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Abstract

Multi-scale/orientation local image analysis methods
are valuable tools for obtaining highly distinctive image-
based representations. Very often, these features are gen-
erated from the responses of a bank of linear filters corre-
sponding to different scales and orientations. Naturally, as
the number of filters increases, so does the feature dimen-
sionality. Further processing is often feasible only when di-
mensionality reduction is performed by subspace learning
techniques, such as Principal Component analysis (PCA)
or Linear Discriminant Analysis (LDA). The major prob-
lem stems from the fact that as the number of features
increases, so does the computational complexity of these
methods which, in turn, limits the number of scales and
orientations examined. In this paper, we show how linear
subspace analysis on features generated by the response of
linear filter banks can be efficiently re-formulated such that
complexity does not depend on the number of filters used.
We describe computationally efficient and exact versions of
PCA while the extension to other subspace learning algo-
rithms is straightforward. Finally, we show how the pro-
posed methods can boost the performance of algorithms for
appearance based tracking.

1. Introduction
A significant amount of research in computer vision has

revolved around providing efficient solutions to the follow-
ing problem: given samples of a high-dimensional space
estimate a low-dimensional space which preserves the in-
trinsic structure of the input data. The assumption that in-
put data points are actually samples from a low-dimensional
manifold embedded in a high-dimensional space is not un-
reasonable since large amounts of collected visual data of-

ten result from changes in very few degrees of freedom.
This, in turn, attributes input data with a well-defined and
probably predictable structure. Subspace learning methods
perform dimensionality reduction with the goal of finding
this underlying structure.

The necessity for dimensionality reduction in computer
vision becomes more evident if we consider standard fea-
ture extraction techniques based on multi-scale/orientation
local image analysis. Typically, the application of such
methods generates highly redundant representations which,
in turn, results in a further increase in dimensionality. As
an example, due to their excellent localization properties in
space and frequency as well as orientation selectivity prop-
erties, Gabor filters have become one of the defacto choices
for feature extraction in many applications such as face
recognition, action and gait recognition as well as facial ex-
pression analysis [13, 3, 20, 10, 19, 23, 24, 5, 7, 22, 1].
Applying a set of 40 Gabor filters to 64× 64 images, as for
example suggested in [9, 11, 12], results in a feature space
of dimensionality equal to 163840. Therefore, further pro-
cessing is feasible only after dimensionality reduction has
been performed.

Nevertheless, the application of dimensionality reduc-
tion techniques poses serious computational concerns. Pop-
ular subspace learning methods, such as PCA or LDA and
their kernel-based counterparts (Kernel PCA and Kernel
FDA [9, 10]), require operations such as matrix multipli-
cations and eigen-analysis of covariance matrices which
not only require a huge amount of memory but also be-
come computationally intractable for very high dimensional
spaces. Thus, practical approaches either perform feature
extraction in region of interests only or decrease the num-
ber of features using approximations such as downsampling
[9, 11, 12].

A recent work [1] has shown how a bank of linear fil-
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ters can be used to manipulate the margin in linear support
vector machines. Inspired by [1], we show how linear sub-
space analysis on features generated by the response of lin-
ear filter banks can be efficiently re-formulated such that
complexity does not depend on the number of filters used.
Our approach touches upon classical results from linear al-
gebra previously used for the efficient implementation of
PCA and the efficient calculation of inner products in the
Fourier domain [15]. We show how these results can be
used in order to formulate computationally efficient and ex-
act versions of PCA. Finally, we show how the proposed
methods can boost the performance of algorithms for ap-
pearance based face tracking.

Summarizing, the contributions of this paper are

• An exact complex PCA of arbitrarily many linear fil-
ter responses. Our complex formulation applies PCA
to both the magnitude and the phase of the filter re-
sponses. On the contrary, previously proposed algo-
rithms do not scale well with the number of filters, are
inexact and make use of magnitude information only
[3, 20, 9, 11, 12, 10]. Note that recent papers have
shown that the phase of linear filter responses conveys
useful information for recognition [18, 25].

• A general framework for incremental PCA of arbitrar-
ily many linear filter responses. We show how to ap-
ply this framework in order to formulate an appearance
based tracking algorithm using arbitrarily many linear
filter responses [17].

