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Abstract

In this paper general solutions for Nonlinear Nonnega-

tive Component Analysis for data representation and recog-

nition are proposed. That is, motivated by a combination

of the Nonnegative Matrix Factorization (NMF) algorithm

and kernel theory, which has lead to an NMF algorithm in a

polynomial feature space [1], we propose a general frame-

work where one can build a nonlinear nonnegative compo-

nent analysis using kernels, the so-called Projected Gradi-

ent Kernel Nonnegative Matrix Factorization (PGKNMF).

In the proposed approach, arbitrary positive kernels can be

adopted while at the same time it is ensured that the limit

point of the procedure is a stationary point of the optimiza-

tion problem. Moreover, we propose fixed point algorithms

for the special case of Radial Basis Function (RBF) kernels.

We demonstrate the power of the proposed methods in face

and facial expression recognition applications.

1. Introduction

In computer vision and pattern recognition fields, one of

the most popular ways to represent an object is by writing it

as a linear combination of basis. The basis is in many cases

used to extract features and/or find a low dimensionality ob-

ject representation to be subsequently used for recognition.

One of the most popular methods to find a basis is Princi-

pal Component Analysis (PCA) [2]. Another very popular

method, that works on the statistical independence of the

basis objects or the weights of the representation, is the In-

dependent Component Analysis (ICA) [3]. ICA has been

widely used for the problem of face recognition. In this pa-

per, we deal with the problem of object representation using

images and we are particularly interested in face recognition

problems.

In [4] a decomposition of objects using a linear basis was

proposed by considering non-negativity constraints for both

the basis and the weights of the linear combination, the so-

called Nonnegative Matrix Factorization (NMF). NMF, like

PCA, represents an image as a linear combination of basis

images. NMF does not allow negative elements in either the

basis images or the representation coefficients used in the

linear combination of the basis images. Thus, it represents

an image only by additions of weighted basis images. The

non-negativity of constraints arises in many real image pro-

cessing applications, since the pixels in a grayscale image

have non-negative intensities. As claimed in [4], an object

(represented as an image) is more naturally coded into its

parts by using only additions between the different bases.

Both NMF and PCA are linear models, thus they may

fail to model efficiently the nonlinearities that are present in

most real life applications. Nonlinear component analysis is

a research topic that has been greatly developed in the past

decade [5, 6, 1]. This is mainly attributed to the great suc-

cess of combining Support Vector Machines (SVMs) with

kernels [5]. Since then, kernels have been widely used for

finding non-linear counterparts of PCA, the so-called Ker-

nel Principal Component Analysis (KPCA) [5] and for de-

scovering nonlinear high order dependencies of data, the

so-called Kernel Independent Component Analysis (KICA)

[6]. Recently, a nonlinear counterpart of NMF has been pro-

posed, the so-called Polynomial Nonnegative Matrix Fac-

torization (PNMF) [1]. The PNMF has been partly moti-

vated by biological issues like yielding a model compatible

with the neurophysiology paradigms (non-negativity con-

straints and nonlinear image decomposition [7]) and has

been used to discover higher-order correlations between im-

age pixels that may lead to more powerful latent features.

For more details on the motivation of PNMF the interested

reader may refer to [1]. The main drawback of [1] is that

only polynomial kernels can be used. In this paper we pro-

pose methods in which one can use, apart from polynomial

kernels other popular positive kernels.

Finally, we should comment that in [8] the original NMF

method was applied to the kernel matrix of the original data.

This is different from the approach proposed in [1] and the

approach followed in this paper. In our case the problem is

2860978-1-4244-3991-1/09/$25.00 ©2009 IEEE



formulated so as to find a set of nonnegative weights and

nonnegative vectors such that the projected training vectors

can be written as a linear combination of the learned pro-

jected vectors, under the nonlinear mapping. On the other

hand, in [8] the aim was to find a nonnegative decomposi-

tion of the kernel matrix which was just the application of

NMF to a nonnegative matrix of inner products.

