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Abstract

This paper focuses on designing frameworks for auto-
matic affect prediction and classification in dimensional
space. Similarly to many pattern recognition problems,
dimensional affect prediction requires predicting multi-
dimensional output vectors (e.g., valence and arousal)
given a specific set of input features (e.g., facial expres-
sion cues). To date, affect recognition in valence and
arousal space has been done separately along each dimen-
sion, assuming that they are independent. However, var-
ious psychological findings suggest that these dimensions
are correlated. In light of this, we focus on modeling
inter-dimensional correlations, and propose (i) an Output-
Associative Relevance Vector Machine (OA-RVM) regres-
sion framework that augments the traditional RVM regres-
sion by being able to learn non-linear input and output de-
pendencies among affect dimensions, and (ii) a multi-layer
hybrid framework composed of a temporal regression layer
for predicting affect dimensions, a graphical model layer
for modeling valence-arousal correlations, and a final clas-
sification and fusion layer exploiting informative statistics
extracted from the lower layers. We demonstrate the effec-
tiveness and the robustness of the proposed frameworks by
subject-independent experimental validation(s) performed
on a naturalistic data set of facial expressions.

1. Introduction
Traditionally, research in the field of automatic affect

recognition has focused on recognizing discrete, basic emo-
tional states (e.g. happiness, sadness) from posed data ac-
quired in laboratory settings [3]. However, these models
are deemed unrealistic as they are unable to capture the
non-basic and subtle affective states exhibited by humans
in everyday interactions. In order to accommodate such
subtle expressions, researchers have started adopting a di-
mensional description of human affect where an emotional

state is characterized in terms of a number of latent dimen-
sions [13]. Two dimensions are deemed sufficient for cap-
turing most of the affective variability: valence and arousal
(V-A), signifying respectively, how negative/positive and
active/inactive an emotional state is.

Due to the aforementioned reasons, automatic, dimen-
sional and continuous affect prediction and recognition
has increasingly attracted the interest of the affective
computing researchers in recent years.

Some representative works include that of [16] quan-
tizing the V-A dimensions into 4 or 7 levels and using
Conditional Random Fields for classification from audio
cues, [8] discriminating emotions into more coarse classes
(such as positive vs. negative) by combining audio-visual
cues via Coupled Hidden Markov Models (CHMMs) and
likelihood space fusion, [17] utilizing a dynamic Bayesian
network combined with Long-Short Term Memory Neural
Nets (LSTM-NNs) for (quantized) quadrant prediction.

Despite such interest and progress in the field, how to
design emotion-specific prediction and classification frame-
works that can handle multimodal (and spontaneous) data
has not yet been investigated. Kim and Andre have recently
proposed a novel scheme of emotion-specific multilevel di-
chotomous classification (EMDC) using the property of the
dichotomous categorization in the 2D emotion model (va-
lence and arousal). They exploit the fact that arousal clas-
sification yields a higher correct classification ratio than va-
lence classification (or direct multiclass classification) [4].
They apply this scheme on classification of four emotion
classes (positive/high arousal, negative/high arousal, nega-
tive/low arousal and positive/low arousal) from physiolog-
ical signals (recorded in the context of listening to music).
The issue of how to create such frameworks for dimensional
and continuous prediction of emotions, taking into account
other modalities (e.g., vision and audio) and various aspects
of emotion representation (quantized vs. continuous), re-
mains open. This paper aims to make a contribution in
this direction. Motivated by relevant psychological find-
ings, it focuses on the design of prediction/classification
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frameworks suitable for handling the compound nature of
representation in the (continuous) dimensional affect space.
Findings in the fields of emotion cognition and psychol-
ogy suggest that the V-A dimensions are inter-correlated
[1, 5, 6, 11]. Therefore, we propose two frameworks that
enable the learning of such correlations and generate more
substantiated and robust affect prediction/classification:

Output-associative Relevance Vector Machine Re-
gression (OA-RVM). A sparse and probabilistic regression
framework that extends the traditional RVM regression by
being able to learn temporal output correlations (via output-
association).
Multi-layer hybrid classification (MF-Hybrid). A frame-
work that is composed of three distinct layers: (i) A regres-
sion layer generating the continuous A-V prediction (by us-
ing Long-Short Term Memory Neural Nets), (ii) a graphical
model layer trained on the predicted affect dimensions to
capture the correlations between the continuous affect de-
scriptions (by proposing and using Auto-Regressive Cou-
pled HMM), and (iii) a final discriminative classification
and fusion layer (using Support Vector Machine) for incor-
porating informative statistics extracted from both the re-
gression and the graphical model layer.