2. Principal Component Analysis

We assume that we are given a population of N im-
ages {f1, . . . , fN} with fi(n) : D ⊆ Z2 → $, where
Z and $ are the sets of integers and real numbers respec-
tively. We denote by fi be the F -dimensional vector ob-
tained by writing image fi in lexicographic ordering and by
F = [f1| · · · |fN ] ∈ $F×N the data matrix. Let us also de-
note by f̄ = 1

N

∑N
i=1 fi and F the sample mean and the

centralized data matrix, respectively. PCA finds a set of
p < F (usually, p & F ) bases U = [u1| · · · |up] ∈ $F×p

by solving the following optimization problem

Uo = argmaxU tr
[
UTSfU

]

subject to UTU = I
(1)

where tr[A] is the trace of matrix A and Sf is the covari-
ance matrix Sf = F̄ F̄T . The solution is given by the eigen-
vectors corresponding to the p largest eigenvalues obtained
from the eigen-decomposition of Sf . The low dimensional
representation of F̄ is given by C = UT F̄.

3. PCA Of Arbitrarily Many Linear Filter Re-
sponses (AMLFR-PCA)

We denote by {h1(n), . . . , hm(n)} a set of m filters with
hl(n) : D → C where C is the set of complex num-
bers. Using this filter bank, we build a set of responses
{g1(n), . . . , gm(n)}

gl(n) = f(n) ! hl(n), l = 1, . . . ,m (2)

where ! is the convolution operation. Let gl be the lex-
icographic ordering of gl(n) and x = [gT

1 . . .gT
m]T ∈

CmF the vector that contains the responses of the m fil-
ters. The total scatter matrix is Sx = X̄X̄H1 where
X̄ = [x̄1| . . . |x̄N ] and x̄i = xi − x̄. Finally, the PCA
bases are obtained from the eigen-analysis of Sx. This has
a cost O(m3F 3) which, as the number of filters increases,
becomes prohibitive.

To obtain an efficient algorithm, we start by consider-
ing the efficient implementation of PCA (O(N3) instead of
O(m3F 3)) proposed in [21]. Rather than computing the
eigen-analysis of X̄X̄H , we compute the eigen-analysis of
XHX and make use of the following theorem [4] 2

Theorem I. Define matrices A and B such that A = ΓΓH

and B = ΓHΓ with Γ ∈ Cm×r. Let UA and UB be the
eigenvectors corresponding to the non-zero eigenvalues ΛA

and ΛB of A and B, respectively. Then, ΛA = ΛB and
UA = ΓUBΛ

− 1
2

A .
The application of Theorem I requires the computation

of X̄HX̄ which has a cost O(mFN). To reduce this to
O(NF ), we make use of the properties of the Fourier trans-
form [15, 18, 1] which enables the computation of inner
products in the Fourier domain. Let us first denote by
D ∈ CF×F the matrix of the Discrete Fourier Transform
(DFT) [18]. Since D is a unitary, we have D−1 = DH and
we can write (2) as

gl = D−1(Df (Dhl) = DH(HlDf) (3)

where hl is the lexicographic ordering of filter hσl , Hl is an
F × F diagonal matrix with diagonal elements Dhl and (
is the Hadamard product. Using the above we have (based
on the Parseval’s theorem, the authors in [1] derived a very
similar result)

x̄H
i x̄j = (xi − x̄)H(xj − x̄)

=
∑n

l=1(gil − ḡl)H(gjl − ḡl)
=

∑n
l=1(D

H(HlDfi −HlDf̄))H

×DH(HlDfi −HlDf̄)
= (Dfi −Df̄)H

∑n
l=1 H

2
l (Dfj −Df̄)

=
(
H1/2Df̄i

)H
H1/2Df̄j

= z̄Hi z̄j

(4)

1T denotes matrix transposition and H denotes conjugate matrix trans-
position.

2The version of this theorem for real PCA has been used in [21].



where H =
∑n

l=1 H
2
l and z̄i is given by

z̄i = H1/2Df̄i. (5)

The vectors z̄i can be computed very efficiently from the
Hadamard product of the diagonal of H1/2 and the 2D DFT
of fi which can be computed fast using the FFT (for exam-
ple for square images the FFT has a cost O(F log(

√
F ))).