In this paper we propose a general method for nonlin-

ear nonnegative component analysis using arbitrary positive

kernels in order to remedy the above mentioned limitations

of PNMF [1] and the NMF of kernel matrices [8]. More-

over, we present a method for nonlinear nonnegative com-

ponent analysis using RBF kernels.

2. Problem Formulation

In this paper we consider the problem of representing

facial images in a nonlinear way. Every facial image is

scanned row-wise to form an image vector xi ∈ ℜ
F
+. As-

sume that we have a database of M images in total. The

problem of PNMF, in [1], has been formulated as follow-

ing. Let φ : ℜF
+ → H be a mapping that projects image xi

to a Hilbert space H of arbitrary dimensionality. Our aim

is to find a set of vectors zj ∈ ℜF
+ and a set of weights

hj,i ≥ 0 such as:

φ(xi) ≈
∑

j

hj,iφ(zj), (1)

or more generally:

XΦ ≈ ZΦH (2)

where XΦ = [φ(x1) . . . φ(xM )], ZΦ = [φ(z1) . . . φ(zP )]
and [H]j,i = hj,i with H ∈ ℜP×M

+ . Vectors zj are the

so-called pre-images [5, 9] of the approximation. The dot

product in H is written by means of kernels as k(xi,xj) =
〈φ(xi), φ(xj)〉 = φ(xi)

T φ(xj).
In order to find the preimage matrix Z = [z1 . . . zP ] and

the weights matrix H, the least squares error is used for

measuring the error of the approximation:

Dφ(XΦ,ZΦH) =
1

2

M
∑

i=1

||φ(xi)−
∑

j

hj,iφ(zj)||
2. (3)

The optimization problem is as follows:

min
zi,k≥0, hk,j≥0

Dφ(XΦ,ZΦH). (4)

In order to provide further motivation for the approach we

may express problem (4) as follows. Given a database of

images X ∈ ℜF×M
+ and a nonlinear mapping φ we want to

find a matrix Z of preimages zi of the same domain as xi

(i.e., if xi are nonnegative grayscale images then we want

the preimages zj to be nonnegative images, as well). After

the projection, under mapping φ, we want the weights hj,i

of the linear combination to be nonnegative. This is mo-

tivated by the biological aspect that the firing rates of the

neural visual system are nonnegative, which has also moti-

vated NMF and PNMF [4, 1]. Moreover, by not allowing

negative values for hj,i we have φ(xi) ≈
∑

j hj,iφ(zj),
thus k(xi, ·) ≈

∑

j hj,ik(zj , ·) which is always positive

(for positive kernels k(xi, ·)).
In [1], in order to solve the constrained optimization

problem (4) the authors used auxiliary functions for both H

and Z. Before proceeding in describing how the algorithm

in [1] has been formulated, we should define the following

matrices:

[Kx,x]i,j = 〈φ(xi), φ(xj)〉 = k(xi,xj)
[Kz,z]i,j = 〈φ(zi), φ(zj)〉 = k(zi, zj)
[Kz,x]i,j = 〈φ(zi), φ(xj)〉 = k(zi,xj)
Kx,z = KT

z,x.

(5)

In [1], the kernel considered was the polynomial kernel:

k(xi,xj) = (xT
i xj)

d (6)

where d was the degree of the polynomial. Assuming

that vectors xi are linearly independent, then matrix Kx,x

(which has the properties of a Gram matrix [5]) is positive

definite. The same holds for the Gram matrix Kz,z , in the

case that zj are linearly independent. In all cases, bothKx,x

and Kz,z are at least positive semidefinite matrices.

In order to calculate the solution of the optimization

problem, Buciu et al [1] defined auxiliary functions and

minimized them in order to obtain a set of updating rules.