To date, no such work has been attempted for dimen-
sional affect prediction/classification. We investigate the
feasibility and the usefulness of the proposed OA-RVM
and MF-Hybrid frameworks on the highly challenging
problems of dimensional prediction and classification of
emotions from naturalistic facial expressions. We demon-
strate with experimental evaluations the robustness and the
effectiveness of the proposed frameworks.

2. Data set

We used the Sensitive Artificial Listener (SAL) Database
[2] for this work. It contains naturalistic audio-visual con-
versational data taking place between a participant and a
human operated avatar. Each avatar has a different person-
ality (happy, gloomy, angry or pragmatic). The recordings
were made in controlled laboratory settings with one cam-
era, microphones, uniform background, and constant light-
ning conditions. Only data from 4 subjects (2 female and
2 male) have been continuously annotated by 3-4 coders
along the V-A dimensional (affect) space. Representative
frames together with their facial point trackings are shown
in Fig. 1.

Based on the annotations provided, we used a set of
automatic segmentation and ground truth generation algo-
rithms [9] to obtain segments of positive/negative emotional
displays. In total, we used 61 positive and 73 negative
episodes (≈ 30,000 frames) capturing transitions to an emo-
tional state and back (e.g., going from non-positive to posi-
tive and back to non-positive).

Figure 1. Examples of SAL data along with the tracked 20 points
for affect prediction from facial expressions.
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Figure 2. Graphical model comparison of OA-RVM and RVM
(shaded nodes are observed variables).

3. Feature Extraction
For tracking the facial feature movements displayed dur-

ing the naturalistic interactions, we use the tracking scheme
introduced in [12]. We track the corners of the eyebrows
(4 points), the eyes (8 points), nose (3 points), mouth (4
points) and chin (1 point). For each video episode contain-
ing n frames, the tracker results in a feature set with dimen-
sions n ∗ 20 ∗ 2. Fig. 1 shows example frames from the
data set employed, together with the tracking of the facial
feature points.

4. The Output Associative RVM Regression
Framework

In this section, we briefly describe the two generic meth-
ods used, namely, Relevance Vector Machine (RVM) and
Support Vector Machines (SVM) for Regression (i.e. SVR),
and subsequently introduce the design of the OA-RVM
framework for dimensional affect prediction.

4.1. RVM and SVM Revisited
We assume a (multidimensional) regression problem

with N training examples, (xi, ti). In the Bayesian frame-
work applied in RVM, our goal is to learn the functional:

ti = wTφ(xi) + εi (1)

where the εi are assumed to be independent Gaussian sam-
ples with zero mean and σ2 variance, εi ∼ N (0,σ2). φ is
a typically non-linear projection of the input features, xi.
The method infers the set of weights w along with the noise
estimation, given the training data. SVR, on the other hand,
employs Lagrangian optimization to determine the weights
w, with no explicit noise modeling. Structural risk mini-
mization is applied to minimize overfitting.
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4.2. OA-RVM
In this section we describe the proposed OA-RVM

framework. Firstly, to obtain the output associative func-
tional, we increment Eq. 1 as follows:

ti = wTφw(xi) + uTφu(y
v
i ) + εi (2)

Where each yv
i is a vector of multi-dimensional outputs

over a temporal window of [i− v, i+ v]. 1 The yv
i features

are called the output features, while x are called the input
features, henceforth. Note that the output features can be
estimated by predicting the multi-dimensional ground truth
using any (noisy and imperfect) prediction scheme. The
goal now becomes learning not only the set of weights (w)
for the input features, but also the set of weights (u) for the
output features along with the noise estimate, (εi).

