model Generalization via Self-Ensemble. As illustrated
in the self-ensemble process of Figure 2, given a best model
Mbest from previous epochs and a set of next successive
models {M1,M2, . . . ,Mn}, a new model is obtained by
aggregating weights of these models

M =
k

k + 1
Mbest +

1

(k + 1)N

N∑
n=1

Mn, (6)

where k is the current cycle number and 1 ≤ k ≤ K,
and n is the number of models used in a cycle and 1 ≤
n ≤ N . Moreover, symbols M , Mbest and Mn represent
the weights of aggregated, best and current models, respec-
tively. In addition, all training data is forwarded into new
aggregated model to re-estimate the statistical parameters
in all Inplace-ABN [31] layers.
Label Refinement via Self-Distillation. As the soft labels
contain dark knowledge [9] and less label noise, we explore
self-distillation to improve the parsing performance. More
specifically, as shown in the self-distillation process of Fig-
ure 2, the parsing results generated from the above aggre-
gated model are exploited to supervise the multi-task learn-
ing. The total weighted loss is defined as

LCSR = α0 · (Lp
kl + Lp

lovász)︸ ︷︷ ︸
parse

+α1 · Lb
kl + α2 · Lc

kl︸ ︷︷ ︸
edges

, (7)

where Lp
kl, Lb

kl, Lc
kl represent the Kullback-Leibler diver-

gence losses [6] for face parsing, binary edge and category-
aware edge tasks, respectively. They compute the difference
between soft labels of the aggregated model and prediction
results of the current model. Hyper-parameters α0, α1, α2

are weights assigned to each task.
Finally, both self-ensemble and self-distillation pro-

cesses mutually iterates in a cycle manner, promoting model
generalization and correcting noisy labels progressively.



Method Skin Nose U-lip I-mouth L-lip Eyes Brows Mouth Overall F1

Liu et al. [19] 92.1 93.0 74.3 79.2 81.7 86.8 77.0 89.1 88.6
Guo et al. [7] 93.8 94.1 75.8 83.7 83.1 80.4 87.1 92.4 90.5
Lin et al. [17] 94.5 95.6 79.6 86.7 89.8 89.6 83.1 95.0 92.4
Wei et al. [46] 95.6 95.2 80.0 86.7 86.4 89.0 82.6 93.6 91.6
Liu et al. [21] 94.9 95.8 83.7 89.1 91.4 89.8 83.5 96.1 93.1
Te et al. [36] 94.6 96.1 83.6 89.8 91.0 90.2 84.9 95.5 93.2

DML-CSR (Ours) 96.6 95.5 87.6 91.2 91.2 90.9 88.5 95.9 93.8

Table 1. Comparison with state-of-the-art methods on the Helen dataset in overall F1 score.

Method Skin Hair L-Eye R-Eye U-lip I-mouth L-lip Nose L-Brow R-Brow Mean F1

Zhao et al. [45] 93.5 94.1 86.3 86.0 83.6 86.9 84.7 94.8 86.8 86.9 88.4
Liu et al. [21] 97.2 96.3 88.1 88.0 84.4 87.6 85.7 95.5 87.7 87.6 89.8
Te et al. [36] 97.3 96.2 89.5 90.0 88.1 90.0 89.0 97.1 86.5 87.0 91.1

DML-CSR (Ours) 97.6 96.4 91.8 91.5 88.0 90.5 89.9 97.3 90.4 90.4 92.4

Table 2. Comparison with state-of-the-art methods on the LaPa dataset in mean F1.