This product does not depend on the number of the fil-
ters while H can be pre-computed. Finally, if we write
Z̄ = [z̄1| . . . |z̄N ], then, from (4), we have X̄HX̄ = Z̄HZ̄
whose computation has a cost O(FN).

Let us denote by Vp the eigenvectors corresponding
to the p largest eigenvalues Λp obtained from the eigen-
decomposition of Z̄HZ̄. Then, according to Theorem I, the
PCA bases are given by Up = X̄VpΛ

− 1
2

p . As we may
easily observe, this calculation is still very computationally
expensive. Note however that, in order to find the low di-
mensional embedding, the explicit computation of Up is not
necessary. Let us denote by fy a test image and by ȳ the
concatenation of the filter responses after the subtraction of
the mean x̄. To compute its low-dimensional representation
cp ∈ Cp efficiently, we expand

cp = UH
p y

= Λ−1/2
p VH

p X̄H ȳ

= Λ−1/2
p VH

p [x̄H
i ȳ, . . . , x̄H

N ȳ]T

= Λ−1/2
p VH

p [z̄Hi z̄y, . . . , z̄HN z̄y]T

= Λ−1/2
p VH

p Z̄H z̄y

(6)

where z̄y = H1/2Dȳ. Finally, the reconstruction error
εx(Up) is given by

εx(Up) = ||X̄−UpUH
p X̄||2F

= tr[(X̄−UpUH
p X̄)H(X̄−UpUH

p X̄)]
= tr[X̄HX̄− X̄HUpUH

p X̄]
= tr[Z̄HZ̄− Z̄HQpQH

p Z̄]
= ||Z̄−QpQH

p Z̄||2F
= εz(Qp)

(7)

where ||.||F is the Frobenius norm and Qp = Z̄VpΛ
−1/2
p .

Algorithm 1 summarizes the steps of our efficient algo-
rithm. Note that steps 1-3 are computed only once.

4. Experimental Results

We evaluated the performance of our subspace learning
algorithms for the applications of appearance based face
tracking. We used multi-scale/orientation Gabor filters and
multi-scale derivatives of the Gaussian. In the spatial do-
main (x, y), a Gabor filter is a complex exponential modu-

Algorithm 1 AMLFR-PCA
Inputs: A set of N images fi, i = 1, . . . , n, of F pixels,
the matrix H =

∑n
l=1 H

2
l , the number p of principal com-

ponents and a test image fy of F pixels.
Step 1. Compute z̄i = H1/2Dȳi, form the matrix of the
transformed data Z̄ = [z̄1| · · · |z̄N ] ∈ CF×n and compute
the matrix K = ZHZ ∈ CN×N .
Step 3. Compute the eigen-decomposition K = VΛVT

and denote by Vp ∈ $N×p and Λp ∈ $p×p the p-reduced
set.
Step 4. Compute zy = H1/2Dȳ.
Step 5. Compute the embedding cp = Λ−1/2

p VH
p Z̄H z̄y .

lated by a Gaussian function defined as

ψω,θ(x, y) = 1
2πσ2 e

− ((x cos θ+y sin θ)2+(−x sin θ+y cos θ)2)
2σ2

·
[
eiω(x cos θ+y sin θ) − e−

ω2σ2

2

]

(8)
where ω is the radial center frequency of the complex ex-
ponential, θ is the orientation of the Gabor wavelet, and σ
is the standard deviation of the Gaussian function. The first
derivative Gaussian filter bank is defined as [16, 6]

ψσ(x, y) = −σ(x− yi)e−σ(x2+y2). (9)

where σ is the scale of the filter. In all experiments, we
used Gabor filters with 16 scales and 16 orientations and
Gaussian filters of 16 scales.

The appearance-based approach to tracking has been one
of the de facto choices for tracking objects in image se-
quences. Prominent examples of such an approach include
subspace-based techniques [2, 14, 17]. Here, we propose
a subspace-based tracking algorithm closely related to the
incremental visual tracker in [17]. As such, our tracker can
deal with drastic appearance changes, does not require off-
line training, continually updates a compact object repre-
sentation and uses the Condensation algorithm to robustly
estimate the object’s location [17].