Although they defined nice multiplicative updating rules,

these rules hold only for polynomial kernels. In the fol-

lowing we shall propose a procedure where a wide variety

of kernels can be used in the decomposition and the limit

point of the procedure is guaranteed to be a stationary point

of the optimization problem.

Before describing the proposed algorithms, we shall

briefly describe the difference between the Nonlinear Non-

negative Component Analysis proposed in this paper and

the Nonnegative Matrix Factorization on Kernels in [8].

In our approach we consider the problem of approximat-

ing XΦ using a matrix ZΦ and a matrix of weights H with

xi and zj being in the same domain (i.e., ℜ
F
+) (this problem

is formally written in (2)). On the other hand in [8] they

considered an easier and more restricted problem, namely

the problem of finding a nonnegative decomposition of ma-

trix XΦT
XΦ = Kx,x. That is, they setup the problem of

approximating Kx,x ∈ ℜ
M×M
+ :

Kx,x ≈ GW (7)

with two nonnegative matrices G ∈ ℜM×P
+ and W ∈

ℜP×M
+ using the NMF algorithm in [4]. As it can be seen,
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the above problem is just the application of NMF to matrix

Kx,x.

In the followed approach, we not only find an approxi-

mation of the kernel matrix Kx,x but we also identify the

pre-images ZΦ, as well. The latter cannot be achieved by

following the above procedure.

3. Projected Gradient Methods for Nonlinear

Non-Negative Matrix Factorization

Using the notion of kernels, metric (3), that quantifies the

approximation of the vectors in XΦ as a linear combination

of the basis in ZΦ, can be expanded as:

Dφ (XΦ,ZΦH) = 1
2

∑M
i=1 ||φ(xi)−

∑P
j=1 hj,iφ(zj)||

2

= 1
2

∑M
i=1(k(xi,xi)− 2

∑P
j=1 hj,ik(zj ,xi)

+
∑P

j=1

∑P
l=1 hj,ihl,ik(zl, zj))

(8)

The minimization of (8) subject to nonnegative con-

straints for the weights matrix H and the basis matrix Z

yields the nonlinear nonnegative decomposition. This opti-

mization problem will be solved using projected gradients

in order to guarantee that the limit point is stationary and

that the nonnegativity constraints of zi and hj (the j-th col-

umn of H) are met. In order to find the limit point, two

functions are defined:

fZ(H) = Dφ(XΦ,ZΦH) and fH(Z) = Dφ(XΦ,ZΦH)
(9)

by keeping Z and H fixed, respectively.

The projected gradient method used in this paper, suc-

cessively optimizes two subproblems [10]:

minZ fH(Z)
subject to zi,k ≥ 0,

(10)

and
minH fZ(H)
subject to hk,j ≥ 0.

(11)

The first partial derivative with respect to ha,b is:

∂fZ

∂ha,b
= [(ZΦT

ZΦ)H−ZΦT
XΦ]a,b = [Kz,zH−Kz,x]a,b.

(12)

For the first partial derivative with respect to za,b we have:

∂fZ

∂za,b
=

∑M
i=1(−hb,i

∂k(zb,xi)
∂za,b

+
1
2 (

∑P
l=1 hb,ihl,i

∂k(zl,zb)
∂za,b

+
∑P

l=1,l 6=b hb,ihl,i
∂k(zl,zb)

∂za,b
)).

(13)

The projected gradient KNMF method is an iterative

method that comprises two main phases. These two phases

are iteratively repeated until the ending condition is met or

the number of iterations exceeds a given number. In the first

phase, an iterative procedure is followed for the optimiza-

tion of (10), while in the second phase, a similar procedure

is followed for the optimization of (11). At the beginning,

the basis matrix Z(1) and the weight matrixH(1) are initial-

ized randomly, in such a way that their entries are nonnega-

tive.