4. Experiments

Datasets. We use Helen [35], CelebAMask-HQ [15], and
LaPa [21] for experiments. The Helen dataset contains
2,330 images with 11 labels: “background”, “facial skin”,
“left/right brow”, “left/right eye”, “nose”, “upper/lower
lip”, “inner mouth” and “hair”. It is split into 2,000, 230
and 100 images for training, validation and testing. The
CelebAMask-HQ dataset includes 24,183, 2,993, and 2,824
images for training, validation and testing. Apart from the
11 categories of the Helen dataset, the CelebAMask-HQ
dataset adds extra 8 classes, including “left/right ear’, “eye-
glass”, “earing”, “necklace”, “neck” and “cloth”. The LaPa
dataset features rich variations in expression, pose and oc-
clusion, consisting of 11 categories as the Helen dataset. It
is partitioned into 18,176 samples for training, 2,000 sam-
ples for validation, and 2,000 samples for testing.
Implementation Details. The proposed method is imple-
mented by Pytorch [30], adopting the ResNet101 [8] as a
backbone. The weights of the backbone are initialized with
the pre-trained model on ImageNet [5]. Batch normaliza-
tions in our network are all replaced by In-Place Activated
Batch Norm [31]. The input image size is 473×473 at both
training and testing stages. During training, the data is aug-
mented using: random rotation selecting an angle within
(-30°, 30°) and random scaling with a factor from 0.75 to
1.25. We set the batch size as 28 and the network is trained
for 200 epochs in total. The first 150 epochs are trained as
initialization, following K = 5 cycles and each containing
N = 10 epochs of the self-training process.

During the decoupled multi-task learning, we follow the
similar training strategies as EAGRNet [36], i.e. Stochastic
Gradient Descent (SGD) optimizer with the base learning
rate 0.001 and the weight of decay of 0.0005. For the total
loss function, weights of parsing, binary edge and category

edge losses are set as λ0 = 1, λ1 = 1, and λ2 = 1. respec-
tively. To recover boundaries of tail classes (e.g. necklace
and earring), weights λ3 = 4 and λ4 = 1 are assigned to
both binary and category edge attention losses, respectively.
For the cyclical self-regulation, the cosine annealing learn-
ing rate scheduler [16] with a learning rate of 10−5 is em-
ployed to optimize the model generalization. The weights
of self-distillation losses for parsing, binary and category-
aware edges are set to α0 = 1, α1 = 1 and α2 = 0.1.
Evaluation Metrics. To measure the performance of a face
parsing model, two universally accepted evaluation met-
rics are employed, namely mean Intersection over Union
(mIoU) and F1 score. To keep consistent comparison with
the previous methods, the overall F1-score on the Helen
dataset is calculated over the merged facial components:
brows (left and right), eyes (left and right), nose, and
mouth (upper lip, lower lip, and inner mouth). For the
CelebAMask-HQ and LaPa datasets, the mean F1-score is
computed over all categories excluding the background.

4.1. Comparison with State-of-the-art

In this paper, we thoroughly compare the performance
of our proposed model with existing state-of-the-art meth-
ods (i.e. Zhao et al. [45], Liu et al. [21], Lee et al. [15], Luo
et al. [23], Liu et al. [19], Guo et al. [7], Lin et al. [17],
Wei et al. [46], and Te et al. [36]) on the Helen, LaPa and
CelebAMask-HQ datasets. Statistical results in Table 1, Ta-
ble 2, and Table 3 demonstrate that the proposed DML-
CSR significantly outperforms other methods, achieving
93.8%, 92.4%, and 86.1% F1 scores on Helen, LaPa and
CelebAMask-HQ, respectively. On the Lapa dataset, DML-
CSR exhibits obvious advantages on eyebrow parsing. On
the CelebAMask-HQ dataset, DML-CSR achieves much
better performance on tail classes, such as “earring” and
“necklace”. Compared to EAGRNet [36], DML-CSR re-



Method
Face Nose Glasses L-Eye R-Eye L-Brow R-Brow L-Ear R-Ear

Mean F1
I-Mouth U-Lip L-Lip Hair Hat Earring Necklace Neck Cloth

Zhao et al. [45]
94.8 90.3 75.8 79.9 80.1 77.3 78.0 75.6 73.1

76.2
89.8 87.1 88.8 90.4 58.2 65.7 19.4 82.7 64.2

Lee et al. [15]
95.5 85.6 92.9 84.3 85.2 81.4 81.2 84.9 83.1

80.3
63.4 88.9 90.1 86.6 91.3 63.2 26.1 92.8 68.3

Luo et al. [23]
96.0 93.7 90.6 86.2 86.5 83.2 83.1 86.5 84.1

84.0
93.8 88.6 90.3 93.9 85.9 67.8 30.1 88.8 83.5

Te et al. [36]
96.2 94.0 92.3 88.6 88.7 85.7 85.2 88.0 85.7

85.195.0 88.9 91.2 94.9 87.6 68.3 27.6 89.4 85.3

DML-CSR (Ours)
95.7 93.9 92.6 89.4 89.6 85.5 85.7 88.3 88.2 86.1
91.8 87.4 91.0 94.5 88.5 71.4 40.6 89.6 85.7

Table 3. Comparison with state-of-the-art methods on the CelebAMask-HQ dataset in mean F1.