Similarly to [17], the proposed tracker is essentially
an eigen-tracker [2], where the eigen-space is adaptively
learned and updated online. The key element which makes
our approach equally fast but significantly more robust, is
how the eigen-space is generated. The method in [17] uses
the incremental version of standard intensity-based PCA.
On the contrary, the proposed tracker is based on the eigen-
space generated by the responses of a bank of Gabor and
Gaussian filters. In the following, we show how this sub-
space can be learned and updated using an approach which
is as computationally efficient as the incremental version of
intensity-based PCA.

Let us assume that given N images {f1, . . . , fN}, we
have already computed and stored the data matrix Z̄N ,



Algorithm 2 INCREMENTAL AMLFR-PCA
Inputs: The Qp and Σp from SVD of Z̄N (Qp and Σp

can be calculated by the application of Algorithm 1 since
Qp is the principal subspace and Σp is Λ1/2

p ) and mean
vector zN , a set of new images {fN+1, . . . , fN+M} and
the number p of principal components

Step 1. From set {fN+1, . . . , fN+M} compute the
matrix of the transformed data ZM = [zN+1| . . . |zN+M ]
and the mean zM .
Step 3. Compute the new mean vector zN+M =

N
N+M zN + M

N+M zM and form the matrix

G =
[
(zN+1 − zM )| . . . |(zM+N − zM )|

√
NM
N+M (zM − zN )

]

Step 4. Compute G̃ = orth(G−QpQH
p G) and

R =

[
Σp Qp

HG
0 G̃H(G−QpQH

p G)

]
(where orth performs

orthogonalization)
Step 5. Compute R

svd
= ŨΣN+MṼH (where ΣN+M are

new singular values).
Step 6. Compute the new principal subspace
UN+M = [Up G̃]Ũ.

the mean vector zN , the eigenvalues Λp and the matrix
Qp = Z̄NVpΛp

−1/2, where we have made the dependency
of the quantities on N explicit. Then, given a new image set
{fN+1, . . . , fN+M}, our target is to obtain UN+M ,ΛM+N

and zN+M corresponding to {f1, . . . , fN+M} without re-
applying Algorithm 1. Based on our analysis in Section 3
and the derivations in [8, 17], Algorithm 2 summarizes the
steps of our efficient incremental PCA of arbitrarily many
linear filter responses (Incremental AMLFR-PCA).

Finally, the proposed tracker combines our incremental
AMLFR-PCA with a variant of the Condensation algorithm
for dynamical estimation of the object’s location [17].

To evaluate the performance of our tracker quantita-
tively, we used the ground truth provided for the position
of seven facial fiducial points for the popular Dudek video
sequence3. We used the proposed tracker as well as the orig-
inal implementation in [17] to track a face region manually
defined by a rectangle in the first frame. We then used the
tracked region to estimate an affine transformation for all
subsequent frames and used this transformation in order to
obtain an estimate of the new position of the fiducial points.
Finally, we evaluated the tracking accuracy from the mean
value of the root mean square (RMS) error between the lo-
cations of the points as given by the ground truth and the
estimated transformation. Table 1 summarizes the obtained
results, while Fig. 1 shows representative examples illus-

3The Dudek video sequence with annotations is available from:
http://www.cs.toronto.edu/˜dross/ivt/

trating the tracking process for the case of the Gaussian fil-
ter bank. As we may observe, the proposed tracker performs
significantly better at no further computational cost.

Intensity Gabor Gaussian
RMS ERROR 7.44 7.12 6.32

Table 1. Mean RMS Error on Dudek Video Sequence.

5. Conclusion
We proposed an exact and very efficient framework for

subspace analysis of features generated by arbitrarily many
linear filter responses such as Gabor and Gaussian filter
banks. Previously proposed methods [20, 9, 11, 12, 10]
are based on approximations and do not scale well with the
number of filters. Thus, compared to previous work, our
formulation is not only exact but also significantly faster.
We showed how the proposed framework can boost the per-
formance of appearance based algorithms for tracking.
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