The procedure followed for the minimization of the two

subproblems is iteratively (similar to the one used in [10])

followed until the global convergence rule is met:

||∇f(H(t))||F + ||∇f(Z(t))||F ≤
ǫ
(

||∇f(H(1))||F + ||∇f(Z(1))||F
) (14)

which checks the stationarity of the solution pair

(H(t),Z(t)).
Matrix Z may be subsequently used for extracting fea-

tures as follows. Let y be a vector such that y ∈ ℜF
+. Then,

the projected vector ỹ ∈ ℜP is calculated as follows:

ỹ = ZΦ†
(φ(y)−mΦ) (15)

where mΦ = 1
M

∑

i φ(xi), the ZΦ†
is the pseudo-inverse

of ZΦ and is calculated as:

ZΦ†
= (ZΦT

ZΦ)−1ZφT
= K−1

z,zZ
φT

. (16)

The inverseK−1
z,z can be calculated, in most cases, and since

usually P ≪M , thus Kz,z is full ranked.

Now, using (16) feature extraction (15) may be reformu-

lated as:

ỹ = K−1
z,zZ

ΦT
(φ(y)−mΦ) = K−1

z,zg(y) (17)

where g(y) = [k(z1,y)− 1
M

∑

i k(xi,y), . . . , k(zP ,y)−
1
M

∑

i k(xi,y)]T . In [1] Z was directly used for feature

extraction as ỹ = Z†y. This procedure leads to only linear

feature extraction.

4. A Nonlinear Nonnegative Component Anal-

ysis Approach for RBF Kernels

In this section we consider the problem of nonlinear non-

negative component analysis using RBF kernels and we

propose an alternative fixed point algorithm for the mini-

mization of the cost. In kernel methods the RBF kernel is

given by:

k(xi,xj) = e−||xi−xj ||
2/s (18)

where s is the spread of the Gaussian function.

Let us consider the problem as follows. First we consider

the kernel expansion:

gi =
∑

j

hj,iφ(zj) (19)

and now we seek to approximate it by ǵi = γiφ(xi). We

allow γi 6= 1, which is reasonable, since the length of gi is
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not crucial for building decision functions [5]. The problem

is to minimize the following:

f(Z,H) =
∑

i

||gi−ǵi||
2 =

∑

i

||
∑

j

hj,iφ(zj)−γiφ(xi)||
2.

(20)

As in the algorithm in the previous section we consider

solving the two partial minimization problems:

min
hk,j≥0

f(hj) (21)

and

min
zi,k≥0

f(zk) (22)

in an iterative manner, where f(hj) and f(zk) are equal to
f(Z,H) by keeping all but hj and zk constant, respectively.

For the minimization problem in (21) we consider the actual

optimization problem (20), while for the minimization (22)

we consider a transformed version of the problem.

In the t-th iteration for the solution of subproblem (21)

we follow the procedure of the auxiliary function. That is,

we identify a solution via the definition and the optimiza-

tion of a proper auxiliary function. In our case we choose

an auxiliary function similar to the one used in [1]. The

updating rules are the following:

h
(t)
j,i = h

(t−1)
j,i

γi[K
(t−1)
x,z ]j,i

[K
(t−1)
z,z h

(t−1)
i ]j

(23)

or in matrix notation

H(t) ← H(t−1) ⊗K(t−1)
x,z ⊘ (K(t−1)

z,z H(t−1))⊗C (24)

with [Kx,z]i,j = −e||xi−zj ||
2/s, [Kz,z]i,j = −e||zi−zj ||

2/s

and Cj,i = γi. Operator ⊗ is used for denoting element-

wise matrix multiplication while ⊘ denotes element-wise

matrix division.