Baseline DDGCN DML CSR
Helen CelebAMask-HQ LaPa

Mean IoU Overall F1 Mean IoU Mean F1 Mean IoU Mean F1

✓ 82.36 92.11 76.14 84.34 83.16 89.84
✓ ✓ 83.42 (+ 1.06) 92.56 (+ 0.45) 77.41 (+ 1.27) 85.33 (+ 0.99) 86.65 (+ 3.49) 92.10 (+ 2.26)

✓ ✓ ✓ 85.48 (+ 3.12) 93.75 (+ 1.64) 77.69 (+ 1.55) 85.98 (+ 1.64) 87.00 (+ 3.84) 92.32 (+ 2.48)

✓ ✓ ✓ ✓ 85.58 (+ 3.22) 93.78 (+ 1.67) 77.81 (+ 1.67) 86.07 (+ 1.73) 87.13 (+ 3.97) 92.38 (+ 2.54)

Table 4. Ablation study of DML-CSR on the Helen, CelebAMask-HQ and LaPa datasets. Here, DDGCN is used for context embedding.
DML denotes the multi-task learning for our decoupled model including face parsing, binary and category edge detection. CSR represents
the cyclical self-regulation.

Method
Helen CelebAMask-HQ LaPa

Overall F1 Mean F1 Mean F1

Baseline 92.11 84.34 89.84
+PSP [45] 92.20 84.76 90.80
+PSP-pooling 92.37 84.83 91.35
+DGCNet [44] 92.41 85.17 91.72
+DGCNet-pooling 92.45 85.20 91.99
+DDGCN 92.56 85.33 92.10

Table 5. Comparisons of different contextual modules on the pars-
ing branch. Here, “+” means that the context embedding is added
into the baseline, and “-pooling” denotes that the pooling opera-
tion is removed from the context embedding.

Method
Helen CelebAMask-HQ LaPa

Overall F1 Mean F1 Mean F1

Baseline 92.11 84.34 89.84
+DMLp+b 93.35 85.58 92.16
+DMLp+b+ba 93.52 85.69 92.24
+DMLp+c 93.61 85.73 92.21
+DMLp+c+ca 93.71 85.87 92.28
+DMLp+b+c 93.65 85.80 92.26
+DMLall 93.75 85.98 92.32

Table 6. Results of our proposed multi-task learning on the Helen,
CelebAMask-HQ and LaPa datasets. Here, “+” denotes adding
multi-task branches into the baseline where DDGCN is used as
context embedding. Losses of face parsing, binary edge detection,
and category edge detection are denoted as ∗p, ∗b and ∗c in the
subscript. Binary edge attention and category edge attention losses
are denoted as ∗ba and ∗ca in the subscript.

duces the parameters from 66.72M to 59.67M, and de-
creases the FLOP count from 51.63G to 48.54G. Given an

image of the same input size as EAGRNet [36], DML-CSR
dramatically shortens the inference time from 89ms to 31ms
per image. In a word, DML-CSR utilizes fewer computa-
tion resources to outperform the state-of-the-art method.