The Framework. We now specify the Bayesian
framework which describes our model. Firstly, we consider
Φw (NxMu) to be the basis matrix attained by applying
a selected kernel to the input features x, and Φu (NxMw)
respectively for the output features, yv (the columns, Mu

and Mw, refer to the complete set of basis vectors of
dimensionality N ). Then, by extending Eq. 2 we obtain:

t = Φww + Φuu+ ε = Φwuwu + ε (3)

where Φwu = [Φw|Φu] is an Nx(Mu + Mw) matrix
and wu = [w1 . . .wMw |u1 . . .uMu ]

T is the concatenated
vector of weights. Thus, the complete data set likelihood is
formulated as:

P (t|w,u,σ2) =
N∏

i=1

N(wu
T [φw(xi)|φu(y

v
i )],σ

2)

Following the Bayesian approach of RVM [14], we need
to set the hyperpriors on our weights. Each set of weights
(w,u) is assigned a Gaussian zero-mean prior to express
preference over smaller weights, thus infer smoother, less
complex functions and induce sparsity:

P (w|α) =
Mu∏

i=0

N (0,α−1
i ), P (u|ζ) =

Mw∏

i=1

N (0, ζ−1
i ) (4)

We have now introduced two vectors of hyperparameters, α
(as originally used in RVM) and ζ (for our output features),
each controlling the distribution of each of the weights.

Inference. The goal of the inference procedure is to
infer the unknown parameters of our problem given the
training data. The posterior is decomposed as:

P (w,u,α, ζ,σ2|t) = P (t|w,u,α, ζ,σ2)P (w,u,α, ζ,σ2)

p(t)
(5)

1For frame based online application, we can limit the context to past
input only, i.e. [i− v, i]. Futhermore, the output window regards only the
output dimensions since we study the effect of output-covariances.

Ideally, given a new test data x∗, we would like to predict
target t∗ by estimating p(t∗|t):
∫

P (t∗|w,u,α, ζ,σ2)P (w,u,α, ζ,σ2|t)dwdudαdζdσ2

(6)
Unfortunately, a direct estimation is intractable, thus an
approximation is employed. Similarly to the original RVM
formulation [14], we decompose the posterior as follows:

P (w,u,α, ζ,σ2|t) = P (w,u|t,α, ζ,σ2)P (α, ζ,σ2|t)
(7)

Using the Bayes theorem we obtain:

P (w,u|t,α, ζ,σ2) =
P (t|w,u,σ2)P (w,u|α, ζ)

P (t|α, ζ,σ2)
(8)

This calculation is tractable, since all components are
Gaussian distributions and it is well known that prod-
ucts and divisions of Gaussian distributions result also
in Gaussian distributions. We will firstly examine the
joint probability. By assuming independence, we obtain
P (w,u|α, ζ), a zero-mean Gaussian with a covariance
matrix AZ = diag(α1 . . .αMw , ζ1 . . . ζMu ).

P (t|α, ζ,σ2) =

∫
P (t|w,u,σ2)P (w,u|α, ζ)dwdu

(9)
is a convolution of Gaussians and after replacing with the
defined variables wu, Az and Φwu, it is shown [14] to be
a zero-mean Gaussian distribution with covariance matrix
σ2I + ΦwuA

−1
Z ΦT

wu. Finally, Eq. 8 is considered to be a
Gaussian distribution with a mean µ = σ2ΣΦT

wut and a
covariance matrix Σ = (AZ + σ2ΦT

wuΦwu)−1. Returning
to the second component P (α, ζ,σ2|t) of the posterior
in Eq. 7, by following the Bayes rule, we find it to be
proportional to:

P (α, ζ,σ2|t) ∝ P (t|α, ζ,σ2)P (α)P (ζ)P (σ2) (10)

By assuming uniform uninformative hyperpriors [14],
we need to maximize P (t|α, ζ,σ2) with respect to the
hyperparameters. Again, we have a convolution of Gaus-
sians (Eq. 9) which in turn generates another zero mean
Gaussian with covariance matrix σ2I + ΦwuK−1ΦT

wu.
The maximization of this probability can be performed by
expectation maximization as described in [14] or the faster
marginal maximization algorithm proposed in [15]. The
most probable values (MP ) are selected by the chosen
optimization procedure (e.g., [14, 15]). We adopt an
approximation of P (α, ζ,σ2|t) in Eq. 7 by replacing it
with a delta function at its mode.