We use a similar reasoning as the one followed in [5]

for finding the preimages of kernel algorithms, in order to

specify the updating rules in subproblem (22). That is, as

in [5] we minimize the orthogonal projection of φ(xi) onto
∑

j hj,iφ(zj):

min
zj ,γi

N
∑

i=1

||
〈φ(xi),

∑

j hj,iφ(zj)〉

〈
∑

j hj,iφ(zj),
∑

j hj,iφ(zj)〉
− φ(xi)|| (25)

which is equivalent to:

max
zj ,γi

dRBF (Z) =
N

∑

i=1

〈φ(xi),
∑

j hj,iφ(zj)〉
2

〈
∑

j hj,iφ(zj),
∑

j hj,iφ(zj)〉
.

(26)

In order to simplify further optimization problem (26)

optimize only:

max
zj ,γi

N
∑

i=1

〈φ(xi),
∑

j

hj,iφ(zj)〉. (27)

By using fixed point iteration algorithms like [5] (i.e., set-

ting
∂d(Z)
∂zi,k

= 0), update rules can be derived for zi,k as:

z
(t)
i,k =

∑

j xi,jhk,jk(z
(t−1)
k ,xj)

∑

j hk,jk(z
(t−1)
k ,xj)

. (28)

In compact matrix notation the update rules may be written

as:

Z(t) ← X(H(t) ⊗K(t−1)
z,x )⊘ (B(t−1)) (29)

where B(t−1) has as rows the diagonal of matrix

H(t)K
(t−1)
x,z . After the iterations in (28), the optimal γ

(t)
i

is given by:

γ
(t)
i = 〈φ(xi),

∑

j

h
(t)
j,iφ(z

(t)
j )〉 =

∑

j

h
(t)
j,ik(xi, z

(t)
j ).

(30)

The algorithm proposed in this Section is referred to as

KNMF-RBF in the rest of the paper.

4.1. Another Formulation

Instead of finding both pre-images zj and H simultane-

ously we follow a different strategy. First we assume that

every φ(zj) can be written as linear combination of φ(xi)
i.e,:

φ(zj) =
∑N

i=1 mi,jφ(xi). (31)

The corresponding optimization problem is given by:

min
mik≥0,hki≥0

Dφ(XΦ,XΦMH) = ||XΦ −XΦMH||2.

(32)

It can be proven that the update rules:

M(t) = M(t−1) ⊗
(

(Kx,xH
(t−1)T

)

⊘(Kx,xM
(t−1)(t)H(t−1)H(t−1)T

)
)p

H(t) = H(t−1) ⊗
(

(M(t)T
Kx,x)

⊘(M(t)T
Kx,xM

(t)H(t−1))
)p

(33)

where p = 1 or p = 1
2 , guarantee that the function (32)

remains nonincreasing.

After, the convergence of the above sequence the pre-

images zj can now be found by the following optimization

problem:

minzj
||φ(zj)− βj

∑N
i=1 mi,jφ(xi)||

2

subject to zkj ≥ 0.
(34)

The above optimization can be solved using many algo-

rithms [5]. One of them is the projected gradient algo-

rithms presented in 3. For the special case of RBF func-

tions we can use following update rules for obtaining zj

with j = 1, . . . , P :

z
(t+1)
j =

∑N
i=1 mijk(z

(t)
j ,xi)xi

∑N
i=1 mijk(z

(t)
j ,xi)

. (35)
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5. Experimental Results

5.1. Facial Expressions Recognition Experiments
with the Jaffe Database

This database used for experiments contains 213 images

of Japanese female facial expressions (JAFFE) [11]. Ten

subjects produced 3 or 4 examples of each of the six facial

expressions plus a neutral pose, thus producing a total of

213 images of facial expressions. The difference images,

created by subtracting the neutral image intensity values

from the corresponding values of the facial expression im-

age, were calculated. Each difference image was initially

normalized, resulting in an image built only from positive

values. For the experimental procedure, 150 difference im-
ages were used for training and the remaining 63 were used
for testing. As it can be seen from Table 1, the proposed

method achieved the best facial expression recognition re-

sults.