4.2. Ablation Study

Analysis of Improvement. To illustrate the effect of in-
dividual modules and training strategy, the model after re-
moving some components is trained from scratch under the
same setting. The baseline method adopts the parsing mod-
ule with a simple convolution unit, which includes a 3 × 3
convolution and an Inplace-ABN [31] to map features from
the last layer of the backbone into new features of 256 di-
mensions. As shown in Table 4, our proposed DML-CSR
substantially improves performance on face parsing. Com-
pared to our baseline, adopting the DDGCN without any
pooling operation as context embedding achieves a signif-
icant performance improvement. Then, appending seman-
tic edge modules to enhance shared features has a further
advance on parsing performance. The best results are ob-
tained by training the decoupled multi-task network in a
self-regulation mechanism, resulting in around 3.2% and
4.0% improvements of mean IoU on the Helen and LaPa
datasets, respectively. Besides, it outperforms the baseline
by around 1.7% overall F1 score improvement on the He-
len dataset, and by over 2.5% mean F1 improvement on the
LaPa dataset. On the CelebAMask-HQ dataset, DML-CSR
also outperforms the baseline by around 1.7% improvement
in both mean IoU and mean F1.
Comparison of Various Contextual Modules. To prove



Figure 5. DML-CSR can easily distinguish different face instances
under crowded scenarios due to the auxiliary category edge predic-
tion. LaPa model is used here for visualization.

the effectiveness of our proposed DDGCN for learning con-
textual representation, the above-mentioned simple convo-
lution unit in the baseline is substituted by various context
embedding modules. Ablation experiments in Table 5 show
that the pooling operation in PSP [45] and DGCNet [44]
is harmful for the performance and the proposed DDGCN
surpasses other contextual modules by dropping the pooling
step and adopting dynamic feature fusion strategies.
Comparison of Different Auxiliary Tasks. Visual exam-
ples of Figure 5 show that auxiliary category edge modules
can distinguish boundaries between facial components and
different faces. To further explore the effect of category
edge detection, several related experiments are executed.
As we can see from the results listed in Table 6, both the
binary edge detection branch and the category-aware edge
detection branch can obviously improve the performance of
face parsing. However, the category-aware edge is more
informative than binary edge, thus it is more beneficial for
face parsing. Besides, our proposed dual edge attention loss
on the equation (4) further improves overall performance of
face parsing on three benchmark testing datasets.
Analysis of Visual Results. To better understand the ef-
fect of the proposed methods step-by-step, we present vi-
sual examples in Figure 6. The second-column visual ex-
amples show that our baseline obviously address the issue
of spatial inconsistency. However, examples in column (b)
appear severe unclear boundaries between different facial
components in the first three green boxes, and confusing
contours of multi-faces in the last three green boxes. This
is due to the fact that the baseline lacks a reasoning abil-
ity on global dependencies. The first three-row examples
in column (c) show complete structure of individual com-
ponent and almost clear boundaries between facial parts, il-
lustrating the long-range inference ability of our proposed
DDGCN. Nonetheless, the last three-row examples in the
column (c) still exist different face instances, as the pro-
posed DDGCN has a limited capability of localizing objects
of similar contours. Compared to examples in columns (b)-
(c), columns (d)-(e) present clear boundaries between dif-
ferent facial components in both single-face and multi-face
scenes, due to the feature enhancement by semantic edges.
Looking at the areas within green rectangles in columns (d)-
(e), CSR can recover error pixels, preventing noisy labels in

(a) Image (b) Base-
line

(c)
+DDGCN

(d) +DML (e) +CSR (f) GT

Figure 6. DML-CSR can obtain complete facial components with
clear boundaries in both single-face and multi-face scenarios. Vi-
sual examples in different columns are generated by the corre-
sponding LaPa models. Here, “+” denotes that the current com-
ponent is added into the model in the previous column.

training datasets from degrading model generalization.

5. Conclusion
In this paper, we present DML-CSR, a decoupled

multi-task learning method with cyclical self-regulation
for face parsing. Comprehensive experiments on Helen,
CelebAMask-HQ, and LaPa verify the effectiveness of the
proposed method. The results show that DML-CSR signif-
icantly outperforms other methods on all datasets. Train-
ing details will be released to encourage further research
towards face parsing.
Limitations. Our method achieves impressive results in
face parsing. However, there is a slight performance degra-
dation in low-resolution faces. This is because that we train
our model on the high-resolution face dataset. Even so, we
believe DML-CSR is a valuable method for training a reli-
able face parsing model on a large-scale dataset.
Societal Impact. We develop a general model for face pars-
ing in this paper, and the proposed model is not used for a
specific application. Therefore, this work does not directly
involve societal issues.
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