Prediction. Given a new (multi-dimensional) input data
x∗,yv

∗ , we want to calculate t∗ given the training data. By
considering αz = [a1 . . . aMw , ζ1 . . . ζMu ] and using Eq. 6
and Eq. 8 we obtain:

P (t∗|t,αzMP ,σ
2
MP ) =

22



∫
P (t∗|wu,σ

2
MP )P (wu|t,αzMP,σ

2
MP )dwu (11)

Again, this is a convolution of Gaussians and it can be
shown that

P (t∗|t,αzMP ,σ
2
MP ) ∼ N(t∗|σ2

∗) (12)

where
t∗ = µT

wu[φw(x∗)|φu(y
v
∗ )] (13)

σ2
∗ = σ2

MP + [φw(x∗)|φu(y
v
∗ )]

TΣ[φw(x∗)|φu(y
v
∗ )] (14)

with variance σ2
∗ (which relates to the confidence in

our prediction). The parameter vector µwu contains the
weights for the input and output relevance vectors, i.e.
µwu = [µw|µu]. The basis matrix for a new set of test
points should now contain both the distances from the new
test input features x∗ to all the input feature relevance
vectors, as well as the test output feature yv

∗ distances to
the output feature relevance vectors. The graphical models
of both OA-RVM and RVM are illustrated in Fig. 2. For
further details on the framework, as well as more extensive
experiments and results, the readers are referred to [10].

5. The Multi-layer Hybrid Framework
The MF-Hybrid is designed as a three-layer hybrid

framework for dimensional affect classification. MF-
Hybrid incorporates a prediction layer for each emotion
dimension, a graphical model layer for capturing inter-
dimensional emotion correlations, and a final (discrimina-
tive) classification and fusion layer incorporating statistics
extracted from both layers. In the following sections we
firstly describe the employed models, and subsequently ex-
plain the structure of the proposed hybrid framework.

5.1. Long-Short Term Memory Neural Nets
LSTM Neural Nets (LSTM-NN) are a form of Re-

current Neural Networks (RNN), which in contrast to
traditional RNNs enable the learning of temporal infor-
mation longer than a few time steps. In LSTM-NNs
a typical node is replaced with a memory cell. The
cell maintains the given state of the network, which is
considered to be representative of the previous (and the
future, in the bidirectional case) sequence inputs. A set of
gates provide ‘read, write, reset’ operations on the cell state.

5.2. Auto-Regressive Coupled HMM
By merging two common HMM variants, namely the

Coupled HMM and the Auto-Regressive HMM, we pro-
pose the design of the Auto-Regressive Coupled HMMs
(ACHMM) for the problem of capturing inter-dimensional
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Figure 3. Illustration of the proposed (3-layer) MF-Hybrid. The
graphical model employed is an ACHMM, where shaded nodes
represent hidden nodes and filled squares represent a mixture of
Gaussians.

emotion correlations and structure. The ACHMM is a Dy-
namic Bayesian Network modeling observation dependen-
cies (not only on the abstract state level, but also condi-
tioned on the actual observations) and capturing the inter-
stream structure. CHMMs are structured specifically to
model interactions between multiple processes. Assuming
that we have two streams of observations, at each time t,
we have the typical (two) hidden nodes as well as two non-
hidden nodes modeling each observation stream. The state
of each hidden node at time t depends on the hidden states
of both hidden nodes at t − 1. Auto-regression in HMMs
(ACHMM) relaxes the assumption that the observation de-
pends only on the current state.

It models the distribution of an observation at time
t conditioned on the current hidden state as well as the
previous observation. An ACHMM with two streams of
observations is illustrated in Fig. 3(a) (see the HMM
nodes).