5.2. Face Verification Experiments using the
XM2VTS database

The experiments conducted with the XM2VTS database

using the protocol described in [12]. The images were

aligned semi-automatically according to the eyes position

of each facial image using the eye coordinates. The facial

images were down-scaled to a resolution of 64× 64 pixels.
Histogram equalization was used for the normalization of

the facial image luminance.

The XM2VTS database contains 295 subjects, 4 record-

ing sessions and two shots (repetitions) per recording ses-

sion. It provides two experimental setups, namely, Config-

uration I and Configuration II [12]. Each configuration is

divided into three different sets: the training set, the evalu-

ation set and the test set. The training set is used to create

client and impostor models for each person. The evaluation

set is used to learn the verification decision thresholds. In

case of multimodal systems, the evaluation set is also used

to train the fusion manager [12]. For both configurations

the training set has 200 clients, 25 evaluation impostors and

70 test impostors. The two configurations differ in the dis-

tribution of client training and client evaluation data. For

additional details concerning the XM2VTS database an in-

terested reader can refer to [12].

The experimental procedure followed in the experiments

was the one also used in [12]. For comparison reasons the

same methodology using Configuration I of the XM2VTS

database was used. The performance of the algorithms is

quoted by the Equal Error Rate (EER) which is the scalar

figure of merit that is often used to judge the performance of

a verification algorithm. The comparisons of the best EER

achieved in the XM2VTS database can be found in Figure

2.

5.3. Face Recognition Using Photometric Stereo

In this Section we describe experiments of face recogni-

tion using photometric stereo. We collected a database of

faces by setting a device for proper capture of images. The

four intensity images were processed using a standard pho-

tometric stereo method [13, 14, 15]. This results in a dense

field of surface normals, which we then integrate to form

height maps. The albedo and the depth images were manu-

ally aligned according to the eye coordinates and scaled to

resolution 90× 100.

The device was installed in the offices of General Dy-

namics. Staff and visitors were kindly asked to use it. Af-

ter a period of more than 6 months, more than 250 per-

sons had used it. For 113 persons there are images that

had been taken more than a week interval. For the major-

ity of them (about 90), there are samples with more than

one month apart. For the experiments presented here we

have a very challenging experimental procedure using only

one grayscale albedo image for training and one grayscale

albedo image for testing. Moreover, one depth image is

used for training and one for testing.

As we have already mentioned, most of training and test-

ing images had been taken with more than one month inter-

val and most of the training and testing images display a

different facial expression. The recognition rate versus the

dimensionality for the grayscale albedo is plotted in Fig-

ure 1a, while the recognition rate for the depth images is

plotted in Figure 1b. As it can be seen, the proposed ap-

proaches achieved the best recognition rates (i.e, PGKNMF

for albedo images and KNMF-RBF for depth images), as

well.

6. Conclusions

In this paper, we proposed a method for nonlinear non-

negative matrix factorization using projected gradients. Un-

like other methods for this purpose, the proposed method

allows the use of a wide variety of kernels, apart from the

polynomial kernels considered in [1]. Moreover, it guar-

antees that the limit point of the algorithms is a stationary

point of the optimization procedure. For the special case of

RBF kernels, a fixed point algorithm is proposed for non-

negative nonlinear component analysis. The experimental

results have shown that the proposed methods can be suc-

cessfully used for feature extraction and recognition and

lead to better classification rates when compared with well-

known and widely used nonlinear feature extraction tech-

niques (like KPCA and KICA).
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Table 1. Best accuracy (%)/number of basis images, for the difference images of the Jaffe database
NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF

70/121 89.3/49 93.8/100 91/16 90.1/16 89.3/25 91/49 95/100

Table 2. Best EER (%) for the XM2VTS database
NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF

EER% 8.5 8.2 5.4 4.1 4.3 3.5 3.4 3.4

(a) (b)

Figure 1. a) Recognition rates for the grayscale albedo images; b) Recognition rates for the depth images.
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