5.3. MF-Hybrid

The multi-layer hybrid framework we propose for
dimensional affect classification is illustrated in Fig. 3. The
framework has three distinct layers: (1) a regression layer
(LSTM-NNs) which generates the continuous prediction
for each affect dimension, (2) a graphical model layer
(ACHMM) that models the inter-dimensional structure, and
(3) finally, a (discriminative) classification and fusion layer
(SVM) incorporating statistics from the lower layers. More
specifically, the regression layer is expected to capture
specific, intra-dimensional statistics which would serve
as intermediate features for more accurate classification
of an affect dimension (valence/arousal). The graphical
model layer on the other hand, can capture subtle, emerging
inter-dimensional patterns which seamlessly contribute to
the dimensional affect classification of a given sequence.

Let us consider the LSTM-ACHMMML model. Firstly,
two separate LSTM-NNs are trained as regressors, one for
each affect dimension. Let D={Valence,Arousal} be the set
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of affect dimensions. The continuous prediction generated
by each LSTM-NNs at time t represents the observation
modeled by each component of the ACHMM at time t.
Due to the structure of the ACHMM, for t = [2, N ],
the observation Odt generated for each affect dimension
d ∈ D depends directly on the previous observation for this
dimension Odt−1, and the state of the hidden node Hdt.
Moreover, the hidden state Hdt depends on the previous
hidden states of both dimensions (HAt and HV t) due to
the coupled nature of the model. Classification is obtained
using the Maximum Likelihood (ML) principle (classifying
the entire episode based on the model that produces the
maximum likelihood).

In order to combine the distinct qualities of the afore-
mentioned models, we add a final classification and
fusion layer to the framework. This layer exploits a set
of statistics from the two lower layers, and uses these
features to the aim of classifier fusion via SVMs. Thus,
it not only replaces the ML-based classification with the
discriminative classification of SVMs, but also provides
a more robust learning of inter-dimensional patterns and
structure via classifier fusion.

Let us now consider the 3-layer hybrid model of LSTM-
ACHMMSVM. Firstly, from the LSTM-NN prediction,
for each dimension d ∈ D and sequence s, we extract the
following feature vector fLSTM,d(s):

〈 ¯posfd(s), ¯negfd(s), ¯sumd(s)〉

where ¯posfd(s) and ¯negfd(s) correspond to the percentage
of frames with positive/negative output for dimension d,
and ¯sumd(s) is the average value of the (sequence) output
for this dimension. From the ACHMMs, we extract a
subset of the statistics that characterize the model. Again,
for each sequence s and dimension d, we obtain the feature
vector fACHMM,d(s):

〈 ˆll+d(s), ˆll−d(s), ¯MPEd(s)〉

where ˆll+d(s) and ˆll−d(s) are the normalized (using the
sequence length l̂ld(s) = ll

|s| ) class likelihoods generated
by the model. ¯MPEd(s) (known as the most probable
explanation) refers to the most probable state that each
hidden node is at time t. Out of a total of Stn states, let
|St(hi, Stj)| be the number of time steps that the hidden
node hi is at state Stj . Then for each S̄tj , a new feature
(representing the time frame that the hidden node is, at
every state) is generated as S̄tj = |St(hi,Stj)|

|s| . The feature
vector fed into the SVM classifier is described as:

〈fLSTM,Val(s), fLSTM,Ar(s), fACHMM,Val(s), fACHMM,Ar(s)〉

Notice that statistics extracted for both affect dimen-
sions are fed into the classifier, thus enabling more robust
learning of inter-dimensional patterns and structure.

6. Experiments and Results
We conducted a set of experiments in order to validate

the proposed OA-RVM regression and the MF-Hybrid clas-
sification frameworks, separately. The following sections
provide details on the experimental setups adopted, experi-
ments conducted and results obtained.

6.1. Evaluation of OA-RVM
Experimental setup. We use the traditional RVM

as the baseline for our comparisons with OA-RVM. We
also use SVR as it is one of the most widely adopted
regression techniques in the field. The kernel used for
the construction of the basis matrices is a Gaussian,
K(x, xi) = exp

{
(−(x− xi)2)/r2

}
where r stands for

the width of the function. The window parameter v in
the output-associative functional we employ is generally
varied in the range of [0, 18] and can be determined by
cross-validation. It should be noted that for the probabilistic
regression methods (RVM, OA-RVM), the hyperparameters
are determined by optimizing the likelihood function (by
using the fast marginal likelihood maximization algorithm
proposed in [15]). We use RVM to obtain the initial output
estimation (i.e., the output features) for OA-RVM. For
SVR we apply cross-validation employing an ε-insensitive
loss function. In our current setting, we assume that the
episodes contained in our data set have been coarsely clas-
sified into either positive or negative, prior to the prediction
(regression) procedure. This assumption is motivated by
the fact that we would like to focus on the prediction results
in more detail, and study them in isolation for each class
(e.g., which dimension is easier to predict for which class).
Based on the aforementioned assumptions, we conduct
subject-independent experiments by using data from one
subject only for training, and subsequently using the data
from the remaining three subjects for testing. We evaluate
the proposed model in terms prediction accuracy using the
root mean squared error (RMSE) that incorporates the bias
and variance of the prediction.

Results. Table 1 presents the subject-independent
prediction results in terms of RMSE and window size
(v) employed. Each row on the table presents the results
obtained by training the model using data from one subject
(indicated in the first column) and testing data from the
rest of the subjects. OA-RVM provides better prediction
results than RVM and SVR, for each and every tested case.
Overall, valence appears to be easier to predict than arousal
for the negatively valenced emotions, while arousal appears
to be easier to predict for the positively valenced emotions.
The maximum output-associative window size of v = 18
appears to provide the best prediction results in many cases,
while on average, a window of size v > 9 appears to be
optimal. Overall, naturalistic emotional expressions are
highly subject-dependent [3]. Yet, our experimental results
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indicate that automatic, subject-independent, dimensional
and continuous prediction of emotions becomes feasible by
utilizing input and output associations as well as temporal
context.

.
Table 1. Subject-independent prediction results (RMSE) for SVR,
RVM and OA-RVM .

Valence Arousal

POS SVR RVM OA-RVM v SVR RVM OA-RVM v
subj1 0.21 0.16 0.15 18 0.16 0.16 0.15 18
subj2 0.22 0.26 0.17 18 0.18 0.18 0.14 9
subj3 0.22 0.22 0.22 12 0.17 0.17 0.16 12
subj4 0.19 0.16 0.15 6 0.19 0.14 0.13 18
NEG SVR RVM OA-RVM v SVR RVM OA-RVM v
subj1 0.11 0.10 0.09 12 0.36 0.39 0.35 18
subj2 0.14 0.11 0.09 14 0.37 0.33 0.32 10
subj3 0.10 0.10 0.10 5 0.37 0.40 0.37 18
subj4 0.13 0.11 0.09 18 0.14 0.13 0.13 2

6.2. Evaluation of MF-Hybrid
Experimental setup. For our experiments, we use

the bidirectional LSTM-NNs with one hidden layer. The
ACHMMs have 3 hidden states for each hidden node. We
use SVMs with an RBF kernel and optimize the parameters
via cross-validation on the training set. The proposed
multi-layer hybrid framework is evaluated for two classifi-
cation tasks: (i) V-A hemispheric classification (positive vs.
negative for the valence dimension, and active vs. inactive
for the arousal dimension), and (ii) V-A quadrant classifica-
tion (positive/active, negative/active, positive/inactive, and
negative/inactive). All experimental evaluation is obtained
by performing leave-one-subject-out cross-validation,
using data from three subjects for training and using the
data from the remaining subject only for testing.

Results. The results obtained are shown in Table 2. The
LSTM-NN results refer to the regression results mapped
from the LSTM-NNs onto the valence/arousal classes
(via majority voting). When we compare these results to
the results obtained from the hybrid LSTM-ACHMMML

model (by applying ML over the ACHMM), the LSTM-NN
results provide better F1 scores for the valence and arousal
classes. The quadrant classification results, however, show
that the hybrid model improves the classification results
(an 8% increase in the F1 score). This finding supports our
assumption that modeling inter-dimensional correlations
helps in capturing (more) subtle class variances. Finally,
the proposed multi-layer hybrid framework (LSTM-
ACHMMSVM ) outperforms both its ML counterpart and
the simpler LSTM-based classification in all classification
tasks. LSTM-ACHMM SVM achieves an accuracy of 86%
and 84% for valence and arousal (hemispheric) classifi-
cation, respectively, compared to an accuracy of 80% and
71% using LSTM-NNs (for the same classification task).
The most significant increase in accuracy is obtained for
quadrant classification where the LSTM-ACHMMSVM

framework improves both the classification accuracy (from
71% to 84%) and the F1 score (from 58% to 77%). In
summary, the proposed framework provides an increase in
accuracy in all classification tasks. Specifically, our results
indicate that by modeling inter-dimensional covariances we
can learn complex and subtle class variances more robustly.

7. Conclusions
Findings in the fields of emotion cognition and psychol-

ogy suggest that the V-A dimensions are inter-correlated
[1, 5, 6, 11]. Motivated by such findings, this paper focused
on designing prediction/classification frameworks suitable
for handling the compound nature of affect representation
in (continuous) dimensional space. More specifically,
it introduced two affect prediction/classification frame-
works: (i) an output-associative Relevance Vector Machine
Regression framework (OA-RVM) for continuous affect
prediction, and (ii) a multi-layer hybrid classification
framework (MF-Hybrid) for V-A hemispheric and quadrant
classification. The Output-Associative Relevance Vector
Machine (OA-RVM) regression framework augments the
traditional RVM by being able to learn non-linear input-
output dependencies. Instead of depending solely on input
patterns, OA-RVM models output structure and covariances
within a predefined temporal window, thus capturing past
and future context. The Multi-layer Hybrid Framework
is composed of a regression layer (using LSTM-NN)
which generates the continuous prediction for each affect
dimension, a graphical model layer (introducing and using
ACHMM) that models the inter-dimensional structure,
and a discriminative classification and fusion layer (using
SVM) incorporating statistics from the lower layers.

We successfully applied the proposed frameworks
for subject-independent dimensional affect predic-
tion/classification from facial expressions, and demon-
strated their respective advantages and efficiencies over a
set of experiments. Our results show that OA-RVM outper-
forms both RVM and SVR in terms of prediction accuracy.
Employing a temporal (output) window, which induces the
learning of past and future context, contributes significantly
to the prediction accuracy. Our results also show that de-
signing a multi-layer hybrid framework (e.g., by combining
LSTM-NN, Auto-Regressive CHMM, and SVM) combines
the advantages of various predictors and classifiers, and
provides an increase in accuracy and robustness for the
valence/arousal and quadrant classification tasks. The
prediction and classification frameworks introduced in this
paper have been treated separately, without attempting to
use one framework as part of the other one. As future
work, the proposed frameworks remain to be linked, and
evaluated on databases with a larger number of subjects
(e.g., SEMAINE [7]) in order to obtain deeper insights into
the accuracy improvement provided by these models.
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Table 2. Experimental results (ACC: accuracy, PREC: precision, REC: recall) for valence (positive/negative), arousal (active/inactive) and
quadrant classification.

Layer Model Valence Arousal Quadrant

ACC PREC REC F1 ACC PREC REC F1 ACC PREC REC F1

layer 1 LSTM 80 83 81 80 80 80 75 75 71 60 60 58
layers 1, 2 LSTM-ACHMMML 72 76 70 69 75 67 60 58 67 66 66 66

layers 1, 2, 3 LSTM-ACHMMSVM 86 87 86 86 84 83 79 79 84 90 75 77

Overall, although the proposed frameworks have been
applied to emotion-specific prediction and recognition
problems, due to their highly flexible nature they can easily
be extended and applied to other multi-dimensional (or
multi-modal) prediction and classification problems.
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